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Chapter 1. Introduction

A wise man attacks the city of the mighty
and pulls down the stronghold in which
they trust.

Proverbs 21:22 (NIV)

This book describes a set of guidelines for writing secure programs. For purposes of this book, a “secure
program” is a program that sits on a security boundary, taking input from a source that does not have the
same access rights as the program. Such programs include application programs used as viewers of
remote data, web applications (including CGI scripts), network servers, and setuid/setgid programs. This
book does not address modifying the operating system kernel itself, although many of the principles
discussed here do apply. These guidelines were developed as a survey of “lessons learned” from various
sources on how to create such programs (along with additional observations by the author), reorganized
into a set of larger principles. This book includes specific guidance for a number of languages, including
C, C++, Java, Perl, PHP, Python, Tcl, and Ada95. It especially covers Linux and Unix based systems, but
much of its material applies to any system.

Why read this book? Because today, programs are under attack. Techniques such as constantly patching
systems and training users in computer security are simply not enough to counter computer attacks. The
Witty worm of 2004, for example, demonstrated that depending on patches "failed spectacularly”
because attackers could deploy attacks faster than users could install patches (the attack began one day
after the patch was announced, and only 45 minutes later most vulnerable systems were invected). The
Witty worm also demonstrated that deploying proactive measures wasn’t enough: all attackees had at
least installed a firewall. Long ago, putting a fence around a computer eliminated most threats. Today,
most programs have network connections or take data sent through a network (and possibly from an
attacker), and other defensive measures simply haven’t been able to counter attackers. Thus, all software
developers must know how to counter attacks.

You can find the master copy of this book at http://www.dwheeler.com/secure-programs. This book is
also part of the Linux Documentation Project (LDP) at http://www.tldp.org It’s also mirrored in several
other places. Please note that these mirrors, including the LDP copy and/or the copy in your distribution,
may be older than the master copy. I’d like to hear comments on this book, but please do not send
comments until you’ve checked to make sure that your comment is valid for the latest version.

This book does not cover assurance measures, software engineering processes, and quality assurance
approaches, which are important but widely discussed elsewhere. Such measures include testing, peer
review, configuration management, and formal methods. Documents specifically identifying sets of
development assurance measures for security issues include the Common Criteria (CC, [CC 1999]) and
the Systems Security Engineering Capability Maturity Model [SSE-CMM 1999]. Inspections and other
peer review techniques are discussed in [Wheeler 1996]. This book does briefly discuss ideas from the
CC, but only as an organizational aid to discuss security requirements. More general sets of software
engineering processes are defined in documents such as the Software Engineering Institute’s Capability
Maturity Model for Software (SW-CMM) [Paulk 1993a, 1993b] and ISO 12207 [ISO 12207]. General
international standards for quality systems are defined in ISO 9000 and ISO 9001 [ISO 9000, 9001].

This book does not discuss how to configure a system (or network) to be secure in a given environment.
This is clearly necessary for secure use of a given program, but a great many other documents discuss
secure configurations. An excellent general book on configuring Unix-like systems to be secure is
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Garfinkel [1996]. Other books for securing Unix-like systems include Anonymous [1998]. You can also
find information on configuring Unix-like systems at web sites such as
http://www.unixtools.com/security.html. Information on configuring a Linux system to be secure is
available in a wide variety of documents including Fenzi [1999], Seifried [1999], Wreski [1998], Swan
[2001], and Anonymous [1999]. Geodsoft [2001] describes how to harden OpenBSD, and many of its
suggestions are useful for any Unix-like system. Information on auditing existing Unix-like systems are
discussed in Mookhey [2002]. For Linux systems (and eventually other Unix-like systems), you may
want to examine the Bastille Hardening System, which attempts to “harden” or “tighten” the Linux
operating system. You can learn more about Bastille at http://www.bastille-linux.org; it is available for
free under the General Public License (GPL). Other hardening systems include grsecurity. For Windows
2000, you might want to look at Cox [2000]. The U.S. National Security Agency (NSA) maintains a set
of security recommendation guides at http://nsal.www.conxion.com, including the “60 Minute Network
Security Guide.” If you’re trying to establish a public key infrastructure (PKI) using open source tools,
you might want to look at the Open Source PKI Book. More about firewalls and Internet security is
found in [Cheswick 1994].

Configuring a computer is only part of Computer Security Management, a larger area that also covers
how to deal with viruses, what kind of organizational security policy is needed, business continuity
plans, and so on. There are international standards and guidance for security management. ISO 13335 is
a five-part technical report giving guidance on security management [ISO 13335]. ISO/IEC 17799:2000
defines a code of practice [ISO 17799]; its stated purpose is to give high-level and general
“recommendations for information security management for use by those who are responsible for
initiating, implementing or maintaining security in their organization.” The document specifically
identifies itself as “a starting point for developing organization specific guidance.” It also states that not
all of the guidance and controls it contains may be applicable, and that additional controls not contained
may be required. Even more importantly, they are intended to be broad guidelines covering a number of
areas. and not intended to give definitive details or "how-tos". It’s worth noting that the original signing
of ISO/IEC 17799:2000 was controversial; Belgium, Canada, France, Germany, Italy, Japan and the US
voted against its adoption. However, it appears that these votes were primarily a protest on parliamentary
procedure, not on the content of the document, and certainly people are welcome to use ISO 17799 if
they find it helpful. More information about ISO 17799 can be found in NIST’s ISO/IEC 17799:2000
FAQ. ISO 17799 is highly related to BS 7799 part 1 and 2; more information about BS 7799 can be
found at http://www.xisec.com/faq.htm. ISO 17799 is currently under revision. It’s important to note that
none of these standards (ISO 13335, ISO 17799, or BS 7799 parts 1 and 2) are intended to be a detailed
set of technical guidelines for software developers; they are all intended to provide broad guidelines in a
number of areas. This is important, because software developers who simply only follow (for example)
ISO 17799 will generally not produce secure software - developers need much, much, much more detail
than ISO 17799 provides.

Of course, computer security management is part of the even broader area of security in general. Clearly
you should ensure that your physical environment is secure as well, depending on your threats. You
might find this Anti-Defamation League document useful.

The Commonly Accepted Security Practices & Recommendations (CASPR) project at
http://www.caspr.org is trying to distill information security knowledge into a series of papers available
to all (under the GNU FDL license, so that future document derivatives will continue to be available to
all). Clearly, security management needs to include keeping with patches as vulnerabilities are found and
fixed. Beattie [2002] provides an interesting analysis on how to determine when to apply patches
contrasting risk of a bad patch to the risk of intrusion (e.g., under certain conditions, patches are
optimally applied 10 or 30 days after they are released).
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If you’re interested in the current state of vulnerabilities, there are other resources available to use. The
CVE at http://cve.mitre.org gives a standard identifier for each (widespread) vulnerability. The paper
SecurityTracker Statistics analyzes vulnerabilities to determine what were the most common
vulnerabilities. The Internet Storm Center at http://isc.incidents.org/ shows the prominence of various
Internet attacks around the world.

This book assumes that the reader understands computer security issues in general, the general security
model of Unix-like systems, networking (in particular TCP/IP based networks), and the C programming
language. This book does include some information about the Linux and Unix programming model for
security. If you need more information on how TCP/IP based networks and protocols work, including
their security protocols, consult general works on TCP/IP such as [Murhammer 1998].

When I first wrote this document, there were many short articles but no books on writing secure
programs. There are now other books on writing secure programs. One is “Building Secure Software” by
John Viega and Gary McGraw [Viega 2002]; this is a very good book that discusses a number of
important security issues, but it omits a large number of important security problems that are instead
covered here. Basically, this book selects several important topics and covers them well, but at the cost of
omitting many other important topics. The Viega book has a little more information for Unix-like
systems than for Windows systems, but much of it is independent of the kind of system. The other book
is “Writing Secure Code” by Michael Howard and David LeBlanc [Howard 2002]. The title of that book
is misleading; that book is solely about writing secure programs for Windows, and is not very helpful if
you are writing programs for any other system. This shouldn’t be surprising; it’s published by Microsoft
press, and its copyright is owned by Microsoft. If you are trying to write secure programs for Microsoft’s
Windows systems, though, it’s a good book. Another useful source of secure programming guidance is
the The Open Web Application Security Project (OWASP) Guide to Building Secure Web Applications
and Web Services; it has more on process, and less specifics than this book, but it has useful material in it.

This book expecially focuses on all Unix-like systems, including Linux-based systems (including
Debian, Ubuntu, Red Hat Enterprise Linux, Fedora, CentOS, and SuSE), Unix systems (including
Solaris, FreeBSD, NetBSD, and OpenBSD), MacOS, Android, and iOS. In several places it includes
details about Linux specifically. That said, much of this material is not limited to a particular operating
system, and there’s some material specifically on other systems like Windows. If you know relevant
information not already included here, please let me know.

This book is copyright (C) 1999-2015 David A. Wheeler and is covered by the GNU Free
Documentation License (GFDL); see Appendix C and Appendix D for more information.

Chapter 2 discusses the background of Unix, Linux, and security. Chapter 3 describes the general Unix
and Linux security model, giving an overview of the security attributes and operations of processes,
filesystem objects, and so on. (Windows is not the same, but there are many similarities.) This is
followed by the meat of this book, a set of design and implementation guidelines for developing
applications. This focuses more on Linux and Unix systems, but not exclusively so. The book ends with
conclusions in Chapter 12, followed by a lengthy bibliography and appendixes.

The design and implementation guidelines are divided into categories which I believe emphasize the
programmer’s viewpoint. Programs accept inputs, process data, call out to other resources, and produce
output, as shown in Figure 1-1; notionally all security guidelines fit into one of these categories. I've
subdivided “process data” into structuring program internals and approach, avoiding buffer overflows
(which in some cases can also be considered an input issue), language-specific information, and special
topics. The chapters are ordered to make the material easier to follow. Thus, the book chapters giving
guidelines discuss validating all input (Chapter 5), avoiding buffer overflows (Chapter 6), structuring
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program internals and approach (Chapter 7), carefully calling out to other resources (Chapter 8),

judiciously sending information back (Chapter 9), language-specific information (Chapter 10), and
finally information on special topics such as how to acquire random numbers (Chapter 11).

Figure 1-1. Abstract View of a Program
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1 issued an order and a search was
made, and it was found that this city has
a long history of revolt against kings
and has been a place of rebellion and
sedition.

Ezra 4:19 (NIV)

2.1. History of Unix, Linux, and Open Source / Free
Software

2.1.1. Unix

In 1969-1970, Kenneth Thompson, Dennis Ritchie, and others at AT&T Bell Labs began developing a
small operating system on a little-used PDP-7. The operating system was soon christened Unix, a pun on
an earlier operating system project called MULTICS. In 1972-1973 the system was rewritten in the
programming language C, an unusual step that was visionary: due to this decision, Unix was the first
widely-used operating system that could switch from and outlive its original hardware. Other innovations
were added to Unix as well, in part due to synergies between Bell Labs and the academic community. In
1979, the “seventh edition” (V7) version of Unix was released, the grandfather of all extant Unix
systems.

After this point, the history of Unix becomes somewhat convoluted. The academic community, led by
Berkeley, developed a variant called the Berkeley Software Distribution (BSD), while AT&T continued
developing Unix under the names “System III”” and later “System V. In the late 1980’s through early
1990’s the “wars” between these two major strains raged. After many years each variant adopted many of
the key features of the other. Commercially, System V won the “standards wars” (getting most of its
interfaces into the formal standards), and most hardware vendors switched to AT&T’s System V.
However, System V ended up incorporating many BSD innovations, so the resulting system was more a
merger of the two branches. The BSD branch did not die, but instead became widely used for research,
for PC hardware, and for single-purpose servers (e.g., many web sites use a BSD derivative).

The result was many different versions of Unix, all based on the original seventh edition. Most versions
of Unix were proprietary and maintained by their respective hardware vendor, for example, Sun Solaris
is a variant of System V. Three versions of the BSD branch of Unix ended up as open source: FreeBSD
(concentrating on ease-of-installation for PC-type hardware), NetBSD (concentrating on many different
CPU architectures), and a variant of NetBSD, OpenBSD (concentrating on security). More general
information about Unix history can be found at
http://www.datametrics.com/tech/unix/uxhistry/brf-hist.htm, http://perso.wanadoo.fr/levenez/unix, and
http://www.crackmonkey.org/unix.html (note that Microsoft Windows systems can’t read that last one).
The Unix Heritage Society refers to several sources of Unix history. Much more information about the
BSD history can be found in [McKusick 1999] and
ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-current/src/share/misc/bsd-family-tree.
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A slightly old but interesting advocacy piece that presents arguments for using Unix-like systems (instead
of Microsoft’s products) is John Kirch’s paper “Microsoft Windows NT Server 4.0 versus UNIX”.

2.1.2. Free Software Foundation

In 1984 Richard Stallman’s Free Software Foundation (FSF) began the GNU project, a project to create a
free version of the Unix operating system. By free, Stallman meant software that could be freely used,
read, modified, and redistributed. The FSF successfully built a vast number of useful components,
including a C compiler (gcc), an impressive text editor (emacs), and a host of fundamental tools.
However, in the 1990’s the FSF was having trouble developing the operating system kernel [FSF 1998];
without a kernel their dream of a completely free operating system would not be realized.

2.1.3. Linux

In 1991 Linus Torvalds began developing an operating system kernel, which he named “Linux”
[Torvalds 1999]. This kernel could be combined with the FSF material and other components (in
particular some of the BSD components and MIT’s X-windows software) to produce a freely-modifiable
and very useful operating system. This book will term the kernel itself the “Linux kernel” and an entire
combination as “Linux”. Note that many use the term “GNU/Linux” instead for this combination.

In the Linux community, different organizations have combined the available components differently.
Each combination is called a “distribution”, and the organizations that develop distributions are called
“distributors”. Common distributions include Red Hat, Mandrake, SuSE, Caldera, Corel, and Debian.
There are differences between the various distributions, but all distributions are based on the same
foundation: the Linux kernel and the GNU glibc libraries. Since both are covered by “copyleft” style
licenses, changes to these foundations generally must be made available to all, a unifying force between
the Linux distributions at their foundation that does not exist between the BSD and AT&T-derived Unix
systems. This book is not specific to any Linux distribution; when it discusses Linux it presumes Linux
kernel version 2.2 or greater and the C library glibc 2.1 or greater, valid assumptions for essentially all
current major Linux distributions.

2.1.4. Open Source / Free Software

Increased interest in software that is freely shared has made it increasingly necessary to define and
explain it. A widely used term is “open source software”, which is further defined in [OSI 1999]. Eric
Raymond [1997, 1998] wrote several seminal articles examining its various development processes.
Another widely-used term is “free software”, where the “free” is short for “freedom”: the usual
explanation is “free speech, not free beer.” Neither phrase is perfect. The term “free software” is often
confused with programs whose executables are given away at no charge, but whose source code cannot
be viewed, modified, or redistributed. Conversely, the term “open source” is sometime (ab)used to mean
software whose source code is visible, but for which there are limitations on use, modification, or
redistribution. This book uses the term “open source” for its usual meaning, that is, software which has
its source code freely available for use, viewing, modification, and redistribution; a more detailed
definition is contained in the Open Source Definition. In some cases, a difference in motive is suggested;
those preferring the term “free software” wish to strongly emphasize the need for freedom, while those
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using the term may have other motives (e.g., higher reliability) or simply wish to appear less strident. For
information on this definition of free software, and the motivations behind it, can be found at
http://www.fsf.org.

Those interested in reading advocacy pieces for open source software and free software should see
http://www.opensource.org and http://www.fsf.org. There are other documents which examine such
software, for example, Miller [1995] found that the open source software were noticeably more reliable
than proprietary software (using their measurement technique, which measured resistance to crashing
due to random input).

2.1.5. Comparing Linux and Unix

This book uses the term “Unix-like” to describe systems intentionally like Unix. In particular, the term
“Unix-like” includes all major Unix variants and Linux distributions. Note that many people simply use
the term “Unix” to describe these systems instead. Originally, the term “Unix” meant a particular product
developed by AT&T. Today, the Open Group owns the Unix trademark, and it defines Unix as “the
worldwide Single UNIX Specification”.

Linux is not derived from Unix source code, but its interfaces are intentionally like Unix. Therefore,
Unix lessons learned generally apply to both, including information on security. Most of the information
in this book applies to any Unix-like system. Linux-specific information has been intentionally added to
enable those using Linux to take advantage of Linux’s capabilities.

Unix-like systems share a number of security mechanisms, though there are subtle differences and not all
systems have all mechanisms available. All include user and group ids (uids and gids) for each process
and a filesystem with read, write, and execute permissions (for user, group, and other). See Thompson
[1974] and Bach [1986] for general information on Unix systems, including their basic security
mechanisms. Chapter 3 summarizes key security features of Unix and Linux.

2.2. Security Principles

There are many general security principles which you should be familiar with; one good place for
general information on information security is the Information Assurance Technical Framework (IATF)
[NSA 2000]. NIST has identified high-level “generally accepted principles and practices” [Swanson
1996]. You could also look at a general textbook on computer security, such as [Pfleeger 1997]. NIST
Special Publication 800-27 describes a number of good engineering principles (although, since they’re
abstract, they’re insufficient for actually building secure programs - hence this book); you can get a copy
at http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf. A few security principles are
summarized here.

Often computer security objectives (or goals) are described in terms of three overall objectives:

 Confidentiality (also known as secrecy), meaning that the computing system’s assets can be read only
by authorized parties.

« Integrity, meaning that the assets can only be modified or deleted by authorized parties in authorized
ways.
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« Availability, meaning that the assets are accessible to the authorized parties in a timely manner (as
determined by the systems requirements). The failure to meet this goal is called a denial of service.

Some people define additional major security objectives, while others lump those additional goals as
special cases of these three. For example, some separately identify non-repudiation as an objective; this
is the ability to “prove” that a sender sent or receiver received a message (or both), even if the sender or
receiver wishes to deny it later. Privacy is sometimes addressed separately from confidentiality; some
define this as protecting the confidentiality of a user (e.g., their identity) instead of the data. Most
objectives require identification and authentication, which is sometimes listed as a separate objective.
Often auditing (also called accountability) is identified as a desirable security objective. Sometimes
“access control” and “authenticity” are listed separately as well. For example, The U.S. Department of
Defense (DoD), in DoD directive 3600.1 defines “information assurance” as “information operations
(I0) that protect and defend information and information systems by ensuring their availability, integrity,
authentication, confidentiality, and nonrepudiation. This includes providing for restoration of
information systems by incorporating protection, detection, and reaction capabilities.”

In any case, it is important to identify your program’s overall security objectives, no matter how you
group them together, so that you’ll know when you’ve met them.

Sometimes these objectives are a response to a known set of threats, and sometimes some of these
objectives are required by law. For example, for U.S. banks and other financial institutions, there’s a new
privacy law called the “Gramm-Leach-Bliley” (GLB) Act. This law mandates disclosure of personal
information shared and means of securing that data, requires disclosure of personal information that will
be shared with third parties, and directs institutions to give customers a chance to opt out of data sharing.
[Jones 2000]

There is sometimes conflict between security and some other general system/software engineering
principles. Security can sometimes interfere with “ease of use”, for example, installing a secure
configuration may take more effort than a “trivial” installation that works but is insecure. Often, this
apparent conflict can be resolved, for example, by re-thinking a problem it’s often possible to make a
secure system also easy to use. There’s also sometimes a conflict between security and abstraction
(information hiding); for example, some high-level library routines may be implemented securely or not,
but their specifications won’t tell you. In the end, if your application must be secure, you must do things
yourself if you can’t be sure otherwise - yes, the library should be fixed, but it’s your users who will be
hurt by your poor choice of library routines.

A good general security principle is “defense in depth”; you should have numerous defense mechanisms
(“layers”) in place, designed so that an attacker has to defeat multiple mechanisms to perform a
successful attack.

For general principles on how to design secure programs, see Section 7.1.

2.3. Why do Programmers Write Insecure Code?

Many programmers don’t intend to write insecure code - but do anyway. Here are a number of purported
reasons for this. Most of these were collected and summarized by Aleph One on Bugtraq (in a posting on
December 17, 1998):

« There is no curriculum that addresses computer security in most schools. Even when there is a
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computer security curriculum, they often don’t discuss how to write secure programs as a whole.
Many such curriculum only study certain areas such as cryptography or protocols. These are
important, but they often fail to discuss common real-world issues such as buffer overflows, string
formatting, and input checking. I believe this is one of the most important problems; even those
programmers who go through colleges and universities are very unlikely to learn how to write secure
programs, yet we depend on those very people to write secure programs.

» Programming books/classes do not teach secure/safe programming techniques. Indeed, until recently
there were no books on how to write secure programs at all (this book is one of those few).

« No one uses formal verification methods.

« Cis an unsafe language, and the standard C library string functions are unsafe. This is particularly
important because C is so widely used - the “simple” ways of using C permit dangerous exploits.

» Programmers do not think “multi-user.”

+ Programmers are human, and humans are lazy. Thus, programmers will often use the “easy” approach
instead of a secure approach - and once it works, they often fail to fix it later.

» Most programmers are simply not good programmers.
« Most programmers are not security people; they simply don’t often think like an attacker does.

« Most security people are not programmers. This was a statement made by some Bugtraq contributors,
but it’s not clear that this claim is really true.

+ Most computer security models are terrible.

« There is lots of “broken” legacy software. Fixing this software (to remove security faults or to make it
work with more restrictive security policies) is difficult.

« Consumers don’t care about security. (Personally, I have hope that consumers are beginning to care
about security; a computer system that is constantly exploited is neither useful nor user-friendly. Also,
many consumers are unaware that there’s even a problem, assume that it can’t happen to them, or think
that that things cannot be made better.)

» Security costs extra development time.

« Security costs in terms of additional testing (red teams, etc.).

2.4. Is Open Source Good for Security?

There’s been a lot of debate by security practitioners about the impact of open source approaches on
security. One of the key issues is that open source exposes the source code to examination by everyone,
both the attackers and defenders, and reasonable people disagree about the ultimate impact of this
situation. (Note - you can get the latest version of this essay by going to the main website for this book,
http://www.dwheeler.com/secure-programs.

2.4.1. View of Various Experts

First, let’s exampine what security experts have to say.
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Bruce Schneier is a well-known expert on computer security and cryptography. He argues that smart
engineers should “demand open source code for anything related to security” [Schneier 1999], and he
also discusses some of the preconditions which must be met to make open source software secure.
Vincent Rijmen, a developer of the winning Advanced Encryption Standard (AES) encryption algorithm,
believes that the open source nature of Linux provides a superior vehicle to making security
vulnerabilities easier to spot and fix, “Not only because more people can look at it, but, more
importantly, because the model forces people to write more clear code, and to adhere to standards. This
in turn facilitates security review” [Rijmen 2000].

Elias Levy (Alephl) is the former moderator of one of the most popular security discussion groups -
Bugtraq. He discusses some of the problems in making open source software secure in his article "Is
Open Source Really More Secure than Closed?". His summary is:

So does all this mean Open Source Software is no better than closed source software when it comes to security
vulnerabilities? No. Open Source Software certainly does have the potential to be more secure than its closed
source counterpart. But make no mistake, simply being open source is no guarantee of security.

Whitfield Diffie is the co-inventor of public-key cryptography (the basis of all Internet security) and chief
security officer and senior staff engineer at Sun Microsystems. In his 2003 article Risky business:
Keeping security a secret, he argues that proprietary vendor’s claims that their software is more secure
because it’s secret is nonsense. He identifies and then counters two main claims made by proprietary
vendors: (1) that release of code benefits attackers more than anyone else because a lot of hostile eyes
can also look at open-source code, and that (2) a few expert eyes are better than several random ones. He
first notes that while giving programmers access to a piece of software doesn’t guarantee they will study
it carefully, there is a group of programmers who can be expected to care deeply: Those who either use
the software personally or work for an enterprise that depends on it. “In fact, auditing the programs on
which an enterprise depends for its own security is a natural function of the enterprise’s own
information-security organization.” He then counters the second argument, noting that “As for the notion
that open source’s usefulness to opponents outweighs the advantages to users, that argument flies in the
face of one of the most important principles in security: A secret that cannot be readily changed should
be regarded as a vulnerability.” He closes noting that

“It’s simply unrealistic to depend on secrecy for security in computer software. You may be able to keep the
exact workings of the program out of general circulation, but can you prevent the code from being
reverse-engineered by serious opponents? Probably not.”

John Viega’s article "The Myth of Open Source Security" also discusses issues, and summarizes things
this way:

Open source software projects can be more secure than closed source projects. However, the very things that
can make open source programs secure -- the availability of the source code, and the fact that large numbers of
users are available to look for and fix security holes -- can also lull people into a false sense of security.

Michael H. Warfield’s "Musings on open source security" is very positive about the impact of open
source software on security. In contrast, Fred Schneider doesn’t believe that open source helps security,
saying “there is no reason to believe that the many eyes inspecting (open) source code would be
successful in identifying bugs that allow system security to be compromised” and claiming that “bugs in
the code are not the dominant means of attack” [Schneider 2000]. He also claims that open source rules
out control of the construction process, though in practice there is such control - all major open source
programs have one or a few official versions with “owners” with reputations at stake. Peter G. Neumann
discusses “open-box” software (in which source code is available, possibly only under certain
conditions), saying “Will open-box software really improve system security? My answer is not by itself,
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although the potential is considerable” [Neumann 2000]. TruSecure Corporation, under sponsorship by
Red Hat (an open source company), has developed a paper on why they believe open source is more
effective for security [TruSecure 2001]. Natalie Walker Whitlock’s IBM DeveloperWorks article
discusses the pros and cons as well. Brian Witten, Carl Landwehr, and Micahel Caloyannides [Witten
2001] published in IEEE Software an article tentatively concluding that having source code available
should work in the favor of system security; they note:

“We can draw four additional conclusions from this discussion. First, access to source code lets users improve
system security -- if they have the capability and resources to do so. Second, limited tests indicate that for some
cases, open source life cycles produce systems that are less vulnerable to nonmalicious faults. Third, a survey
of three operating systems indicates that one open source operating system experienced less exposure in the
form of known but unpatched vulnerabilities over a 12-month period than was experienced by either of two
proprietary counterparts. Last, closed and proprietary system development models face disincentives toward
fielding and supporting more secure systems as long as less secure systems are more profitable.
Notwithstanding these conclusions, arguments in this important matter are in their formative stages and in dire
need of metrics that can reflect security delivered to the customer.”

Scott A. Hissam and Daniel Plakosh’s “Trust and Vulnerability in Open Source Software” discuss the
pluses and minuses of open source software. As with other papers, they note that just because the
software is open to review, it should not automatically follow that such a review has actually been
performed. Indeed, they note that this is a general problem for all software, open or closed - it is often
questionable if many people examine any given piece of software. One interesting point is that they
demonstrate that attackers can learn about a vulnerability in a closed source program (Windows) from
patches made to an OSS/FS program (Linux). In this example, Linux developers fixed a vulnerability
before attackers tried to attack it, and attackers correctly surmised that a similar problem might be still be
in Windows (and it was). Unless OSS/FS programs are forbidden, this kind of learning is difficult to
prevent. Therefore, the existance of an OSS/FS program can reveal the vulnerabilities of both the
OSS/FS and proprietary program performing the same function - but at in this example, the OSS/FS
program was fixed first.

2.4.2. Why Closing the Source Doesn’t Halt Attacks

It’s been argued that a system without source code is more secure because, since there’s less information
available for an attacker, it should be harder for an attacker to find the vulnerabilities. This argument has
a number of weaknesses, however, because although source code is extremely important when trying to
add new capabilities to a program, attackers generally don’t need source code to find a vulnerability.
Also, this argument assumes you can always keep the source code a secret, which often untrue.

First, it’s important to distinguish between “destructive” acts and “constructive” acts. In the real world, it
is much easier to destroy a car than to build one. In the software world, it is much easier to find and
exploit a vulnerability than to add new significant new functionality to that software. Attackers have
many advantages against defenders because of this difference. Software developers must try to have no
security-relevant mistakes anywhere in their code, while attackers only need to find one. Developers are
primarily paid to get their programs to work... attackers don’t need to make the program work, they only
need to find a single weakness. And as I’ll describe in a moment, it takes less information to attack a
program than to modify one.

Generally attackers (against both open and closed programs) start by knowing about the general kinds of
security problems programs have. There’s no point in hiding this information; it’s already out, and in any
case, defenders need that kind of information to defend themselves. Attackers then use techniques to try

11
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to find those problems; I’ll group the techniques into “dynamic” techniques (where you run the program)
and “static” techniques (where you examine the program’s code - be it source code or machine code).

In “dynamic” approaches, an attacker runs the program, sending it data (often problematic data), and
sees if the programs’ response indicates a common vulnerability. Open and closed programs have no
difference here, since the attacker isn’t looking at code.

Attackers may also look at the code, the “static”” approach. For open source software, they’ll probably
look at the source code and search it for patterns. For closed source software, you can search the machine
code (usually presented in assembly language format to simplify the task) for patterns that suggest
security problems. In fact, there’s are several tools that do this. Attackers might also use tools called
“decompilers” that turn the machine code back into source code and then search the source code for the
vulnerable patterns (the same way they would search for vulnerabilities in source code in open source
software). See Flake [2001] for one discussion of how closed code can still be examined for security
vulnerabilities (e.g., using disassemblers). This point is important: even if an attacker wanted to use
source code to find a vulnerability, a closed source program has no advantage, because the attacker can
use a disassembler to re-create the source code of the product (for analysis), or use a binary scanning tool.

Non-developers might ask “if decompilers can create source code from machine code, then why do
developers say they need source code instead of just machine code?” The problem is that although
developers don’t need source code to find security problems, developers do need source code to make
substantial improvements to the program. Although decompilers can turn machine code back into a
“source code” of sorts, the resulting source code is extremely hard to modify. Typically most
understandable names are lost, so instead of variables like “grand_total” you get “x123123”, instead of
methods like “display_warning” you get “f123124”, and the code itself may have spatterings of assembly
in it. Also, _ALL_ comments and design information are lost. This isn’t a serious problem for finding
security problems, because generally you’re searching for patterns indicating vulnerabilities, not for
internal variable or method names. Thus, decompilers and binary code scanning tools can be useful for
finding ways to attack programs, or to see how vulnerable a program is, but aren’t helpful for updating
programs.

Thus, developers will say “source code is vital” when they intend to add functionality), but the fact that
the source code for closed source programs is hidden doesn’t protect the program very much. In fact,
users of binary-only programs can have a problem when they use decompilers or binary scanning tools;
it’s quite possible for a diligent user to know of a security flaw they can exploit but can’t easily fix, and
they many not be able to convince the vendor to fix it either.

And this assumes you can keep the source code secret from attackers anyway. For example, Microsoft
has had at least parts of its source code stolen several times, at least once from Microsoft itself and at
least once from another company it shared data with. Microsoft also has programs to share its source
code with various governments, companies, and educational settings; some of those organizations
include attackers, and those organizations could be attacked by others to acquire the source code. I use
this merely as an example; there are many reasons source code must be shared by many companies. And
this doesn’t even take into consideration that aggreved workers might maliciously release the source
code. Depending on long-term secrecy of source code is self-deception; you many delay its release, but if
it’s important, it will probably be stolen sooner or later. Keeping the source code secret makes financial
sense for proprietary vendors as a way to encourage customers to buy the products and support, but it is
not a strong security measure.
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2.4.3. Why Keeping Vulnerabilities Secret Doesn’t Make Them
Go Away

Sometimes it’s noted that a vulnerability that exists but is unknown can’t be exploited, so the system
“practically secure.” In theory this is true, but the problem is that once someone finds the vulnerability,
the finder may just exploit the vulnerability instead of helping to fix it. Having unknown vulnerabilities
doesn’t really make the vulnerabilities go away; it simply means that the vulnerabilities are a time bomb,
with no way to know when they’ll be exploited. Fundamentally, the problem of someone exploiting a
vulnerability they discover is a problem for both open and closed source systems.

One related claim sometimes made (though not as directly related to OSS/FS) is that people should not
post warnings about vulnerabilities and discuss them. This sounds good in theory, but the problem is that
attackers already distribute information about vulnerabilities through a large number of channels. In
short, such approaches would leave defenders vulnerable, while doing nothing to inhibit attackers. In the
past, companies actively tried to prevent disclosure of vulnerabilities, but experience showed that, in
general, companies didn’t fix vulnerabilities until they were widely known to their users (who could then
insist that the vulnerabilities be fixed). This is all part of the argument for “full disclosure.” Gartner
Group has a blunt commentary in a CNET.com article titled “Commentary: Hype is the real issue - Tech
News.” They stated:

The comments of Microsoft’s Scott Culp, manager of the company’s security response center, echo a common
refrain in a long, ongoing battle over information. Discussions of morality regarding the distribution of
information go way back and are very familiar. Several centuries ago, for example, the church tried to squelch
Copernicus’ and Galileo’s theory of the sun being at the center of the solar system... Culp’s attempt to blame
"information security professionals" for the recent spate of vulnerabilities in Microsoft products is at best
disingenuous. Perhaps, it also represents an attempt to deflect criticism from the company that built those
products... [The] efforts of all parties contribute to a continuous process of improvement. The more widely
vulnerabilities become known, the more quickly they get fixed.

2.4.4. How OSS/FS Counters Trojan Horses

It’s sometimes argued that open source programs, because there’s no enforced control by a single
company, permit people to insert Trojan Horses and other malicious code. Trojan horses can be inserted
into open source code, true, but they can also be inserted into proprietary code. A disgruntled or bribed
employee can insert malicious code, and in many organizations it’s much less likely to be found than in
an open source program. After all, no one outside the organization can review the source code, and few
companies review their code internally (or, even if they do, few can be assured that the reviewed code is
actually what is used). And the notion that a closed-source company can be sued later has little evidence;
nearly all licenses disclaim all warranties, and courts have generally not held software development
companies liable.

Borland’s InterBase server is an interesting case in point. Some time between 1992 and 1994, Borland
inserted an intentional “back door” into their database server, “InterBase”. This back door allowed any
local or remote user to manipulate any database object and install arbitrary programs, and in some cases
could lead to controlling the machine as “root”. This vulnerability stayed in the product for at least 6
years - no one else could review the product, and Borland had no incentive to remove the vulnerability.
Then Borland released its source code on July 2000. The "Firebird" project began working with the
source code, and uncovered this serious security problem with InterBase in December 2000. By January
2001 the CERT announced the existence of this back door as CERT advisory CA-2001-01. What’s
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discouraging is that the backdoor can be easily found simply by looking at an ASCII dump of the
program (a common cracker trick). Once this problem was found by open source developers reviewing
the code, it was patched quickly. You could argue that, by keeping the password unknown, the program
stayed safe, and that opening the source made the program less secure. I think this is nonsense, since
ASCII dumps are trivial to do and well-known as a standard attack technique, and not all attackers have
sudden urges to announce vulnerabilities - in fact, there’s no way to be certain that this vulnerability has
not been exploited many times. It’s clear that after the source was opened, the source code was reviewed
over time, and the vulnerabilities found and fixed. One way to characterize this is to say that the original
code was vulnerable, its vulnerabilities became easier to exploit when it was first made open source, and
then finally these vulnerabilities were fixed.

2.4.5. Other Advantages

The advantages of having source code open extends not just to software that is being attacked, but also
extends to vulnerability assessment scanners. Vulnerability assessment scanners intentionally look for
vulnerabilities in configured systems. A recent Network Computing evaluation found that the best
scanner (which, among other things, found the most legitimate vulnerabilities) was Nessus, an open
source scanner [Forristal 2001].

2.4.6. Bottom Line

So, what’s the bottom line? I personally believe that when a program began as closed source and is then
first made open source, it often starts less secure for any users (through exposure of vulnerabilities), and
over time (say a few years) it has the potential to be much more secure than a closed program. If the
program began as open source software, the public scrutiny is more likely to improve its security before
it’s ready for use by significant numbers of users, but there are several caveats to this statement (it’s not
an ironclad rule). Just making a program open source doesn’t suddenly make a program secure, and just
because a program is open source does not guarantee security:

« First, people have to actually review the code. This is one of the key points of debate - will people
really review code in an open source project? All sorts of factors can reduce the amount of review:
being a niche or rarely-used product (where there are few potential reviewers), having few developers,
and use of a rarely-used computer language. Clearly, a program that has a single developer and no
other contributors of any kind doesn’t have this kind of review. On the other hand, a program that has a
primary author and many other people who occasionally examine the code and contribute suggests
that there are others reviewing the code (at least to create contributions). In general, if there are more
reviewers, there’s generally a higher likelihood that someone will identify a flaw - this is the basis of
the “many eyeballs” theory. Note that, for example, the OpenBSD project continuously examines
programs for security flaws, so the components in its innermost parts have certainly undergone a
lengthy review. Since OSS/FS discussions are often held publicly, this level of review is something
that potential users can judge for themselves.

One factor that can particularly reduce review likelihood is not actually being open source. Some
vendors like to posture their “disclosed source” (also called “source available”) programs as being
open source, but since the program owner has extensive exclusive rights, others will have far less
incentive to work “for free” for the owner on the code. Even open source licenses which have
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unusually asymmetric rights (such as the MPL) have this problem. After all, people are less likely to
voluntarily participate if someone else will have rights to their results that they don’t have (as Bruce
Perens says, “who wants to be someone else’s unpaid employee?”). In particular, since the reviewers
with the most incentive tend to be people trying to modify the program, this disincentive to participate
reduces the number of “eyeballs”. Elias Levy made this mistake in his article about open source
security; his examples of software that had been broken into (e.g., TIS’s Gauntlet) were not, at the
time, open source.

+ Second, at least some of the people developing and reviewing the code must know how to write secure
programs. Hopefully the existence of this book will help. Clearly, it doesn’t matter if there are “many
eyeballs” if none of the eyeballs know what to look for. Note that it’s not necessary for everyone to
know how to write secure programs, as long as those who do know how are examining the code
changes.

» Third, once found, these problems need to be fixed quickly and their fixes distributed. Open source
systems tend to fix the problems quickly, but the distribution is not always smooth. For example, the
OpenBSD developers do an excellent job of reviewing code for security flaws - but they don’t always
report the identified problems back to the original developer. Thus, it’s quite possible for there to be a
fixed version in one system, but for the flaw to remain in another. I believe this problem is lessening
over time, since no one “downstream” likes to repeatedly fix the same problem. Of course, ensuring
that security patches are actually installed on end-user systems is a problem for both open source and
closed source software.

Another advantage of open source is that, if you find a problem, you can fix it immediately. This really
doesn’t have any counterpart in closed source.

In short, the effect on security of open source software is still a major debate in the security community,
though a large number of prominent experts believe that it has great potential to be more secure.

2.5. Types of Secure Programs

Many different types of programs may need to be secure programs (as the term is defined in this book).
Some common types are:

« Application programs used as viewers of remote data. Programs used as viewers (such as word
processors or file format viewers) are often asked to view data sent remotely by an untrusted user (this
request may be automatically invoked by a web browser). Clearly, the untrusted user’s input should
not be allowed to cause the application to run arbitrary programs. It’s usually unwise to support
initialization macros (run when the data is displayed); if you must, then you must create a secure
sandbox (a complex and error-prone task that almost never succeeds, which is why you shouldn’t
support macros in the first place). Be careful of issues such as buffer overflow, discussed in Chapter 6,
which might allow an untrusted user to force the viewer to run an arbitrary program.

« Application programs used by the administrator (root). Such programs shouldn’t trust information that
can be controlled by non-administrators.

« Local servers (also called daemons).

« Network-accessible servers (sometimes called network daemons).
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« Web-based applications (including CGI scripts). These are a special case of network-accessible
servers, but they’re so common they deserve their own category. Such programs are invoked indirectly
via a web server, which filters out some attacks but nevertheless leaves many attacks that must be
withstood.

« Applets (i.e., programs downloaded to the client for automatic execution). This is something Java is
especially famous for, though other languages (such as Python) support mobile code as well. There are
several security viewpoints here; the implementer of the applet infrastructure on the client side has to
make sure that the only operations allowed are “safe” ones, and the writer of an applet has to deal with
the problem of hostile hosts (in other words, you can’t normally trust the client). There is some
research attempting to deal with running applets on hostile hosts, but frankly I’'m skeptical of the value
of these approaches and this subject is exotic enough that I don’t cover it further here.

« setuid/setgid programs. These programs are invoked by a local user and, when executed, are
immediately granted the privileges of the program’s owner and/or owner’s group. In many ways these
are the hardest programs to secure, because so many of their inputs are under the control of the
untrusted user and some of those inputs are not obvious.

This book merges the issues of these different types of program into a single set. The disadvantage of this
approach is that some of the issues identified here don’t apply to all types of programs. In particular,
setuid/setgid programs have many surprising inputs and several of the guidelines here only apply to
them. However, things are not so clear-cut, because a particular program may cut across these boundaries
(e.g., a CGI script may be setuid or setgid, or be configured in a way that has the same effect), and some
programs are divided into several executables each of which can be considered a different “type” of
program. The advantage of considering all of these program types together is that we can consider all
issues without trying to apply an inappropriate category to a program. As will be seen, many of the
principles apply to all programs that need to be secured.

There is a slight bias in this book toward programs written in C, with some notes on other languages such
as C++, Perl, PHP, Python, Ada95, and Java. This is because C is the most common language for
implementing secure programs on Unix-like systems (other than CGI scripts, which tend to use
languages such as Perl, PHP, or Python). Also, most other languages’ implementations call the C library.
This is not to imply that C is somehow the “best” language for this purpose, and most of the principles
described here apply regardless of the programming language used.

2.6. Paranoia is a Virtue
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The primary difficulty in writing secure programs is that writing them requires a different mind-set, in
short, a paranoid mind-set. The reason is that the impact of errors (also called defects or bugs) can be
profoundly different.

Normal non-secure programs have many errors. While these errors are undesirable, these errors usually
involve rare or unlikely situations, and if a user should stumble upon one they will try to avoid using the
tool that way in the future.

In secure programs, the situation is reversed. Certain users will intentionally search out and cause rare or
unlikely situations, in the hope that such attacks will give them unwarranted privileges. As a result, when
writing secure programs, paranoia is a virtue.
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2.7. Why Did | Write This Document?

One question I’ve been asked is “why did you write this book”? Here’s my answer: Over the last several
years I've noticed that many application developers seem to keep falling into the same security pitfalls,
again and again. Auditors were slowly catching problems, but it would have been better if the problems
weren’t put into the code in the first place. I believe that part of the problem was that there wasn’t a
single, obvious place where developers could go and get information on how to avoid known pitfalls.
The information was publicly available, but it was often hard to find, out-of-date, incomplete, or had
other problems. Most such information didn’t particularly discuss Linux at all, even though it was
becoming widely used! That leads up to the answer: I developed this book in the hope that future
software developers won’t repeat past mistakes, resulting in more secure systems. You can see a larger
discussion of this at http://www.linuxsecurity.com/feature_stories/feature_story-6.html.

A related question that could be asked is “why did you write your own book instead of just referring to
other documents”? There are several answers:

+ Much of this information was scattered about; placing the critical information in one organized
document makes it easier to use.

« Some of this information is not written for the programmer, but is written for an administrator or user.

« Much of the available information emphasizes portable constructs (constructs that work on all
Unix-like systems), and failed to discuss Linux at all. It’s often best to avoid Linux-unique abilities for
portability’s sake, but sometimes the Linux-unique abilities can really aid security. Even if non-Linux
portability is desired, you may want to support the Linux-unique abilities when running on Linux.
And, by emphasizing Linux, I can include references to information that is helpful to someone
targeting Linux that is not necessarily true for others.

2.8. Sources of Design and Implementation Guidelines

Several documents help describe how to write secure programs (or, alternatively, how to find security
problems in existing programs), and were the basis for the guidelines highlighted in the rest of this book.

For general-purpose servers and setuid/setgid programs, there are a number of valuable documents
(though some are difficult to find without having a reference to them).

Matt Bishop [1996, 1997] has developed several extremely valuable papers and presentations on the
topic, and in fact he has a web page dedicated to the topic at
http://olympus.cs.ucdavis.edu/~bishop/secprog.html. AUSCERT has released a programming checklist
[AUSCERT 1996], based in part on chapter 23 of Garfinkel and Spafford’s book discussing how to write
secure SUID and network programs [Garfinkel 1996]. Galvin [1998a] described a simple process and
checklist for developing secure programs; he later updated the checklist in Galvin [1998b]. Sitaker
[1999] presents a list of issues for the “Linux security audit” team to search for. Shostack [1999] defines
another checklist for reviewing security-sensitive code. The NCSA [NCSA] provides a set of terse but
useful secure programming guidelines. Other useful information sources include the Secure Unix
Programming FAQ [Al-Herbish 1999], the Security-Audit’s Frequently Asked Questions [Graham 1999],
and Ranum [1998]. Some recommendations must be taken with caution, for example, the BSD setuid(7)
man page [Unknown] recommends the use of access(3) without noting the dangerous race conditions that
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usually accompany it. Wood [1985] has some useful but dated advice in its “Security for Programmers”
chapter. Bellovin [1994] includes useful guidelines and some specific examples, such as how to
restructure an ftpd implementation to be simpler and more secure. FreeBSD provides some guidelines
FreeBSD [1999] [Quintero 1999] is primarily concerned with GNOME programming guidelines, but it
includes a section on security considerations. [Venema 1996] provides a detailed discussion (with
examples) of some common errors when programming secure programs (widely-known or predictable
passwords, burning yourself with malicious data, secrets in user-accessible data, and depending on other
programs). [Sibert 1996] describes threats arising from malicious data. Michael Bacarella’s article The
Peon’s Guide To Secure System Development provides a nice short set of guidelines.

There are many documents giving security guidelines for programs using the Common Gateway Interface
(CGI) to interface with the web. These include Van Biesbrouck [1996], Gundavaram [unknown],
[Garfinkle 1997] Kim [1996], Phillips [1995], Stein [1999], [Peteanu 2000], and [Advosys 2000].

There are many documents specific to a language, which are further discussed in the language-specific
sections of this book. For example, the Perl distribution includes perlsec(1), which describes how to use
Perl more securely. The Secure Internet Programming site at http://www.cs.princeton.edu/sip is
interested in computer security issues in general, but focuses on mobile code systems such as Java,
ActiveX, and JavaScript; Ed Felten (one of its principles) co-wrote a book on securing Java ([McGraw
1999]) which is discussed in Section 10.6. Sun’s security code guidelines provide some guidelines
primarily for Java and C; it is available at http://java.sun.com/security/seccodeguide.html.

Yoder [1998] contains a collection of patterns to be used when dealing with application security. It’s not
really a specific set of guidelines, but a set of commonly-used patterns for programming that you may
find useful. The Schmoo group maintains a web page linking to information on how to write secure code
at http://www.shmoo.com/securecode.

There are many documents describing the issue from the other direction (i.e., “how to crack a system”).
One example is McClure [1999], and there’s countless amounts of material from that vantage point on
the Internet. There are also more general documents on computer architectures on how attacks must be
developed to exploit them, e.g., [LSD 2001]. The Honeynet Project has been collecting information
(including statistics) on how attackers actually perform their attacks; see their website at
http://project.honeynet.org for more information. Insecure Programming by example provides a set of
insecure programs, intended for use as exercises to practice attacking insecure programs.

There’s also a large body of information on vulnerabilities already identified in existing programs. This
can be a useful set of examples of “what not to do,” though it takes effort to extract more general
guidelines from the large body of specific examples. There are mailing lists that discuss security issues;
one of the most well-known is Bugtraq, which among other things develops a list of vulnerabilities. The
CERT Coordination Center (CERT/CC) is a major reporting center for Internet security problems which
reports on vulnerabilities. The CERT/CC occasionally produces advisories that provide a description of a
serious security problem and its impact, along with instructions on how to obtain a patch or details of a
workaround; for more information see http://www.cert.org. Note that originally the CERT was a small
computer emergency response team, but officially “CERT” doesn’t stand for anything now. The
Department of Energy’s Computer Incident Advisory Capability (CIAC) also reports on vulnerabilities.
These different groups may identify the same vulnerabilities but use different names. To resolve this
problem, MITRE supports the Common Vulnerabilities and Exposures (CVE) list which creates a single
unique identifier (“name”) for all publicly known vulnerabilities and security exposures identified by
others; see http://www.cve.mitre.org. NIST’s ICAT is a searchable catalog of computer vulnerabilities,
categorizing each CVE vulnerability so that they can be searched and compared later; see
http://csrc.nist.gov/icat.
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This book is a summary of what I believe are the most useful and important guidelines. My goal is a
book that a good programmer can just read and then be fairly well prepared to implement a secure
program. No single document can really meet this goal, but I believe the attempt is worthwhile. My
objective is to strike a balance somewhere between a “complete list of all possible guidelines” (that
would be unending and unreadable) and the various “short” lists available on-line that are nice and short
but omit a large number of critical issues. When in doubt, I include the guidance; I believe in that case
it’s better to make the information available to everyone in this “one stop shop” document. The
organization presented here is my own (every list has its own, different structure), and some of the
guidelines (especially the Linux-unique ones, such as those on capabilities and the FSUID value) are also
my own. Reading all of the referenced documents listed above as well is highly recommended, though I
realize that for many it’s impractical.

2.9. Other Sources of Security Information

There are a vast number of web sites and mailing lists dedicated to security issues. Here are some other
sources of security information:

+ Securityfocus.com has a wealth of general security-related news and information, and hosts a number
of security-related mailing lists. See their website for information on how to subscribe and view their
archives. A few of the most relevant mailing lists on SecurityFocus are:

- The “Bugtraq” mailing list is, as noted above, a “full disclosure moderated mailing list for the
detailed discussion and announcement of computer security vulnerabilities: what they are, how to
exploit them, and how to fix them.”

« The “secprog” mailing list is a moderated mailing list for the discussion of secure software
development methodologies and techniques. I specifically monitor this list, and I coordinate with its
moderator to ensure that resolutions reached in SECPROG (if I agree with them) are incorporated
into this document.

« The “vuln-dev” mailing list discusses potential or undeveloped holes.
« IBM’s “developerWorks: Security” has a library of interesting articles. You can learn more from
http://www.ibm.com/developer/security.

« For Linux-specific security information, a good source is LinuxSecurity.com. If you’re interested in
auditing Linux code, places to see include the Linux Security-Audit Project FAQ and Linux Kernel
Auditing Project are dedicated to auditing Linux code for security issues.

Of course, if you’re securing specific systems, you should sign up to their security mailing lists (e.g.,
Microsoft’s, Red Hat’s, etc.) so you can be warned of any security updates.

2.10. Document Conventions

System manual pages are referenced in the format name(number), where number is the section number
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of the manual. The pointer value that means “does not point anywhere” is called NULL; C compilers
will convert the integer O to the value NULL in most circumstances where a pointer is needed, but note
that nothing in the C standard requires that NULL actually be implemented by a series of all-zero bits. C
and C++ treat the character ‘“\0” (ASCII 0) specially, and this value is referred to as NIL in this book
(this is usually called “NUL”, but “NUL” and “NULL” sound identical). Function and method names
always use the correct case, even if that means that some sentences must begin with a lower case letter. I
use the term “Unix-like” to mean Unix, Linux, or other systems whose underlying models are very
similar to Unix; I can’t say POSIX, because there are systems such as Windows 2000 that implement
portions of POSIX yet have vastly different security models.

CLINNT3

An attacker is called an “attacker”, “cracker”, or “adversary”, and not a “hacker”. Some journalists
mistakenly use the word “hacker” instead of “attacker”; this book avoids this misuse, because many
Linux and Unix developers refer to themselves as “hackers” in the traditional non-evil sense of the term.
To many Linux and Unix developers, the term “hacker” continues to mean simply an expert or enthusiast,
particularly regarding computers. It is true that some hackers commit malicious or intrusive actions, but
many other hackers do not, and it’s unfair to claim that all hackers perform malicious activities. Many
other glossaries and books note that not all hackers are attackers. For example, the Industry Advisory
Council’s Information Assurance (IA) Special Interest Group (SIG)’s Information Assurance Glossary
defines hacker as “A person who delights in having an intimate understanding of the internal workings of
computers and computer networks. The term is misused in a negative context where ‘cracker’ should be
used.” The Jargon File has a long and complicate definition for hacker, starting with “A person who
enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to
most users, who prefer to learn only the minimum necessary.”; it notes although some people use the
term to mean “A malicious meddler who tries to discover sensitive information by poking around”, it
also states that this definition is deprecated and that the correct term for this sense is “cracker” instead.

This book uses the logical quotation system, not the misleading typesetters’ quotation system. This
means that quoted information does not include any trailing punctuation if the punctuation is not part of
the material being quoted. The typesetters’ quotation system causes extraneous characters to be placed
inside the quotes; this has no affect in poetry but is a serious problem when accuracy is important. The
typesetters’ quotation system often falsifies quotes (since it includes punctuation not in the quote) and
can be disastrously erroneous in code or computer commands. The logical quotation system is widely
used in a variety of publications, including The Jargon File, Wikipedia, and the Linguistic Society of
America. This book uses standard American (not British) spelling.



Chapter 3. Summary of Linux and Unix Security
Features

Discretion will protect you, and
understanding will guard you.
Proverbs 2:11 (NIV)

Before discussing guidelines on how to use Linux or Unix security features, it’s useful to know what
those features are from a programmer’s viewpoint. This section briefly describes those features that are
widely available on nearly all Unix-like systems. However, note that there is considerable variation
between different versions of Unix-like systems, and not all systems have the abilities described here.
This chapter also notes some extensions or features specific to Linux; Linux distributions tend to be
fairly similar to each other from the point-of-view of programming for security, because they all use
essentially the same kernel and C library (and the GPL-based licenses encourage rapid dissemination of
any innovations). It also notes some of the security-relevant differences between different Unix
implementations, but please note that this isn’t an exhaustive list. This chapter doesn’t discuss issues
such as implementations of mandatory access control (MAC) which many Unix-like systems do not
implement. If you already know what those features are, please feel free to skip this section.

Many programming guides skim briefly over the security-relevant portions of Linux or Unix and skip
important information. In particular, they often discuss “how to use” something in general terms but
gloss over the security attributes that affect their use. Conversely, there’s a great deal of detailed
information in the manual pages about individual functions, but the manual pages sometimes obscure
key security issues with detailed discussions on how to use each individual function. This section tries to
bridge that gap; it gives an overview of the security mechanisms in Linux that are likely to be used by a
programmer, but concentrating specifically on the security ramifications. This section has more depth
than the typical programming guides, focusing specifically on security-related matters, and points to
references where you can get more details.

First, the basics. Linux and Unix are fundamentally divided into two parts: the kernel and “user space”.
Most programs execute in user space (on top of the kernel). Linux supports the concept of “kernel
modules”, which is simply the ability to dynamically load code into the kernel, but note that it still has
this fundamental division. Some other systems (such as the HURD) are “microkernel” based systems;
they have a small kernel with more limited functionality, and a set of “user” programs that implement the
lower-level functions traditionally implemented by the kernel.

Some Unix-like systems have been extensively modified to support strong security, in particular to
support U.S. Department of Defense requirements for Mandatory Access Control (level B1 or higher).
This version of this book doesn’t cover these systems or issues; I hope to expand to that in a future
version. More detailed information on some of them is available elsewhere, for example, details on SGI’s
“Trusted IRIX/B” are available in NSA’s Final Evaluation Reports (FERSs).

When users log in, their usernames are mapped to integers marking their “UID” (for “user id”’) and the
“GID”s (for “group id”) that they are a member of. UID 0 is a special privileged user (role) traditionally
called “root”; on most Unix-like systems (including the normal Linux kernel) root can overrule most
security checks and is used to administrate the system. On some Unix systems, GID 0 is also special and
permits unrestricted access normal to resources at the group level [Gay 2000, 228]; this isn’t true on
other systems (such as Linux), but even in those systems group O is essentially all-powerful because so
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many special system files are owned by group 0. Processes are the only “subjects” in terms of security
(that is, only processes are active objects). Processes can access various data objects, in particular
filesystem objects (FSOs), System V Interprocess Communication (IPC) objects, and network ports.
Processes can also set signals. Other security-relevant topics include quotas and limits, libraries,
auditing, and PAM. The next few subsections detail this.

3.1. Processes
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In Unix-like systems, user-level activities are implemented by running processes. Most Unix systems
support a “thread” as a separate concept; threads share memory inside a process, and the system
scheduler actually schedules threads. Linux does this differently (and in my opinion uses a better
approach): there is no essential difference between a thread and a process. Instead, in Linux, when a
process creates another process it can choose what resources are shared (e.g., memory can be shared).
The Linux kernel then performs optimizations to get thread-level speeds; see clone(2) for more
information. It’s worth noting that the Linux kernel developers tend to use the word “task”, not “thread”
or “process”, but the external documentation tends to use the word process (so I'll use the term “process”
here). When programming a multi-threaded application, it’s usually better to use one of the standard
thread libraries that hide these differences. Not only does this make threading more portable, but some
libraries provide an additional level of indirection, by implementing more than one application-level
thread as a single operating system thread; this can provide some improved performance on some
systems for some applications.

3.1.1. Process Attributes

Here are typical attributes associated with each process in a Unix-like system:

« RUID, RGID - real UID and GID of the user on whose behalf the process is running
« EUID, EGID - effective UID and GID used for privilege checks (except for the filesystem)

« SUID, SGID - Saved UID and GID; used to support switching permissions “on and off” as discussed
below. Not all Unix-like systems support this, but the vast majority do (including Linux and Solaris);
if you want to check if a given system implements this option in the POSIX standard, you can use
sysconf(2) to determine if _POSIX_SAVED_IDS is in effect.

+ supplemental groups - a list of groups (GIDs) in which this user has membership. In the original
version 7 Unix, this didn’t exist - processes were only a member of one group at a time, and a special
command had to be executed to change that group. BSD added support for a list of groups in each
process, which is more flexible, and this addition is now widely implemented (including by Linux and
Solaris).

« umask - a set of bits determining the default access control settings when a new filesystem object is
created; see umask(2).

« scheduling parameters - each process has a scheduling policy, and those with the default policy
SCHED_OTHER have the additional parameters nice, priority, and counter. See sched_setscheduler(2)
for more information.

« limits - per-process resource limits (see below).
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- filesystem root - the process’ idea of where the root filesystem (“/”’) begins; see chroot(2).

Here are less-common attributes associated with processes:

« FSUID, FSGID - UID and GID used for filesystem access checks; this is usually equal to the EUID
and EGID respectively. This is a Linux-unique attribute.

« capabilities - POSIX capability information; there are actually three sets of capabilities on a process:
the effective, inheritable, and permitted capabilities. See below for more information on POSIX
capabilities. Linux kernel version 2.2 and greater support this; some other Unix-like systems do too,
but it’s not as widespread.

In Linux, if you really need to know exactly what attributes are associated with each process, the most
definitive source is the Linux source code, in particular /usr/include/linux/sched.h’s definition of
task_struct.

The portable way to create new processes it use the fork(2) call. BSD introduced a variant called vfork(2)
as an optimization technique. The bottom line with vfork(2) is simple: don 't use it if you can avoid it.
See Section 8.6 for more information.

Linux supports the Linux-unique clone(2) call. This call works like fork(2), but allows specification of
which resources should be shared (e.g., memory, file descriptors, etc.). Various BSD systems implement
an rfork() system call (originally developed in Plan9); it has different semantics but the same general
idea (it also creates a process with tighter control over what is shared). Portable programs shouldn’t use
these calls directly, if possible; as noted earlier, they should instead rely on threading libraries that use
such calls to implement threads.

This book is not a full tutorial on writing programs, so I will skip widely-available information handling
processes. You can see the documentation for wait(2), exit(2), and so on for more information.

3.1.2. POSIX Capabilities

POSIX capabilities are sets of bits that permit splitting of the privileges typically held by root into a
larger set of more specific privileges. POSIX capabilities are defined by a draft IEEE standard; they’re
not unique to Linux but they’re not universally supported by other Unix-like systems either. Linux kernel
2.0 did not support POSIX capabilities, while version 2.2 added support for POSIX capabilities to
processes. When Linux documentation (including this one) says “requires root privilege”, in nearly all
cases it really means “requires a capability” as documented in the capability documentation. If you need
to know the specific capability required, look it up in the capability documentation.

In Linux, the eventual intent is to permit capabilities to be attached to files in the filesystem; as of this
writing, however, this is not yet supported. There is support for transferring capabilities, but this is
disabled by default. Linux version 2.2.11 added a feature that makes capabilities more directly useful,
called the “capability bounding set”. The capability bounding set is a list of capabilities that are allowed
to be held by any process on the system (otherwise, only the special init process can hold it). If a
capability does not appear in the bounding set, it may not be exercised by any process, no matter how
privileged. This feature can be used to, for example, disable kernel module loading. A sample tool that
takes advantage of this is LCAP at http://pweb.netcom.com/~spoon/lcap/.
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More information about POSIX capabilities is available at
ftp://linux.kernel.org/pub/linux/libs/security/linux-privs.

3.1.3. Process Creation and Manipulation

Processes may be created using fork(2), the non-recommended vfork(2), or the Linux-unique clone(2);
all of these system calls duplicate the existing process, creating two processes out of it. A process can
execute a different program by calling execve(2), or various front-ends to it (for example, see exec(3),
system(3), and popen(3)).

When a program is executed, and its file has its setuid or setgid bit set, the process’ EUID or EGID
(respectively) is usually set to the file’s value. This functionality was the source of an old Unix security
weakness when used to support setuid or setgid scripts, due to a race condition. Between the time the
kernel opens the file to see which interpreter to run, and when the (now-set-id) interpreter turns around
and reopens the file to interpret it, an attacker might change the file (directly or via symbolic links).

Different Unix-like systems handle the security issue for setuid scripts in different ways. Some systems,
such as Linux, completely ignore the setuid and setgid bits when executing scripts, which is clearly a
safe approach. Most modern releases of SysVr4 and BSD 4.4 use a different approach to avoid the kernel
race condition. On these systems, when the kernel passes the name of the set-id script to open to the
interpreter, rather than using a pathname (which would permit the race condition) it instead passes the
filename /dev/fd/3. This is a special file already opened on the script, so that there can be no race
condition for attackers to exploit. Even on these systems I recommend against using the setuid/setgid
shell scripts language for secure programs, as discussed below.

In some cases a process can affect the various UID and GID values; see setuid(2), seteuid(2), setreuid(2),
and the Linux-unique setfsuid(2). In particular the saved user id (SUID) attribute is there to permit
trusted programs to temporarily switch UIDs. Unix-like systems supporting the SUID use the following
rules: If the RUID is changed, or the EUID is set to a value not equal to the RUID, the SUID is set to the
new EUID. Unprivileged users can set their EUID from their SUID, the RUID to the EUID, and the
EUID to the RUID.

The Linux-unique FSUID process attribute is intended to permit programs like the NFS server to limit
themselves to only the filesystem rights of some given UID without giving that UID permission to send
signals to the process. Whenever the EUID is changed, the FSUID is changed to the new EUID value;
the FSUID value can be set separately using setfsuid(2), a Linux-unique call. Note that non-root callers
can only set FSUID to the current RUID, EUID, SEUID, or current FSUID values.

3.2. Files
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On all Unix-like systems, the primary repository of information is the file tree, rooted at “/”. The file tree
is a hierarchical set of directories, each of which may contain filesystem objects (FSOs).

In Linux, filesystem objects (FSOs) may be ordinary files, directories, symbolic links, named pipes (also
called first-in first-outs or FIFOs), sockets (see below), character special (device) files, or block special
(device) files (in Linux, this list is given in the find(1) command). Other Unix-like systems have an
identical or similar list of FSO types.
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Filesystem objects are collected on filesystems, which can be mounted and unmounted on directories in
the file tree. A filesystem type (e.g., ext2 and FAT) is a specific set of conventions for arranging data on
the disk to optimize speed, reliability, and so on; many people use the term “filesystem” as a synonym for
the filesystem type.

3.2.1. Filesystem Object Attributes

Different Unix-like systems support different filesystem types. Filesystems may have slightly different
sets of access control attributes and access controls can be affected by options selected at mount time. On
Linux, the ext2 filesystems is currently the most popular filesystem, but Linux supports a vast number of
filesystems. Most Unix-like systems tend to support multiple filesystems too.

Most filesystems on Unix-like systems store at least the following:

+ owning UID and GID - identifies the “owner” of the filesystem object. Only the owner or root can
change the access control attributes unless otherwise noted.

+ permission bits - read, write, execute bits for each of user (owner), group, and other. For ordinary files,
read, write, and execute have their typical meanings. In directories, the “read” permission is necessary
to display a directory’s contents, while the “execute” permission is sometimes called “search”
permission and is necessary to actually enter the directory to use its contents. In a directory “write”
permission on a directory permits adding, removing, and renaming files in that directory; if you only
want to permit adding, set the sticky bit noted below. Note that the permission values of symbolic links
are never used; it’s only the values of their containing directories and the linked-to file that matter.

- “sticky” bit - when set on a directory, unlinks (removes) and renames of files in that directory are
limited to the file owner, the directory owner, or root privileges. This is a very common Unix extension
and is specified in the Open Group’s Single Unix Specification version 2. Old versions of Unix called
this the “save program text” bit and used this to indicate executable files that should stay in memory.
Systems that did this ensured that only root could set this bit (otherwise users could have crashed
systems by forcing “everything” into memory). In Linux, this bit has no effect on ordinary files and
ordinary users can modify this bit on the files they own: Linux’s virtual memory management makes
this old use irrelevant.

- setuid, setgid - when set on an executable file, executing the file will set the process’ effective UID or
effective GID to the value of the file’s owning UID or GID (respectively). All Unix-like systems
support this. In Linux and System V systems, when setgid is set on a file that does not have any
execute privileges, this indicates a file that is subject to mandatory locking during access (if the
filesystem is mounted to support mandatory locking); this overload of meaning surprises many and is
not universal across Unix-like systems. In fact, the Open Group’s Single Unix Specification version 2
for chmod(3) permits systems to ignore requests to turn on setgid for files that aren’t executable if
such a setting has no meaning. In Linux and Solaris, when setgid is set on a directory, files created in
the directory will have their GID automatically reset to that of the directory’s GID. The purpose of this
approach is to support “project directories”: users can save files into such specially-set directories and
the group owner automatically changes. However, setting the setgid bit on directories is not specified
by standards such as the Single Unix Specification [Open Group 1997].

« timestamps - access and modification times are stored for each filesystem object. However, the owner
is allowed to set these values arbitrarily (see touch(1)), so be careful about trusting this information.
All Unix-like systems support this.
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The following attributes are Linux-unique extensions on the ext2 filesystem, though many other
filesystems have similar functionality:

- immutable bit - no changes to the filesystem object are allowed; only root can set or clear this bit. This
is only supported by ext2 and is not portable across all Unix systems (or even all Linux filesystems).

« append-only bit - only appending to the filesystem object are allowed; only root can set or clear this
bit. This is only supported by ext2 and is not portable across all Unix systems (or even all Linux
filesystems).

Other common extensions include some sort of bit indicating “cannot delete this file”.

Some Unix-like systems also support extended attributes (known as in the Macintosh world as “resource
forks™), which are essentially name/value pairs associated with files or directories but not stored inside
the data of the file or directory itself. Extended attributes can store more detailed access control
information, a MIME type, and so on. Linux kernel 2.6 adds this capability, but since many systems and
filesystems don’t support it, many programs choose not to use them.

Some Unix-like systems support POSIX access control lists (ACLs), which allow users to specify in
more detail who specifically can access a file and how. See Section 3.2.2 for more information.

Many of these values can be influenced at mount time, so that, for example, certain bits can be treated as
though they had a certain value (regardless of their values on the media). See mount(1) for more
information about this. These bits are useful, but be aware that some of these are intended to simplify
ease-of-use and aren’t really sufficient to prevent certain actions. For example, on Linux, mounting with
“noexec” will disable execution of programs on that file system; as noted in the manual, it’s intended for
mounting filesystems containing binaries for incompatible systems. On Linux, this option won’t
completely prevent someone from running the files; they can copy the files somewhere else to run them,
or even use the command “/lib/ld-linux.so0.2” to run the file directly.

Some filesystems don’t support some of these access control values; again, see mount(1) for how these
filesystems are handled. In particular, many Unix-like systems support MS-DOS disks, which by default
support very few of these attributes (and there’s not standard way to define these attributes). In that case,
Unix-like systems emulate the standard attributes (possibly implementing them through special on-disk
files), and these attributes are generally influenced by the mount(1) command.

It’s important to note that, for adding and removing files, only the permission bits and owner of the file’s
directory really matter unless the Unix-like system supports more complex schemes (such as POSIX
ACLs). Unless the system has other extensions, and stock Linux 2.2 and 2.4 do not, a file that has no
permissions in its permission bits can still be removed if its containing directory permits it (exception:
directories marked as "sticky" have special rules). Also, if an ancestor directory permits its children to be
changed by some user or group, then any of that directory’s descendants can be replaced by that user or
group.

It’s worth noting that in Linux, the Linux ext2 filesystem by default reserves a small amount of space for
the root user. This is a partial defense against denial-of-service attacks; even if a user fills a disk that is
shared with the root user, the root user has a little space left over (e.g., for critical functions). The default
is 5% of the filesystem space; see mke2fs(8), in particular its “-m” option.
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3.2.2. POSIX Access Control Lists (ACLSs)

3.2.2.1. History of POSIX Access Control Lists (ACLs)

The original Unix access control bits (user, group and other values for read, write, and execute) has been
remarkably effective for a variety of uses. Still, a number of users have complained that this model was
too difficult to use in some circumstances when sharing data between people. Many people wanted to
add sets of groups, or describe special rights for a number of specific groups, to a given file or directory,
and the original approach didn’t make that easy.

The IEEE formed a POSIX standard working group to identify common interfaces for a large number of
security-related interfaces, including how to create more complicated access control lists (termed
"POSIX ACLs"). However, after 13 years of work, the group disbanded without ever agreeing on final
draft standards. The IEEE draft standard specifications (IEEE 1003.1e and IEEE 1003.2¢) were last
edited on October 14th, 1997, and were officially disbanded on March 10th, 1999. I believe a key reason
that this effort failed was because the specification tried to cover too many different areas. As a result, it
wasn’t possible to gain consensus on everything they were specifying, and the lengthy time meant that
eventually everyone gave up. Copies of the draft standards are available for free.

Interestingly enough, the story doesn’t end there. Although few vendors were interested in implementing
all the interfaces devised by the working group, there was a lot of interest in implementing more flexible
access control lists. While there were other ways to implement access control lists, the working group
had come up with a reasonable approach and written it down. Most importantly, they gave a detailed and
reasonable justification of why implementors should do it this way. This is more important than it might
first appear - although more sophisticated ACLs are an old idea, the problem is that users wanted an
upward-compatible approach that wouldn’t cause problems with the many existing applications. A "pure
ACL" approach where the old approach would be ignored would have required re-examination of many
existing programs to make sure they didn’t cause security problems - any miss might have caused a
security lapse. Several other alternatives were considered as well by the working group, and after careful
examination they created their final approach, which emphasized compatibility with existing
applications.

As a result, developers of Unix-like systems have slowly started to add POSIX access control lists, more
or less as they were described in the last working draft. This includes more recent versions of SGI Irix,
Sun Solaris, FreeBSD, and the Linux kernel 2.6 (which adds POSIX access control lists as well as
extended attributes). For more information on the Linux kernel implementation of these and some
userspace tools, see http://acl.bestbits.at.

However, while it’s important to write programs that work with POSIX ACLs, it may not be wise yet to
depend on them if you’re writing portable applications. Versions of the Linux kernel before 2.6 didn’t
have POSIX ACLs, and it’s worth noting that many user-space tools (particularly backup programs like
tar) and filesystem formats do not necessarily support them either. Although the NFSv4 specification
supports POSIX ACLs, many NFS implementations do not or only partially support them. In short,
POSIX ACLs are slowly becoming available, but you may have teething pains in some cases if you
depend on them extensively.

3.2.2.2. Data used in POSIX Access Control Lists (ACLs)

In POSIX ACLs, an FSO may have an additional set of "ACL entries" that are used for determining who
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can access the FSO; every directory can also have a set of default ACL entries used when an FSO is
created inside it. Each ACL entry can be one of a number of different types, and each entry also what
accesses are granted (r for read, w for write, x for execute). Unfortunately, the POSIX draft names for
these ACL entry types are really ugly; it’s actually a simple system, complicated by bad names. There
are "short form" and "long form" ways of displaying and setting this information.

Here are their official names, with an explanation, and the short and long form:

Table 3-1. POSIX ACL Entry Types

POSIX ACL Entry Meaning Short Form Long Form

Name

ACL_USER_OBJ The rights of the owner |u:: user::

ACL_USER The rights of some u:USERNAME: user:USERNAME:
specific user, other than
the owner

ACL_GROUP_OBJ The rights of the group |g: group::
that owns the file

ACL_GROUP The rights of some other | g:GROUPNAME: group: GROUPNAME:
group that doesn’t own
the file

ACL_OTHER The rights of anyone not | o:: other::
otherwise covered.

ACL_MASK The maximum possible |m:: mask:GROUPNAME:
rights for everyone,
except for the owner and
OTHER.

The "mask" is the gimmick that makes these extended POSIX ACLs work well with programs not
designed to work with them. If you specify any specific users or groups other than the owner or group
owner (i.e., you use ACL_USER or ACL_GROUP), then you atuomaticaly have to have a mask entry.
For more information on POSIX ACLs, see acl(5).

3.2.3. Creation Time Initial Values

At creation time, the following rules apply. On most Unix systems, when a new filesystem object is
created via creat(2) or open(2), the FSO UID is set to the process’ EUID and the FSO’s GID is set to the
process’ EGID. Linux works slightly differently due to its FSUID extensions; the FSO’s UID is set to the
process’ FSUID, and the FSO GID is set to the process’ FSGUID; if the containing directory’s setgid bit
is set or the filesystem’s “GRPID” flag is set, the FSO GID is actually set to the GID of the containing
directory. Many systems, including Sun Solaris and Linux, also support the setgid directory extensions.
As noted earlier, this special case supports “project” directories: to make a “project” directory, create a
special group for the project, create a directory for the project owned by that group, then make the
directory setgid: files placed there are automatically owned by the project. Similarly, if a new
subdirectory is created inside a directory with the setgid bit set (and the filesystem GRPID isn’t set), the
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new subdirectory will also have its setgid bit set (so that project subdirectories will “do the right thing”.);
in all other cases the setgid is clear for a new file. This is the rationale for the “user-private group”
scheme (used by Red Hat Linux and some others). In this scheme, every user is a member of a “private”
group with just themselves as members, so their defaults can permit the group to read and write any file
(since they’re the only member of the group). Thus, when the file’s group membership is transferred this
way, read and write privileges are transferred too. FSO basic access control values (read, write, execute)
are computed from (requested values & ~ umask of process). New files always start with a clear sticky
bit and clear setuid bit. For more information on POSIX ACLs, see acl(5).

3.2.4. Changing Access Control Attributes

You can set most of these values with chmod(2), fchmod(2), or chmod(1) but see also chown(1), and
chgrp(1). In Linux, some of the Linux-unique attributes are manipulated using chattr(1).

Note that in Linux, only root can change the owner of a given file. Some Unix-like systems allow
ordinary users to transfer ownership of their files to another, but this causes complications and is
forbidden by Linux. For example, if you’re trying to limit disk usage, allowing such operations would
allow users to claim that large files actually belonged to some other “victim”. For more information on
POSIX ACLs, see acl(5).

3.2.5. Using Access Control Attributes

Under Linux and most Unix-like systems, reading and writing attribute values are only checked when the
file is opened; they are not re-checked on every read or write. Still, a large number of calls do check these
attributes, since the filesystem is so central to Unix-like systems. Calls that check these attributes include
open(2), creat(2), link(2), unlink(2), rename(2), mknod(2), symlink(2), and socket(2). For more
information on POSIX ACLs, see acl(5).

3.2.6. Filesystem Hierarchy

Over the years conventions have been built on “what files to place where”. Where possible, please follow
conventional use when placing information in the hierarchy. For example, place global configuration
information in /etc. The Filesystem Hierarchy Standard (FHS) tries to define these conventions in a
logical manner, and is widely used by Linux systems. The FHS is an update to the previous Linux
Filesystem Structure standard (FSSTND), incorporating lessons learned and approaches from Linux,
BSD, and System V systems. See http://www.pathname.com/fths for more information about the FHS. A
summary of these conventions is in hier(5) for Linux and hier(7) for Solaris. Sometimes different
conventions disagree; where possible, make these situations configurable at compile or installation time.

I should note that the FHS has been adopted by the Linux Standard Base which is developing and
promoting a set of standards to increase compatibility among Linux distributions and to enable software
applications to run on any compliant Linux system.
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3.3. System V IPC

Many Unix-like systems, including Linux and System V systems, support System V interprocess
communication (IPC) objects. Indeed System V IPC is required by the Open Group’s Single UNIX
Specification, Version 2 [Open Group 1997]. System V IPC objects can be one of three kinds: System V
message queues, semaphore sets, and shared memory segments. Each such object has the following
attributes:

» read and write permissions for each of creator, creator group, and others.
« creator UID and GID - UID and GID of the creator of the object.
« owning UID and GID - UID and GID of the owner of the object (initially equal to the creator UID).

When accessing such objects, the rules are as follows:

- if the process has root privileges, the access is granted.

- if the process’ EUID is the owner or creator UID of the object, then the appropriate creator permission
bit is checked to see if access is granted.

« if the process’ EGID is the owner or creator GID of the object, or one of the process’ groups is the
owning or creating GID of the object, then the appropriate creator group permission bit is checked for
access.

« otherwise, the appropriate “other” permission bit is checked for access.

Note that root, or a process with the EUID of either the owner or creator, can set the owning UID and
owning GID and/or remove the object. More information is available in ipc(5).

3.4. Sockets and Network Connections
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Sockets are used for communication, particularly over a network. Sockets were originally developed by
the BSD branch of Unix systems, but they are generally portable to other Unix-like systems: Linux and
System V variants support sockets as well, and socket support is required by the Open Group’s Single
Unix Specification [Open Group 1997]. System V systems traditionally used a different (incompatible)
network communication interface, but it’s worth noting that systems like Solaris include support for
sockets. Socket(2) creates an endpoint for communication and returns a descriptor, in a manner similar to
open(2) for files. The parameters for socket specify the protocol family and type, such as the Internet
domain (TCP/IP version 4), Novell’s IPX, or the “Unix domain”. A server then typically calls bind(2),
listen(2), and accept(2) or select(2). A client typically calls bind(2) (though that may be omitted) and
connect(2). See these routine’s respective man pages for more information. It can be difficult to
understand how to use sockets from their man pages; you might want to consult other papers such as Hall
"Beej" [1999] to learn how these calls are used together.

The “Unix domain sockets” don’t actually represent a network protocol; they can only connect to sockets
on the same machine. (at the time of this writing for the standard Linux kernel). When used as a stream,
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they are fairly similar to named pipes, but with significant advantages. In particular, Unix domain socket
is connection-oriented; each new connection to the socket results in a new communication channel, a
very different situation than with named pipes. Because of this property, Unix domain sockets are often
used instead of named pipes to implement IPC for many important services. Just like you can have
unnamed pipes, you can have unnamed Unix domain sockets using socketpair(2); unnamed Unix domain
sockets are useful for IPC in a way similar to unnamed pipes.

There are several interesting security implications of Unix domain sockets. First, although Unix domain
sockets can appear in the filesystem and can have stat(2) applied to them, you can’t use open(2) to open
them (you have to use the socket(2) and friends interface). Second, Unix domain sockets can be used to
pass file descriptors between processes (not just the file’s contents). This odd capability, not available in
any other IPC mechanism, has been used to hack all sorts of schemes (the descriptors can basically be
used as a limited version of the “capability” in the computer science sense of the term). File descriptors
are sent using sendmsg(2), where the msg (message)’s field msg_control points to an array of control
message headers (field msg_controllen must specify the number of bytes contained in the array). Each
control message is a struct cmsghdr followed by data, and for this purpose you want the cmsg_type set to
SCM_RIGHTS. A file descriptor is retrieved through recvmsg(2) and then tracked down in the
analogous way. Frankly, this feature is quite baroque, but it’s worth knowing about.

Linux 2.2 and later supports an additional feature in Unix domain sockets: you can acquire the peer’s
“credentials” (the pid, uid, and gid). Here’s some sample code:

/+ fd= file descriptor of Unix domain socket connected
to the client you wish to identify =/

struct ucred cr;
int cl=sizeof (cr);

if (getsockopt (fd, SOL_SOCKET, SO_PEERCRED, &cr, &cl)==0) {
printf ("Peer&rsquo;s pid=%d, uid=%d, gid=%d\n",
cr.pid, cr.uid, cr.gid);

Standard Unix convention is that binding to TCP and UDP local port numbers less than 1024 requires
root privilege, while any process can bind to an unbound port number of 1024 or greater. Linux follows
this convention, more specifically, Linux requires a process to have the capability
CAP_NET_BIND_SERVICE to bind to a port number less than 1024; this capability is normally only
held by processes with an EUID of 0. The adventurous can check this in Linux by examining its Linux’s
source; in Linux 2.2.12, it’s file /usr/src/linux/net/ipv4/af_inet . c, function inet_bind().

3.5. Signals

Signals are a simple form of “interruption” in the Unix-like OS world, and are an ancient part of Unix. A
process can set a “signal” on another process (say using kill(1) or kill(2)), and that other process would
receive and handle the signal asynchronously. For a process to have permission to send an arbitrary
signal to some other process, the sending process must either have root privileges, or the real or effective
user ID of the sending process must equal the real or saved set-user-ID of the receiving process.

31



Chapter 3. Summary of Linux and Unix Security Features

However, some signals can be sent in other ways. In particular, SIGURG can be delivered over a network
through the TCP/IP out-of-band (OOB) message.

Although signals are an ancient part of Unix, they’ve had different semantics in different
implementations. Basically, they involve questions such as “what happens when a signal occurs while
handling another signal”? The older Linux libc 5 used a different set of semantics for some signal
operations than the newer GNU libc libraries. Calling C library functions is often unsafe within a signal
handler, and even some system calls aren’t safe; you need to examine the documentation for each call
you make to see if it promises to be safe to call inside a signal. For more information, see the glibc FAQ
(on some systems a local copy is available at /usr/doc/glibc—*/FAQ).

For new programs, just use the POSIX signal system (which in turn was based on BSD work); this set is
widely supported and doesn’t have some of the problems that some of the older signal systems did. The
POSIX signal system is based on using the sigset_t datatype, which can be manipulated through a set of
operations: sigemptyset(), sigfillset(), sigaddset(), sigdelset(), and sigismember(). You can read about
these in sigsetops(3). Then use sigaction(2), sigprocmask(2), sigpending(2), and sigsuspend(2) to set up
an manipulate signal handling (see their man pages for more information).

In general, make any signal handlers very short and simple, and look carefully for race conditions.
Signals, since they are by nature asynchronous, can easily cause race conditions.

A common convention exists for servers: if you receive SIGHUP, you should close any log files, reopen
and reread configuration files, and then re-open the log files. This supports reconfiguration without
halting the server and log rotation without data loss. If you are writing a server where this convention
makes sense, please support it.

Michal Zalewski [2001] has written an excellent tutorial on how signal handlers are exploited, and has
recommendations for how to eliminate signal race problems. I encourage looking at his summary for
more information; here are my recommendations, which are similar to Michal’s work:

« Where possible, have your signal handlers unconditionally set a specific flag and do nothing else.

« If you must have more complex signal handlers, use only calls specifically designated as being safe for
use in signal handlers. In particular, don’t use malloc() or free() in C (which on most systems aren’t
protected against signals), nor the many functions that depend on them (such as the printf() family and
syslog()). You could try to “wrap” calls to insecure library calls with a check to a global flag (to avoid
re-entry), but I wouldn’t recommend it.

+ Block signal delivery during all non-atomic operations in the program, and block signal delivery
inside signal handlers.

3.6. Quotas and Limits
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Many Unix-like systems have mechanisms to support filesystem quotas and process resource limits. This
certainly includes Linux. These mechanisms are particularly useful for preventing denial of service
attacks; by limiting the resources available to each user, you can make it hard for a single user to use up
all the system resources. Be careful with terminology here, because both filesystem quotas and process
resource limits have “hard” and “soft” limits but the terms mean slightly different things.
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You can define storage (filesystem) quota limits on each mountpoint for the number of blocks of storage
and/or the number of unique files (inodes) that can be used, and you can set such limits for a given user
or a given group. A “hard” quota limit is a never-to-exceed limit, while a “soft” quota can be temporarily
exceeded. See quota(l), quotactl(2), and quotaon(8).

The rlimit mechanism supports a large number of process quotas, such as file size, number of child
processes, number of open files, and so on. There is a “soft” limit (also called the current limit) and a
“hard limit” (also called the upper limit). The soft limit cannot be exceeded at any time, but through calls
it can be raised up to the value of the hard limit. See getrlimit(2), setrlimit(2), and getrusage(2),
sysconf(3), and ulimit(1). Note that there are several ways to set these limits, including the PAM module
pam_limits.

3.7. Dynamically Linked Libraries

Practically all programs depend on libraries to execute. In most modern Unix-like systems, including
Linux, programs are by default compiled to use dynamically linked libraries (DLLs). That way, you can
update a library and all the programs using that library will use the new (hopefully improved) version if
they can.

Dynamically linked libraries are typically placed in one a few special directories. The usual directories
include /1ib, /usr/lib, /1lib/security for PAM modules, /usr/x11R6/1ib for X-windows, and
/usr/local/1lib. You should use these standard conventions in your programs, in particular, except
during debugging you shouldn’t use value computed from the current directory as a source for
dynamically linked libraries (an attacker may be able to add their own choice “library” values).

There are special conventions for naming libraries and having symbolic links for them, with the result
that you can update libraries and still support programs that want to use old, non-backward-compatible
versions of those libraries. There are also ways to override specific libraries or even just specific
functions in a library when executing a particular program. This is a real advantage of Unix-like systems
over Windows-like systems; I believe Unix-like systems have a much better system for handling library
updates, one reason that Unix and Linux systems are reputed to be more stable than Windows-based
systems.

On GNU glibc-based systems, including all Linux systems, the list of directories automatically searched
during program start-up is stored in the file /etc/ld.so.conf. Many Red Hat-derived distributions don’t
normally include /usr/local/lib in the file /etc/1d.so.conf. I consider this a bug, and adding
/usr/local/libto /etc/ld.so.conf is a common “fix” required to run many programs on Red
Hat-derived systems. If you want to just override a few functions in a library, but keep the rest of the
library, you can enter the names of overriding libraries (.o files) in /etc/1d.so.preload; these
“preloading” libraries will take precedence over the standard set. This preloading file is typically used for
emergency patches; a distribution usually won’t include such a file when delivered. Searching all of these
directories at program start-up would be too time-consuming, so a caching arrangement is actually used.
The program ldconfig(8) by default reads in the file /etc/ld.so.conf, sets up the appropriate symbolic links
in the dynamic link directories (so they’ll follow the standard conventions), and then writes a cache to
/etc/ld.so.cache that’s then used by other programs. So, ldconfig has to be run whenever a DLL is added,
when a DLL is removed, or when the set of DLL directories changes; running ldconfig is often one of the
steps performed by package managers when installing a library. On start-up, then, a program uses the
dynamic loader to read the file /etc/ld.so.cache and then load the libraries it needs.
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Various environment variables can control this process, and in fact there are environment variables that
permit you to override this process (so, for example, you can temporarily substitute a different library for
this particular execution). In Linux, the environment variable LD_LIBRARY_PATH is a colon-separated
set of directories where libraries are searched for first, before the standard set of directories; this is useful
when debugging a new library or using a nonstandard library for special purposes, but be sure you trust
those who can control those directories. The variable LD_PRELOAD lists object files with functions that
override the standard set, just as /etc/ld.so.preload does. The variable LD_DEBUG, displays debugging
information; if set to “all”, voluminous information about the dynamic linking process is displayed while
it’s occurring.

Permitting user control over dynamically linked libraries would be disastrous for setuid/setgid programs
if special measures weren’t taken. Therefore, in the GNU glibc implementation, if the program is setuid
or setgid these variables (and other similar variables) are ignored or greatly limited in what they can do.
The GNU glibc library determines if a program is setuid or setgid by checking the program’s credentials;
if the UID and EUID differ, or the GID and the EGID differ, the library presumes the program is
setuid/setgid (or descended from one) and therefore greatly limits its abilities to control linking. If you
load the GNU glibc libraries, you can see this; see especially the files elf/rtld.c and
sysdeps/generic/dl-sysdep.c. This means that if you cause the UID and GID to equal the EUID and
EGID, and then call a program, these variables will have full effect. Other Unix-like systems handle the
situation differently but for the same reason: a setuid/setgid program should not be unduly affected by
the environment variables set. Note that graphical user interface toolkits generally do permit user control
over dynamically linked libraries, because executables that directly invoke graphical user inteface
toolkits should never, ever, be setuid (or have other special privileges) at all. For more about how to
develop secure GUI applications, see Section 7.4.4.

For Linux systems, you can get more information from my document, the Program Library HOWTO.

3.8. Audit

Different Unix-like systems handle auditing differently. In Linux, the most common “audit” mechanism
is syslogd(8), usually working in conjunction with klogd(8). You might also want to look at wtmp(5),
utmp(5), lastlog(8), and acct(2). Some server programs (such as the Apache web server) also have their
own audit trail mechanisms. According to the FHS, audit logs should be stored in /var/log or its
subdirectories.

3.9. PAM

Sun Solaris and nearly all Linux systems use the Pluggable Authentication Modules (PAM) system for
authentication. PAM permits run-time configuration of authentication methods (e.g., use of passwords,
smart cards, etc.). See Section 11.6 for more information on using PAM.

3.10. Specialized Security Extensions for Unix-like
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Systems

A vast amount of research and development has gone into extending Unix-like systems to support
security needs of various communities. For example, several Unix-like systems have been extended to
support the U.S. military’s desire for multilevel security. If you’re developing software, you should try to
design your software so that it can work within these extensions.

FreeBSD has a new system call, jail(2). The jail system call supports sub-partitioning an environment
into many virtual machines (in a sense, a “super-chroot”); its most popular use has been to provide
virtual machine services for Internet Service Provider environments. Inside a jail, all processes (even
those owned by root) have the the scope of their requests limited to the jail. When a FreeBSD system is
booted up after a fresh install, no processes will be in jail. When a process is placed in a jail, it, and any
descendants of that process created will be in that jail. Once in a jail, access to the file name-space is
restricted in the style of chroot(2) (with typical chroot escape routes blocked), the ability to bind network
resources is limited to a specific IP address, the ability to manipulate system resources and perform
privileged operations is sharply curtailed, and the ability to interact with other processes is limited to
only processes inside the same jail. Note that each jail is bound to a single IP address; processes within
the jail may not make use of any other IP address for outgoing or incoming connections. More
information is available in the OnLamp.com article on FreeBSD Jails.

Some extensions available in Linux, such as POSIX capabilities and special mount-time options, have
already been discussed. Here are a few of these efforts for Linux systems for creating restricted execution
environments; there are many different approaches. Linux 2.6 adds the "Linux Security Module" (LSM)
interface, which allows administrators to plug in modules to perform more sophisticated access control
systems. The U.S. National Security Agency (NSA) has developed Security-Enhanced Linux (Flask)
(SELinux), which supports defining a security policy in a specialized language and then enforces that
policy. Originally SELinux was developed as a separate set of patches, but it now works using LSM and
NSA has submitted the SELinux kernel module to the Linux developers for inclusion in the normal
kernel. The Medusa DS9 extends Linux by supporting, at the kernel level, a user-space authorization
server. LIDS protects files and processes, allowing administrators to “lock down” their system. The
“Rule Set Based Access Control” system, RSBAC is based on the Generalized Framework for Access
Control (GFAC) by Abrams and LaPadula and provides a flexible system of access control based on
several kernel modules. Subterfugue is a framework for “observing and playing with the reality of
software”; it can intercept system calls and change their parameters and/or change their return values to
implement sandboxes, tracers, and so on; it runs under Linux 2.4 with no changes (it doesn’t require any
kernel modifications). Janus is a security tool for sandboxing untrusted applications within a restricted
execution environment. Some have even used User-mode Linux, which implements “Linux on Linux”, as
a sandbox implementation. Because there are so many different approaches to implementing more
sophisticated security models, Linus Torvalds has requested that a generic approach be developed so
different security policies can be inserted; for more information about this, see
http://mail.wirex.com/mailman/listinfo/linux-security-module.

There are many other extensions for security on various Unix-like systems, but these are really outside
the scope of this document.
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You will know that your tent is secure;
you will take stock of your property and
find nothing missing.

Job 5:24 (NIV)

Before you can determine if a program is secure, you need to determine exactly what its security
requirements are. Obviously, your specific requirements depend on the kind of system and data you
manage.

For example, any person or company doing business in the state of California is responsible for notifying
California residents when an unauthorized person acquires unencrypted computer data if that data
includes first name, last name, and at least one of the following: Social Security Number, driver’s license
number, account number, debit or credit card information. (Senate bill 1386 aka Civil Code 1798.82,
effective July 1, 2003).

Thankfully, there’s an international standard for identifying and defining security requirements that is
useful for many such circumstances: the Common Criteria [CC 1999], standardized as ISO/IEC
15408:1999. The CC is the culmination of decades of work to identify information technology security
requirements. There are other schemes for defining security requirements and evaluating products to see
if products meet the requirements, such as NIST FIPS-140 for cryptographic equipment, but these other
schemes are generally focused on a specialized area and won’t be considered further here.

This chapter briefly describes the Common Criteria (CC) and how to use its concepts to help you
informally identify security requirements and talk with others about security requirements using standard
terminology. The language of the CC is more precise, but it’s also more formal and harder to understand;
hopefully the text in this section will help you “get the jist”.

Note that, in some circumstances, software cannot be used unless it has undergone a CC evaluation by an
accredited laboratory. This includes certain kinds of uses in the U.S. Department of Defense (as specified
by NSTISSP Number 11, which requires that before some products can be used they must be evaluated
or enter evaluation), and in the future such a requirement may also include some kinds of uses for
software in the U.S. federal government. This section doesn’t provide enough information if you plan to
actually go through a CC evaluation by an accredited laboratory. If you plan to go through a formal
evaluation, you need to read the real CC, examine various websites to really understand the basics of the
CC, and eventually contract a lab accredited to do a CC evaluation.

4.1. Common Criteria Introduction

First, some general information about the CC will help understand how to apply its concepts. The CC’s
official name is The Common Criteria for Information Technology Security Evaluation, though it’s
normally just called the Common Criteria. The CC document has three parts: the introduction (that
describes the CC overall), security functional requirements (that lists various kinds of security functions
that products might want to include), and security assurance requirements (that lists various methods of
assuring that a product is secure). There is also a related document, the Common Evaluation
Methodology (CEM), that guides evaluators how to apply the CC when doing formal evaluations (in
particular, it amplifies what the CC means in certain cases).
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Although the CC is International Standard ISO/IEC 15408:1999, it is outrageously expensive to order the
CC from ISO. Hopefully someday ISO will follow the lead of other standards organizations such as the
IETF and the W3C, which freely redistribute standards. Not surprisingly, [IETF and W3C standards are
followed more often than many ISO standards, in part because ISO’s fees for standards simply make
them inaccessible to most developers. (I don’t mind authors being paid for their work, but ISO doesn’t
fund most of the standards development work - indeed, many of the developers of ISO documents are
volunteers - so ISO’s indefensible fees only line their own pockets and don’t actually aid the authors or
users at all.) Thankfully, the CC developers anticipated this problem and have made sure that the CC’s
technical content is freely available to all; you can download the CC’s technical content from
http://csrc.nist.gov/cc/ccv20/cev2list.htm Even those doing formal evaluation processes usually use these
editions of the CC, and not the ISO versions; there’s simply no good reason to pay ISO for them.

Although it can be used in other ways, the CC is typically used to create two kinds of documents, a
“Protection Profile” (PP) or a “Security Target” (ST). A “protection profile” (PP) is a document created
by group of users (for example, a consumer group or large organization) that identifies the desired
security properties of a product. Basically, a PP is a list of user security requirements, described in a very
specific way defined by the CC. If you’re building a product similar to other existing products, it’s quite
possible that there are one or more PPs that define what some users believe are necessary for that kind of
product (e.g., an operating system or firewall). A “security target” (ST) is a document that identifies what
a product actually does, or a subset of it, that is security-relevant. An ST doesn’t need to meet the
requirements of any particular PP, but an ST could meet the requirements of one or more PPs.

Both PPs and STs can go through a formal evaluation. An evaluation of a PP simply ensures that the PP
meets various documentation rules and sanity checks. An ST evaluation involves not just examining the
ST document, but more importantly it involves evaluating an actual system (called the “target of
evaluation”, or TOE). The purpose of an ST evaluation is to ensure that, to the level of the assurance
requirements specified by the ST, the actual product (the TOE) meets the ST’s security functional
requirements. Customers can then compare evaluated STs to PPs describing what they want. Through
this comparison, consumers can determine if the products meet their requirements - and if not, where the
limitations are.

To create a PP or ST, you go through a process of identifying the security environment, namely, your
assumptions, threats, and relevant organizational security policies (if any). From the security
environment, you derive the security objectives for the product or product type. Finally, the security
requirements are selected so that they meet the objectives. There are two kinds of security requirements:
functional requirements (what a product has to be able to do), and assurance requirements (measures to
inspire confidence that the objectives have been met). Actually creating a PP or ST is often not a simple
straight line as outlined here, but the final result needs to show a clear relationship so that no critical
point is easily overlooked. Even if you don’t plan to write an ST or PP, the ideas in the CC can still be
helpful; the process of identifying the security environment, objectives, and requirements is still helpful
in identifying what’s really important.

The vast majority of the CC’s text is used to define standardized functional requirements and assurance
requirements. In essence, the majority of the CC is a “chinese menu” of possible security requirements
that someone might want. PP authors pick from the various options to describe what they want, and ST
authors pick from the options to describe what they provide.

Since many people might have difficulty identifying a reasonable set of assurance requirements, SO
pre-created sets of assurance requirements called “evaluation assurance levels” (EALSs) have been
defined, ranging from 1 to 7. EAL 2 is simply a standard shorthand for the set of assurance requirements
defined for EAL 2. Products can add additional assurance measures, for example, they might choose
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EAL 2 plus some additional assurance measures (if the combination isn’t enough to achieve a higher
EAL level, such a combination would be called "EAL 2 plus"). There are mutual recognition agreements
signed between many of the world’s nations that will accept an evaluation done by an accredited
laboratory in the other countries as long as all of the assurance measures taken were at the EAL 4 level or
less.

If you want to actually write an ST or PP, there’s an open source software program that can help you,
called the “CC Toolbox”. It can make sure that dependencies between requirements are met, suggest
common requirements, and help you quickly develop a document, but it obviously can’t do your thinking
for you. The specification of exactly what information must be in a PP or ST are in CC part 1, annexes B
and C respectively.

If you do decide to have your product (or PP) evaluated by an accredited laboratory, be prepared to spend
money, spend time, and work throughout the process. In particular, evaluations require paying an
accredited lab to do the evaluation, and higher levels of assurance become rapidly more expensive.
Simply believing your product is secure isn’t good enough; evaluators will require evidence to justify
any claims made. Thus, evaluations require documentation, and usually the available documentation has
to be improved or developed to meet CC requirements (especially at the higher assurance levels). Every
claim has to be justified to some level of confidence, so the more claims made, the stronger the claims,
and the more complicated the design, the more expensive an evaluation is. Obviously, when flaws are
found, they will usually need to be fixed. Note that a laboratory is paid to evaluate a product and
determine the truth. If the product doesn’t meet its claims, then you basically have two choices: fix the
product, or change (reduce) the claims.

It’s important to discuss with customers what’s desired before beginning a formal ST evaluation; an ST
that includes functional or assurance requirements not truly needed by customers will be unnecessarily
expensive to evaluate, and an ST that omits necessary requirements may not be acceptable to the
customers (because that necessary piece won’t have been evaluated). PPs identify such requirements, but
make sure that the PP accurately reflects the customer’s real requirements (perhaps the customer only
wants a part of the functionality or assurance in the PP, or has a different environment in mind, or wants
something else instead for the situations where your product will be used). Note that an ST need not
include every security feature in a product; an ST only states what will be (or has been) evaluated. A
product that has a higher EAL rating is not necessarily more secure than a similar product with a lower
rating or no rating; the environment might be different, the evaluation may have saved money and time
by not evaluating the other product at a higher level, or perhaps the evaluation missed something
important. Evaluations are not proofs; they simply impose a defined minimum bar to gain confidence in
the requirements or product.

4.2. Security Environment and Objectives
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The first step in defining a PP or ST is identify the “security environment”. This means that you have to
consider the physical environment (can attackers access the computer hardware?), the assets requiring
protection (files, databases, authorization credentials, and so on), and the purpose of the TOE (what kind
of product is it? what is the intended use?).

In developing a PP or ST, you’d end up with a statement of assumptions (who is trusted? is the network
or platform benign?), threats (that the system or its environment must counter), and organizational
security policies (that the system or its environment must meet). A threat is characterized in terms of a
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threat agent (who might perform the attack?), a presumed attack method, any vulnerabilities that are the
basis for the attack, and what asset is under attack.

You’d then define a set of security objectives for the system and environment, and show that those
objectives counter the threats and satisfy the policies. Even if you aren’t creating a PP or ST, thinking
about your assumptions, threats, and possible policies can help you avoid foolish decisions. For example,
if the computer network you’re using can be sniffed (e.g., the Internet), then unencrypted passwords are a
foolish idea in most circumstances.

For the CC, you’d then identify the functional and assurance requirements that would be met by the
TOE, and which ones would be met by the environment, to meet those security objectives. These
requirements would be selected from the “chinese menu” of the CC’s possible requirements, and the next
sections will briefly describe the major classes of requirements. In the CC, requirements are grouped into
classes, which are subdivided into families, which are further subdivided into components; the details of
all this are in the CC itself if you need to know about this. A good diagram showing how this works is in
the CC part 1, figure 4.5, which I cannot reproduce here.

Again, if you’re not intending for your product to undergo a CC evaluation, it’s still good to briefly
determine this kind of information and informally write include that information in your documentation
(e.g., the man page or whatever your documentation is).

4.3. Security Functionality Requirements

This section briefly describes the CC security functionality requirements (by CC class), primarily to give
you an idea of the kinds of security requirements you might want in your software. If you want more
detail about the CC’s requirements, see CC part 2. Here are the major classes of CC security
requirements, along with the 3-letter CC abbreviation for that class:

+ Security Audit (FAU). Perhaps you’ll need to recognize, record, store, and analyze security-relevant
activities. You’ll need to identify what you want to make auditable, since often you can’t leave all
possible auditing capabilities enabled. Also, consider what to do when there’s no room left for auditing
- if you stop the system, an attacker may intentionally do things to be logged and thus stop the system.

« Communication/Non-repudiation (FCO). This class is poorly named in the CC; officially it’s called
communication, but the real meaning is non-repudiation. Is it important that an originator cannot deny
having sent a message, or that a recipient cannot deny having received it? There are limits to how well
technology itself can support non-repudiation (e.g., a user might be able to give their private key away
ahead of time if they wanted to be able to repudiate something later), but nevertheless for some
applications supporting non-repudiation capabilities is very useful.

« Cryptographic Support (FCS). If you’re using cryptography, what operations use cryptography, what
algorithms and key sizes are you using, and how are you managing their keys (including distribution
and destruction)?

« User Data Protection (FDP). This class specifies requirement for protecting user data, and is a big
class in the CC with many families inside it. The basic idea is that you should specify a policy for data
(access control or information flow rules), develop various means to implement the policy, possibly
support off-line storage, import, and export, and provide integrity when transferring user data between
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TOEs. One often-forgotten issue is residual information protection - is it acceptable if an attacker can
later recover “deleted” data?

Identification and authentication (FIA). Generally you don’t just want a user to report who they are
(identification) - you need to verify their identity, a process called authentication. Passwords are the
most common mechanism for authentication. It’s often useful to limit the number of authentication
attempts (if you can) and limit the feedback during authentication (e.g., displaying asterisks instead of
the actual password). Certainly, limit what a user can do before authenticating; in many cases, don’t let
the user do anything without authenticating. There may be many issues controlling when a session can
start, but in the CC world this is handled by the "TOE access" (FTA) class described below instead.

Security Management (FMT). Many systems will require some sort of management (e.g., to control
who can do what), generally by those who are given a more trusted role (e.g., administrator). Be sure
you think through what those special operations are, and ensure that only those with the trusted roles
can invoke them. You want to limit trust; ideally, even more trusted roles should be limited in what
they can do.

Privacy (FPR). Do you need to support anonymity, pseudonymity, unlinkability, or unobservability? If
so, are there conditions where you want or don’t want these (e.g., should an administrator be able to
determine the real identity of someone hiding behind a pseudonym?). Note that these can seriously
conflict with non-repudiation, if you want those too. If you’re worried about sophisticated threats,
these functions can be hard to provide.

Protection of the TOE Security Functions/Self-protection (FPT). Clearly, if the TOE can be subverted,
any security functions it provides aren’t worthwhile, and in many cases a TOE has to provide at least
some self-protection. Perhaps you should "test the underlying abstract machine" - i.e., test that the
underlying components meet your assumptions, or have the product run self-tests (say during start-up,
periodically, or on request). You should probably "fail secure”, at least under certain conditions;
determine what those conditions are. Consider phyical protection of the TOE. You may want some
sort of secure recovery function after a failure. It’s often useful to have replay detection (detect when
an attacker is trying to replay older actions) and counter it. Usually a TOE must make sure that any
access checks are always invoked and actually succeed before performing a restricted action.

Resource Utilization (FRU). Perhaps you need to provide fault tolerance, a priority of service scheme,
or support resource allocation (such as a quota system).

TOE Access (FTA). There may be many issues controlling sessions. Perhaps there should be a limit on
the number of concurrent sessions (if you’re running a web service, would it make sense for the same
user to be logged in simultaneously, or from two different machines?). Perhaps you should lock or
terminate a session automatically (e.g., after a timeout), or let users initiate a session lock. You might
want to include a standard warning banner. One surprisingly useful piece of information is displaying,
on login, information about the last session (e.g., the date/time and location of the last login) and the
date/time of the last unsuccessful attempt - this gives users information that can help them detect
interlopers. Perhaps sessions can only be established based on other criteria (e.g., perhaps you can
only use the program during business hours).

Trusted path/channels (FTP). A common trick used by attackers is to make the screen appear to be
something it isn’t, e.g., run an ordinary program that looks like a login screen or a forged web site.
Thus, perhaps there needs to be a "trusted path" - a way that users can ensure that they are talking to
the "real" program.
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4.4. Security Assurance Measure Requirements

As noted above, the CC has a set of possible assurance requirements that can be selected, and several
predefined sets of assurance requirements (EAL levels 1 through 7). Again, if you’re actually going to go
through a CC evaluation, you should examine the CC documents; I'll skip describing the measures
involving reviewing official CC documents (evaluating PPs and STs). Here are some assurance measures
that can increase the confidence others have in your software:

« Configuration management (ACM). At least, have unique a version identifier for each TOE release, so
that users will know what they have. You gain more assurance if you have good automated tools to
control your software, and have separate version identifiers for each piece (typical CM tools like CVS
can do this, although CVS doesn’t record changes as atomic changes which is a weakness of it). The
more that’s under configuration management, the better; don’t just control your code, but also control
documentation, track all problem reports (especially security-related ones), and all development tools.

+ Delivery and operation (ADO). Your delivery mechanism should ideally let users detect unauthorized
modifications to prevent someone else masquerading as the developer, and even better, prevent
modification in the first place. You should provide documentation on how to securely install, generate,
and start-up the TOE, possibly generating a log describing how the TOE was generated.

+ Development (ADV). These CC requirements deal with documentation describing the TOE
implementation, and that they need to be consistent between each other (e.g., the information in the
ST, functional specification, high-level design, low-level design, and code, as well as any models of
the security policy).

+ Guidance documents (AGD). Users and administrators of your product will probably need some sort
of guidance to help them use it correctly. It doesn’t need to be on paper; on-line help and "wizards"
can help too. The guidance should include warnings about actions that may be a problem in a secure
environemnt, and describe how to use the system securely.

« Life-cycle support (ALC). This includes development security (securing the systems being used for
development, including physical security), a flaw remediation process (to track and correct all security
flaws), and selecting development tools wisely.

« Tests (ATE). Simply testing can help, but remember that you need to test the security functions and not
just general functions. You should check if something is set to permit, it’s permitted, and if it’s
forbidden, it is no longer permitted. Of course, there may be clever ways to subvert this, which is what
vulnerability assessment is all about (described next).

« Vulnerability Assessment (AVA). Doing a vulnerability analysis is useful, where someone pretends to
be an attacker and tries to find vulnerabilities in the product using the available information, including
documentation (look for "don’t do X" statements and see if an attacker could exploit them) and
publicly known past vulnerabilities of this or similar products. This book describes various ways of
countering known vulnerabilities of previous products to problems such as replay attacks (where
known-good information is stored and retransmitted), buffer overflow attacks, race conditions, and
other issues that the rest of this book describes. The user and administrator guidance documents
should be examined to ensure that misleading, unreasonable, or conflicting guidance is removed, and
that secrity procedures for all modes of operation have been addressed. Specialized systems may need
to worry about covert channels; read the CC if you wish to learn more about covert channels.
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Chapter 4. Security Requirements

« Maintenance of assurance (AMA). If you’re not going through a CC evaluation, you don’t need a
formal AMA process, but all software undergoes change. What is your process to give all your users
strong confidence that future changes to your software will not create new vulnerabilities? For
example, you could establish a process where multiple people review any proposed changes.
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Wisdom will save you from the ways of
wicked men, from men whose words are

perverse...
Proverbs 2:12 (NIV)

Some inputs are from untrustable users, so those inputs must be validated (filtered) before being used.
We will first discuss the basics of input validation. This is followed by subsections that discuss different
kinds of inputs to a program; note that input includes process state such as environment variables, umask
values, and so on. Not all inputs are under the control of an untrusted user, so you need only worry about
those inputs that are.

5.1. Basics of input validation

First, make sure you identify all inputs from potentially untrusted users, so that you validate them all.
Where you can, eliminate the inputs or make it impossible for untrusted users to provide information to
them. At each remaining input from potentially untrusted users you need to validate the data that comes
in.

You should determine what is legal, as narrowly as you reasonably can, and reject anything that does not
match that definition. The rules that define what is legal, and by implication reject everything else, are
called a whitelist. Do not do the reverse, that is, do not try to identify what is illegal and write code to
reject those cases. This bad approach, where you try to list everything that should be rejected, is called
blacklisting. Blacklisting typically leads to security vulnerabilities, because you are likely to forget to
handle one or more important cases of illegal input. Improper input validation is such a common cause of
security vulnerabilities that it has its own CWE identifier, CWE-20.

There is a good reason for identifying “illegal” values, though, and that’s as a set of tests to be sure that
your validation code is thorough. These tests may possibly just executed in your head, but at least a few
should become test cases. When I set up an input filter, I mentally attack my whitelist with a few
pre-identified illegal values to make sure that a few obvious illegal values will not get through.
Depending on the input, here are a few examples of common “illegal” values that your input filters may
need to prevent: the empty string, “.”, “..”, “../”, anything starting with “/” or *“.”, anything with “/”” or
“&” inside it, any control characters (especially NIL and newline), and/or any characters with the “high
bit” set (especially values decimal 254 and 255, and character 133 is the Unicode Next-of-line character
used by 0S/390). Again, your code should not be checking for “bad” values; you should do this check
mentally to be sure that your pattern ruthlessly limits input values to legal values. If your pattern isn’t
sufficiently narrow, you need to carefully re-examine the pattern to see if there are other problems.

Limit the maximum character length (and minimum length if appropriate), and be sure to not lose control
when such lengths are exceeded (see Chapter 6 for more about buffer overflows).

Here are a few common data types, and things you should validate before using them from an untrusted
user:

« For strings, identify the legal characters or legal patterns (e.g., as a regular expression) and reject
anything not matching that form. There are special problems when strings contain control characters
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(especially linefeed or NIL) or metacharacters (especially shell metacharacters); it is often best to
“escape” such metacharacters immediately when the input is received so that such characters are not
accidentally sent. CERT goes further and recommends escaping all characters that aren’t in a list of
characters not needing escaping [CERT 1998, CMU 1998]. See Section 8.3 for more information on
metacharacters. Note that line ending encodings vary on different computers: Unix-based systems use
character 0x0Oa (linefeed), CP/M and DOS based systems (including Windows) use 0x0d 0x0a
(carriage-return linefeed, and some programs incorrectly reverse the order), the Apple MacOS uses
0x0d (carriage return), and IBM OS/390 uses 0x85 (0x85) (next line, sometimes called newline).

Limit all numbers to the minimum (often zero) and maximum allowed values.

A full email address checker is actually quite complicated, because there are legacy formats that
greatly complicate validation if you need to support all of them; see mailaddr(7) and IETF RFC 822
[RFC 822] for more information if such checking is necessary. Friedl [1997] developed a regular
expression to check if an email address is valid (according to the specification); his “short” regular
expression is 4,724 characters, and his “optimized” expression (in appendix B) is 6,598 characters
long. And even that regular expression isn’t perfect; it can’t recognize local email addresses, and it
can’t handle nested parentheses in comments (as the specification permits). Often you can simplify
and only permit the “common” Internet address formats.

Filenames should be checked; see Section 5.6 for more information on filenames.

URISs (including URLSs) should be checked for validity. If you are directly acting on a URI (i.e., you're
implementing a web server or web-server-like program and the URL is a request for your data), make
sure the URI is valid, and be especially careful of URIs that try to “escape” the document root (the
area of the filesystem that the server is responding to). The most common ways to escape the
document root are via ““..”” or a symbolic link, so most servers check any “..” directories themselves
and ignore symbolic links unless specially directed. Also remember to decode any encoding first (via
URL encoding or UTF-8 encoding), or an encoded “..” could slip through. URIs aren’t supposed to
even include UTF-8 encoding, so the safest thing is to reject any URISs that include characters with

high bits set.

If you are implementing a system that uses the URI/URL as data, you’re not home-free at all; you
need to ensure that malicious users can’t insert URIs that will harm other users. See Section 5.13.4 for
more information about this.

When accepting cookie values, make sure to check the the domain value for any cookie you’re using is
the expected one. Otherwise, a (possibly cracked) related site might be able to insert spoofed cookies.
Here’s an example from IETF RFC 2965 of how failing to do this check could cause a problem:

- User agent makes request to victim.cracker.edu, gets back cookie session_id="1234" and sets the
default domain victim.cracker.edu.

- User agent makes request to spoof.cracker.edu, gets back cookie session-id="1111", with
Domain=".cracker.edu".

- User agent makes request to victim.cracker.edu again, and passes:
Cookie: $Version="1"; session_id="1234",
$Version="1"; session_id="1111"; S$Domain=".cracker.edu"
The server at victim.cracker.edu should detect that the second cookie was not one it originated by
noticing that the Domain attribute is not for itself and ignore it.
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Unless you account for them, the legal character patterns must not include characters or character
sequences that have special meaning to either the program internals or the eventual output:

+ A character sequence may have special meaning to the program’s internal storage format. For
example, if you store data (internally or externally) in delimited strings, make sure that the delimiters
are not permitted data values. A number of programs store data in comma () or colon (:) delimited text
files; inserting the delimiters in the input can be a problem unless the program accounts for it (i.e., by
preventing it or encoding it in some way). Other characters often causing these problems include
single and double quotes (used for surrounding strings) and the less-than sign "<" (used in SGML,
XML, and HTML to indicate a tag’s beginning; this is important if you store data in these formats).
Most data formats have an escape sequence to handle these cases; use it, or filter such data on input.

A character sequence may have special meaning if sent back out to a user. A common example of this
is permitting HTML tags in data input that will later be posted to other readers (e.g., in a guestbook or
“reader comment” area). However, the problem is much more general. See Section 7.16 for a general
discussion on the topic, and see Section 5.13 for a specific discussion about filtering HTML.

These tests should usually be centralized in one place so that the validity tests can be easily examined for
correctness later.

Make sure that your validity test is actually correct; this is particularly a problem when checking input
that will be used by another program (such as a filename, email address, or URL). Often these tests have
subtle errors, producing the so-called “deputy problem” (where the checking program makes different
assumptions than the program that actually uses the data). If there’s a relevant standard, look at it, but
also search to see if the program has extensions that you need to know about.

While parsing user input, it’s a good idea to temporarily drop all privileges, or even create separate
processes (with the parser having permanently dropped privileges, and the other process performing
security checks against the parser requests). This is especially true if the parsing task is complex (e.g., if
you use a lex-like or yacc-like tool), or if the programming language doesn’t protect against buffer
overflows (e.g., C and C++). See Section 7.4 for more information on minimizing privileges.

When using data for security decisions (e.g., “let this user in”), be sure to use trustworthy channels. For
example, on a public Internet, don’t just use the machine IP address or port number as the sole way to
authenticate users, because in most environments this information can be set by the (potentially
malicious) user. See Section 7.12 for more information.

5.2. Input Validation Tools including Regular Expressions

There are many ways to validate input. Number ranges can be checked using typical condtions such as
less-than. If a string can only be one of a short list of possibilities, simply enumerate the possibilities and
ensure that the input is one of them. If the input is extremely complex, tools often used to create
compilers (such as lexers and parser generators) may be appropriate, though be sure that these tools are
prepared to process malicious input.

In many cases regular expression libraries are especially useful for input validation. Many whitelists are
easily expressed as regular expressions, making them a very easy tool to use. In addition, regular
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expression libraries are built-in or easily available in almost all language (the POSIX specification even
requires one).

The regular expression language is a simple language for describing text patterns. There are three major
variants of the language in use: the very old POSIX “basic regular expresion (BRE)” format, the POSIX
“extended regular expression (ERE)”, and the perl-compatible regular expression (PCRE) format. From
here on we’ll assume you’re using the ERE or PCRE variations of the language. In the regular expression
language, a latin letter or digit simply represents itself. A dot (period) matches any one character (with
the possible exception of newline, depending on various options). A bracketed expression matches one
character, as long as that one character is one of the characters listed inside the brackets. Inside brackets
the period has no special meaning (it just matches a period), and a “-” inside brackets indicates a range,
s0 “[A-Za-z0-9]” matches one Latin alphanumeric character (presuming you’re not using EBCDIC). You
can also indicate repetition, e.g., “?”” means that the previous expression is optional (may occur 0 or 1
times), “+” means the previous expression may repeat 1 or more times, and a “*” means that the previous
expression may repeat O or more times. More generally, “{N,M}” indicates that the previous expression
can occur N through M number of repetitions. Parentheses can group a sequence so that it is considered a
single pattern. A much more complete discussion of regular expressions is given in [Friedl 1997].

The regular expression language was originally designed for searching, not for describing input filters.
To use regular expressions as whitelists, your whitelists will typically begin with “*” (which normally
means “match the beginning of the string”) and end with ”$” (which normally means “match the end of
the string”). Thus, you can require that an input have a Latin letter, followed by one or more digits, using
this expression: “[A-Za-z][0-9]+".

“ln

A word of warning: Regular expressions support the
However, the precedence of “I”
having vulnerable input validation routines as a result. For example, the expression “*xly$” means

operator, which means “any one of these”.
is different from what many expect, and unwary developers can end up

“ln

“begins with x, or ends with y”. In practically all cases you should surround the “/” branches with

parentheses when using regular expressions for input filtering, e.g., “*(xly)$” means “either an x or a y”.

5.3. Command line

Many programs take input from the command line. A setuid/setgid program’s command line data is
provided by an untrusted user, so a setuid/setgid program must defend itself from potentially hostile
command line values. Attackers can send just about any kind of data through a command line (through
calls such as the execve(3) call). Therefore, setuid/setgid programs must completely validate the
command line inputs and must not trust the name of the program reported by command line argument
zero (an attacker can set it to any value including NULL).

5.4. Environment Variables

46

By default, environment variables are inherited from a process’ parent. However, when a program
executes another program, the calling program can set the environment variables to arbitrary values. This
is dangerous to setuid/setgid programs, because their invoker can completely control the environment
variables they’re given. Since they are usually inherited, this also applies transitively; a secure program
might call some other program and, without special measures, would pass potentially dangerous
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environment variables values on to the program it calls. The following subsections discuss environment
variables and what to do with them.

5.4.1. Some Environment Variables are Dangerous

Some environment variables are dangerous because many libraries and programs are controlled by
environment variables in ways that are obscure, subtle, or undocumented. For example, the IFS variable
is used by the sh and bash shell to determine which characters separate command line arguments. Since
the shell is invoked by several low-level calls (like system(3) and popen(3) in C, or the back-tick operator
in Perl), setting IFS to unusual values can subvert apparently-safe calls. This behavior is documented in
bash and sh, but it’s obscure; many long-time users only know about IFS because of its use in breaking
security, not because it’s actually used very often for its intended purpose. What is worse is that not all
environment variables are documented, and even if they are, those other programs may change and add
dangerous environment variables. Thus, the only real solution (described below) is to select the ones you
need and throw away the rest.

5.4.2. Environment Variable Storage Format is Dangerous

Normally, programs should use the standard access routines to access environment variables. For
example, in C, you should get values using getenv(3), set them using the POSIX standard routine
putenv(3) or the BSD extension setenv(3) and eliminate environment variables using unsetenv(3). I
should note here that setenv(3) is implemented in Linux, too.

However, crackers need not be so nice; crackers can directly control the environment variable data area
passed to a program using execve(2). This permits some nasty attacks, which can only be understood by
understanding how environment variables really work. In Linux, you can see environ(5) for a summary
how about environment variables really work. In short, environment variables are internally stored as a
pointer to an array of pointers to characters; this array is stored in order and terminated by a NULL
pointer (so you’ll know when the array ends). The pointers to characters, in turn, each point to a
NIL-terminated string value of the form “NAME=value”. This has several implications, for example,
environment variable names can’t include the equal sign, and neither the name nor value can have
embedded NIL characters. However, a more dangerous implication of this format is that it allows
multiple entries with the same variable name, but with different values (e.g., more than one value for
SHELL). While typical command shells prohibit doing this, a locally-executing cracker can create such a
situation using execve(2).

The problem with this storage format (and the way it’s set) is that a program might check one of these
values (to see if it’s valid) but actually use a different one. In Linux, the GNU glibc libraries try to shield
programs from this; glibc 2.1’s implementation of getenv will always get the first matching entry, setenv
and putenv will always set the first matching entry, and unsetenv will actually unset all of the matching
entries (congratulations to the GNU glibc implementers for implementing unsetenv this way!). However,
some programs go directly to the environ variable and iterate across all environment variables; in this
case, they might use the last matching entry instead of the first one. As a result, if checks were made
against the first matching entry instead, but the actual value used is the last matching entry, a cracker can
use this fact to circumvent the protection routines.
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5.4.3. The Solution - Extract and Erase

For secure setuid/setgid programs, the short list of environment variables needed as input (if any) should
be carefully extracted. Then the entire environment should be erased, followed by resetting a small set of
necessary environment variables to safe values. There really isn’t a better way if you make any calls to
subordinate programs; there’s no practical method of listing ““all the dangerous values”. Even if you
reviewed the source code of every program you call directly or indirectly, someone may add new
undocumented environment variables after you write your code, and one of them may be exploitable.

The simple way to erase the environment in C/C++ is by setting the global variable environ to NULL.
The global variable environ is defined in <unistd.h>; C/C++ users will want to #include this header file.
You will need to manipulate this value before spawning threads, but that’s rarely a problem, since you
want to do these manipulations very early in the program’s execution (usually before threads are
spawned).

The global variable environ’s definition is defined in various standards; it’s not clear that the official
standards condone directly changing its value, but I'm unaware of any Unix-like system that has trouble
with doing this. I normally just modify the “environ” directly; manipulating such low-level components
is possibly non-portable, but it assures you that you get a clean (and safe) environment. In the rare case
where you need later access to the entire set of variables, you could save the “environ” variable’s value
somewhere, but this is rarely necessary; nearly all programs need only a few values, and the rest can be
dropped.

Another way to clear the environment is to use the undocumented clearenv() function. The function
clearenv() has an odd history; it was supposed to be defined in POSIX.1, but somehow never made it into
that standard. However, clearenv() is defined in POSIX.9 (the Fortran 77 bindings to POSIX), so there is
a quasi-official status for it. In Linux, clearenv() is defined in <stdlib.h>>, but before using #include to
include it you must make sure that __ USE_MISC is #defined. A somewhat more “official”” approach is to
cause __ USE_MISC to be defined is to first #define either _SVID_SOURCE or _BSD_SOURCE, and
then #include <features.h>> - these are the official feature test macros.

One environment value you’ll almost certainly re-add is PATH, the list of directories to search for
programs; PATH should not include the current directory and usually be something simple like
“/bin:/usr/bin”. Typically you’ll also set IFS (to its default of “ \t\n”, where space is the first character)
and TZ (timezone). Linux won’t die if you don’t supply either IFS or TZ, but some System V based
systems have problems if you don’t supply a TZ value, and it’s rumored that some shells need the IFS
value set. In Linux, see environ(5) for a list of common environment variables that you might want to set.

If you really need user-supplied values, check the values first (to ensure that the values match a pattern
for legal values and that they are within some reasonable maximum length). Ideally there would be some
standard trusted file in /etc with the information for “standard safe environment variable values”, but at
this time there’s no standard file defined for this purpose. For something similar, you might want to
examine the PAM module pam_env on those systems which have that module. If you allow users to set
an arbitrary environment variable, then you’ll let them subvert restricted shells (more on that below).

If you’re using a shell as your programming language, you can use the “/usr/bin/env’”’ program with the
“-” option (which erases all environment variables of the program being run). Basically, you call
/usr/bin/env, give it the “-”” option, follow that with the set of variables and their values you wish to set
(as name=value), and then follow that with the name of the program to run and its arguments. You
usually want to call the program using the full pathname (/usr/bin/env) and not just as “env”, in case a

non

user has created a dangerous PATH value. Note that GNU’s env also accepts the options "-i" and
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"--ignore-environment" as synonyms (they also erase the environment of the program being started), but
these aren’t portable to other versions of env.

If you’re programming a setuid/setgid program in a language that doesn’t allow you to reset the
environment directly, one approach is to create a “wrapper” program. The wrapper sets the environment
program to safe values, and then calls the other program. Beware: make sure the wrapper will actually
invoke the intended program; if it’s an interpreted program, make sure there’s no race condition possible
that would allow the interpreter to load a different program than the one that was granted the special
setuid/setgid privileges.

5.4.4. Don’t Let Users Set Their Own Environment Variables

If you allow users to set their own environment variables, then users will be able to escape out of
restricted accounts (these are accounts that are supposed to only let the users run certain programs and
not work as a general-purpose machine). This includes letting users write or modify certain files in their
home directory (e.g., like .login), supporting conventions that load in environment variables from files
under the user’s control (e.g., openssh’s .ssh/environment file), or supporting protocols that transfer
environment variables (e.g., the Telnet Environment Option; see CERT Advisory CA-1995-14 for more).
Restricted accounts should never be allowed to modify or add any file directly contained in their home
directory, and instead should be given only a specific subdirectory that they are allowed to modify (if
they can modify any).

ari posted a detailed discussion of this problem on Bugtraq on June 24, 2002:

Given the similarities with certain other security issues, i’'m surprised this hasn’t been discussed earlier. If it
has, people simply haven’t paid it enough attention.

This problem is not necessarily ssh-specific, though most telnet daemons that support environment passing
should already be configured to remove dangerous variables due to a similar (and more serious) issue back in
’95 (ref: [1]). I will give ssh-based examples here.

Scenario one: Let’s say admin bob has a host that he wants to give people ftp access to. Bob doesn’t want
anyone to have the ability to actually _log into_ his system, so instead of giving users normal shells, or even no
shells, bob gives them all (say) /usr/sbin/nologin, a program he wrote himself in C to essentially log the attempt
to syslog and exit, effectively ending the user’s session. As far as most people are concerned, the user can’t do
much with this aside from, say, setting up an encrypted tunnel.

The thing is, bob’s system uses dynamic libraries (as most do), and /usr/sbin/nologin is dynamically linked (as
most such programs are). If a user can set his environment variables (e.g. by uploading a “.ssh/environment”
file) and put some arbitrary file on the system (e.g. “doevilstuff.so”), he can bypass any functionality of
/usr/sbin/nologin completely via LD_PRELOAD (or another member of the LD_* environment family).

The user can now gain a shell on the system (with his own privileges, of course, barring any “UseLogin” issues
(ref: [2])), and administrator bob, if he were aware of what just occurred, would be extremely unhappy.

Granted, there are all kinds of interesting ways to (more or less) do away with this problem. Bob could just grit
his teeth and give the ftp users a nonexistent shell, or he could statically compile nologin, assuming his
operating system comes with static libraries. Bob could also, humorously, make his nologin program setuid and
let the standard C library take care of the situation. Then, of course, there are also the ssh-specific access
controls such as AllowGroup and AllowUsers. These may appease the situation in this scenario, but it does not
correct the problem.

... Now, what happens if bob, instead of using /usr/sbin/nologin, wants to use (for example) some BBS-type
interface that he wrote up or downloaded? It can be a script written in perl or tcl or python, or it could be a
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compiled program; doesn’t matter. Additionally, bob need not be running an ftp server on this host; instead,
perhaps bob uses nfs or veritas to mount user home directories from a fileserver on his network; this exact setup
is (unfortunately) employed by many bastion hosts, password management hosts and mail servers---to name a
few. Perhaps bob runs an ISP, and replaces the user’s shell when he doesn’t pay. With all of these possible (and
common) scenarios, bob’s going to have a somewhat more difficult time getting around the problem.

... Exploitation of the problem is simple. The circumvention code would be compiled into a dynamic library
and LD_PRELOAD=/path/to/evil.so should be placed into ~user/.ssh/environment (a similar environment
option may be appended to public keys in the authohrized_keys file). If no dynamically loadable programs are
executed, this will have no effect.

ISPs and universities (along with similarly affected organizations) should compile their rejection (or otherwise
restricted) binaries statically (assuming your operating system comes with static libraries)...

Ideally, sshd (and all remote access programs that allow user-definable environments) should strip any
environment settings that libc ignores for setuid programs.

5.5. File Descriptors

A program is passed a set of “open file descriptors”, that is, pre-opened files. A setuid/setgid program
must deal with the fact that the user gets to select what files are open and to what (within their
permission limits). A setuid/setgid program must not assume that opening a new file will always open
into a fixed file descriptor id, or that the open will succeed at all. It must also not assume that standard
input (stdin), standard output (stdout), and standard error (stderr) refer to a terminal or are even open.

The rationale behind this is easy; since an attacker can open or close a file descriptor before starting the
program, the attacker could create an unexpected situation. If the attacker closes the standard output,
when the program opens the next file it will be opened as though it were standard output, and then it will
send all standard output to that file as well. Some C libraries will automatically open stdin, stdout, and
stderr if they aren’t already open (to /dev/null), but this isn’t true on all Unix-like systems. Also, these
libraries can’t be completely depended on; for example, on some systems it’s possible to create a race
condition that causes this automatic opening to fail (and still run the program).

5.6. File Names
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The names of files can, in certain circumstances, cause serious problems. This is especially a problem for
secure programs that run on computers with local untrusted users, but this isn’t limited to that
circumstance. Remote users may be able to trick a program into creating undesirable filenames
(programs should prevent this, but not all do), or remote users may have partially penetrated a system
and try using this trick to penetrate the rest of the system.

@ 9

Usually you will want to not include “..” (higher directory) as a legal value from an untrusted user,
though that depends on the circumstances. You might also want to list only the characters you will
permit, and forbidding any filenames that don’t match the list. It’s best to prohibit any change in
directory, e.g., by not including “/” in the set of legal characters, if you’re taking data from an external
user and transforming it into a filename.

Often you shouldn’t support “globbing”, that is, expanding filenames using “*”, “?”, “[ (matching “]”),
and possibly “{” (matching “}”). For example, the command “Is *.png” does a glob on “*.png” to list all
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PNG files. The C fopen(3) command (for example) doesn’t do globbing, but the command shells perform
globbing by default, and in C you can request globbing using (for example) glob(3). If you don’t need
globbing, just use the calls that don’t do it where possible (e.g., fopen(3)) and/or disable them (e.g.,
escape the globbing characters in a shell). Be especially careful if you want to permit globbing. Globbing
can be useful, but complex globs can take a great deal of computing time. For example, on some ftp
servers, performing a few of these requests can easily cause a denial-of-service of the entire machine:

ftp> 1s */../x/ . /x/ . /*/ . )x/ /x5 xSk kxR

Trying to allow globbing, yet limit globbing patterns, is probably futile. Instead, make sure that any such
programs run as a separate process and use process limits to limit the amount of CPU and other resources
they can consume. See Section 7.4.8 for more information on this approach, and see Section 3.6 for more
information on how to set these limits.

Unix-like systems generally forbid including the NIL character in a filename (since this marks the end of
the name) and the “/”” character (since this is the directory separator). However, they often permit
anything else, which is a problem; it is easy to write programs that can be subverted by cleverly-created
filenames.

Filenames that can especially cause problems include:

« Filenames with leading dashes (-). If passed to other programs, this may cause the other programs to
misinterpret the name as option settings. Ideally, Unix-like systems shouldn’t allow these filenames;
they aren’t needed and create many unnecessary security problems. Unfortunately, currently
developers have to deal with them. Thus, whenever calling another program with a filename, insert
“--” before the filename parameters (to stop option processing, if the program supports this common
request) or modify the filename (e.g., insert “./” in front of the filename to keep the dash from being
the lead character).

« Filenames with control characters. This especially includes newlines and carriage returns (which are
often confused as argument separators inside shell scripts, or can split log entries into multiple entries)
and the ESCAPE character (which can interfere with terminal emulators, causing them to perform
undesired actions outside the user’s control). Ideally, Unix-like systems shouldn’t allow these
filenames either; they aren’t needed and create many unnecessary security problems.

- Filenames with spaces; these can sometimes confuse a shell into being multiple arguments, with the
other arguments causing problems. Since other operating systems allow spaces in filenames (including
Windows and MacOS), for interoperability’s sake this will probably always be permitted. Please be
careful in dealing with them, e.g., in the shell use double-quotes around all filename parameters
whenever calling another program. You might want to forbid leading and trailing spaces at least; these
aren’t as visible as when they occur in other places, and can confuse human users.

« Invalid character encoding. For example, a program may believe that the filename is UTF-8 encoded,
but it may have an invalidly long UTF-8 encoding. See Section 5.11.2 for more information. I'd like to
see agreement on the character encoding used for filenames (e.g., UTF-8), and then have the operating
system enforce the encoding (so that only legal encodings are allowed), but that hasn’t happened at
this time.

ELENTIEE)

« Another other character special to internal data formats, such as “<”, “;”, quote characters, backslash,
and so on.

51



Chapter 5. Validate All Input

5.7. File Contents

If a program takes directions from a file, it must not trust that file specially unless only a trusted user can
control its contents. Usually this means that an untrusted user must not be able to modify the file, its
directory, or any of its ancestor directories. Otherwise, the file must be treated as suspect.

If the directions in the file are supposed to be from an untrusted user, then make sure that the inputs from
the file are protected as describe throughout this book. In particular, check that values match the set of
legal values, and that buffers are not overflowed.

5.8. Web-Based Application Inputs (Especially CGI
Scripts)

52

Web-based applications (such as CGI scripts) run on some trusted server and must get their input data
somehow through the web. Since the input data generally come from untrusted users, this input data must
be validated. Indeed, this information may have actually come from an untrusted third party; see Section
7.16 for more information. For example, CGI scripts are passed this information through a standard set
of environment variables and through standard input. The rest of this text will specifically discuss CGI,
because it’s the most common technique for implementing dynamic web content, but the general issues
are the same for most other dynamic web content techniques.

One additional complication is that many CGI inputs are provided in so-called “URL-encoded” format,
that is, some values are written in the format %HH where HH is the hexadecimal code for that byte. You
or your CGI library must handle these inputs correctly by URL-decoding the input and then checking if
the resulting byte value is acceptable. You must correctly handle all values, including problematic values
such as %00 (NIL) and %0A (newline). Don’t decode inputs more than once, or input such as “%?2500”
will be mishandled (the %25 would be translated to “%”, and the resulting “%00” would be erroneously
translated to the NIL character).

CGI scripts are commonly attacked by including special characters in their inputs; see the comments
above.

Another form of data available to web-based applications are “cookies.” Again, users can provide
arbitrary cookie values, so they cannot be trusted unless special precautions are taken. Also, cookies can
be used to track users, potentially invading user privacy. As a result, many users disable cookies, so if
possible your web application should be designed so that it does not require the use of cookies (but see
my later discussion for when you must authenticate individual users). I encourage you to avoid or limit
the use of persistent cookies (cookies that last beyond a current session), because they are easily abused.
Indeed, U.S. agencies are currently forbidden to use persistent cookies except in special circumstances,
because of the concern about invading user privacy; see the OMB guidance in memorandum M-00-13
(June 22, 2000). Specific guidance about cookies applies to the U.S. Department of Defense (DoD),
which is part of the DoD guidance to webmasters. Note that to use cookies, some browsers may insist
that you have a privacy profile (named p3p.xml on the root directory of the server).

Some HTML forms include client-side input checking to prevent some illegal values; these are typically
implemented using Javascript/ECMAscript or Java. This checking can be helpful for the user, since it can
happen “immediately” without requiring any network access. However, this kind of input checking is
useless for security, because attackers can send such “illegal” values directly to the web server without
going through the checks. It’s not even hard to subvert this; you don’t have to write a program to send



Chapter 5. Validate All Input

arbitrary data to a web application. In general, servers must perform all their own input checking (of
form data, cookies, and so on) because they cannot trust clients to do this securely. In short, clients are
generally not “trustworthy channels”. See Section 7.12 for more information on trustworthy channels.

A brief discussion on input validation for those using Microsoft’s Active Server Pages (ASP) is available
from Jerry Connolly at http://heap.nologin.net/aspsec.html

5.9. Other Inputs

Programs must ensure that all inputs are controlled; this is particularly difficult for setuid/setgid
programs because they have so many such inputs. Other inputs programs must consider include the
current directory, signals, memory maps (mmaps), System V IPC, pending timers, resource limits, the
scheduling priority, and the umask (which determines the default permissions of newly-created files).
Consider explicitly changing directories (using chdir(2)) to an appropriately fully named directory at
program startup.

5.10. Human Language (Locale) Selection

As more people have computers and the Internet available to them, there has been increasing pressure for
programs to support multiple human languages and cultures. This combination of language and other
cultural factors is usually called a “locale”. The process of modifying a program so it can support
multiple locales is called “internationalization” (i18n), and the process of providing the information for a
particular locale to a program is called “localization” (110n).

Overall, internationalization is a good thing, but this process provides another opportunity for a security
exploit. Since a potentially untrusted user provides information on the desired locale, locale selection
becomes another input that, if not properly protected, can be exploited.

5.10.1. How Locales are Selected

In locally-run programs (including setuid/setgid programs), locale information is provided by an
environment variable. Thus, like all other environment variables, these values must be extracted and
checked against valid patterns before use.

For web applications, this information can be obtained from the web browser (via the Accept-Language
request header). However, since not all web browsers properly pass this information (and not all users
configure their browsers properly), this is used less often than you might think. Often, the language
requested in a web browser is simply passed in as a form value. Again, these values must be checked for
validity before use, as with any other form value.

In either case, locale information is really just a special case of input discussed in the previous sections.
However, because this input is so rarely considered, I'm discussing it separately. In particular, when
combined with format strings (discussed later), user-controlled strings can permit attackers to force other
programs to run arbitrary instructions, corrupt data, and do other unfortunate actions.
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5.10.2. Locale Support Mechanisms

There are two major library interfaces for supporting locale-selected messages on Unix-like systems, one
called “catgets” and the other called “gettext”. In the catgets approach, every string is assigned a unique
number, which is used as an index into a table of messages. In contrast, in the gettext approach, a string
(usually in English) is used to look up a table that translates the original string. catgets(3) is an accepted
standard (via the X/Open Portability Guide, Volume 3 and Single Unix Specification), so it’s possible
your program uses it. The “gettext” interface is not an official standard, (though it was originally a
UniForum proposal), but I believe it’s the more widely used interface (it’s used by Sun and essentially all
GNU programs).

In theory, catgets should be slightly faster, but this is at best marginal on today’s machines, and the
bookkeeping effort to keep unique identifiers valid in catgets() makes the gettext() interface much easier
to use. I’d suggest using gettext(), just because it’s easier to use. However, don’t take my word for it; see
GNU'’s documentation on gettext (info:gettext#catgets) for a longer and more descriptive comparison.

The catgets(3) call (and its associated catopen(3) call) in particular is vulnerable to security problems,
because the environment variable NLSPATH can be used to control the filenames used to acquire
internationalized messages. The GNU C library ignores NLSPATH for setuid/setgid programs, which
helps, but that doesn’t protect programs running on other implementations, nor other programs (like CGI
scripts) which don’t “appear” to require such protection.

The widely-used “gettext” interface is at least not vulnerable to a malicious NLSPATH setting to my

knowledge. However, it appears likely to me that malicious settings of LC_ALL or LC_MESSAGES
could cause problems. Also, if you use gettext’s bindtextdomain() routine in its file cat-compat.c, that
does depend on NLSPATH.

5.10.3. Legal Values

For the moment, if you must permit untrusted users to set information on their desired locales, make sure
the provided internationalization information meets a narrow filter that only permits legitimate locale
names. For user programs (especially setuid/setgid programs), these values will come in via NLSPATH,
LANGUAGE, LANG, the old LINGUAS, LC_ALL, and the other LC_* values (especially
LC_MESSAGES, but also including LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC,
and LC_TIME). For web applications, this user-requested set of language information would be done via
the Accept-Language request header or a form value (the application should indicate the actual language
setting of the data being returned via the Content-Language heading). You can check this value as part of
your environment variable filtering if your users can set your environment variables (i.e., setuid/setgid
programs) or as part of your input filtering (e.g., for CGI scripts). The GNU C library "glibc" doesn’t
accept some values of LANG for setuid/setgid programs (in particular anything with "/"), but errors have
been found in that filtering (e.g., Red Hat released an update to fix this error in glibc on September 1,
2000). This kind of filtering isn’t required by any standard, so you’re safer doing this filtering yourself. I
have not found any guidance on filtering language settings, so here are my suggestions based on my own
research into the issue.

First, a few words about the legal values of these settings. Language settings are generally set using the
standard tags defined in IETF RFC 1766 (which uses two-letter country codes as its basic tag, followed
by an optional subtag separated by a dash; I’ve found that environment variable settings use the
underscore instead). However, some find this insufficiently flexible, so three-letter country codes may
soon be used as well. Also, there are two major not-quite compatible extended formats, the X/Open
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Format and the CEN Format (European Community Standard); you’d like to permit both. Typical values
include “C” (the C locale), “EN” (English”), and “FR_fr” (French using the territory of France’s
conventions). Also, so many people use nonstandard names that programs have had to develop “alias”
systems to cope with nonstandard names (for GNU gettext, see /usr/share/locale/locale.alias, and for
X11, see /usr/lib/X11/locale/locale.alias; you might need "aliases" instead of "alias"); they should
usually be permitted as well. Libraries like gettext() have to accept all these variants and find an
appropriate value, where possible. One source of further information is FSF [1999]; another source is the
li18nux.org web site. A filter should not permit characters that aren’t needed, in particular */” (which
might permit escaping out of the trusted directories) and “..” (which might permit going up one
directory). Other dangerous characters in NLSPATH include “%” (which indicates substitution) and ““:”
(which is the directory separator); the documentation I have for other machines suggests that some
implementations may use them for other values, so it’s safest to prohibit them.

5.10.4. Bottom Line

In short, I suggest simply erasing or re-setting the NLSPATH, unless you have a trusted user supplying
the value. For the Accept-Language heading in HTTP (if you use it), form values specifying the locale,
and the environment variables LANGUAGE, LANG, the old LINGUAS, LC_ALL, and the other LC_*
values listed above, filter the locales from untrusted users to permit null (empty) values or to only permit
values that match in total this regular expression (note that I’'ve added “="):

[A-Za-z] [A-Za-z0-9_,+@\-\.=1%

I haven’t found any legitimate locale which doesn’t match this pattern, but this pattern does appear to
protect against locale attacks. Of course, there’s no guarantee that there are messages available in the
requested locale, but in such a case these routines will fall back to the default messages (usually in
English), which at least is not a security problem.

If you wish to be really picky, and only patterns that match 1i18nux’s locale pattern, you can use this
pattern instead:

~N[A-Za-z]+(_[A-Za-z]+)?
(\. [A-Z]+ (\=-[A-Z0-9]+) ) ?
(\Q[A-Za-z0-9]+ (\=[A-Za—-z0-9\—-1+)

(, [A-2a—-z0-9]+ (\=[A-Za—-z0-9\-]1+) ) *) ?$

In both cases, these patterns use POSIX’s extended (“modern”) regular expression notation (see regex(3)
and regex(7) on Unix-like systems).

Of course, languages cannot be supported without a standard way to represent their written symbols,
which brings us to the issue of character encoding.
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5.11. Character Encoding

5.11.1. Introduction to Character Encoding

For many years Americans have exchanged text using the ASCII character set; since essentially all U.S.
systems support ASCII, this permits easy exchange of English text. Unfortunately, ASCII is completely
inadequate in handling the characters of nearly all other languages. For many years different countries
have adopted different techniques for exchanging text in different languages, making it difficult to
exchange data in an increasingly interconnected world.

More recently, ISO has developed ISO 10646, the “Universal Mulitple-Octet Coded Character Set
(UCS)”. UCS is a coded character set which defines a single 31-bit value for each of all of the world’s
characters. The first 65536 characters of the UCS (which thus fit into 16 bits) are termed the “Basic
Multilingual Plane” (BMP), and the BMP is intended to cover nearly all of today’s spoken languages.
The Unicode forum develops the Unicode standard, which concentrates on the UCS and adds some
additional conventions to aid interoperability. Historically, Unicode and ISO 10646 were developed by
competing groups, but thankfully they realized that they needed to work together and they now
coordinate with each other.

If you’re writing new software that handles internationalized characters, you should be using ISO
10646/Unicode as your basis for handling international characters. However, you may need to process
older documents in various older (language-specific) character sets, in which case, you need to ensure
that an untrusted user cannot control the setting of another document’s character set (since this would
significantly affect the document’s interpretation).

5.11.2. Introduction to UTF-8

Most software is not designed to handle 16 bit or 32 bit characters, yet to create a universal character set
more than 8 bits was required. Therefore, a special format called “UTF-8" was developed to encode
these potentially international characters in a format more easily handled by existing programs and
libraries. UTF-8 is defined, among other places, in IETF RFC 3629 (updating RFC 2279), so it’s a
well-defined standard that can be freely read and used. UTF-8 is a variable-width encoding; characters
numbered 0 to 0x7f (127) encode to themselves as a single byte, while characters with larger values are
encoded into 2 to 4 (originally 6) bytes of information (depending on their value). The encoding has been
specially designed to have the following nice properties (this information is from the RFC and Linux
utf-8 man page):

+ The classical US ASCII characters (0 to 0x7f) encode as themselves, so files and strings which contain
only 7-bit ASCII characters have the same encoding under both ASCII and UTF-8. This is fabulous
for backward compatibility with the many existing U.S. programs and data files.

+ All UCS characters beyond 0x7f are encoded as a multibyte sequence consisting only of bytes in the
range 0x80 to Oxfd. This means that no ASCII byte can appear as part of another character. Many
other encodings permit characters such as an embedded NIL, causing programs to fail.

« It’s easy to convert between UTF-8 and a 2-byte or 4-byte fixed-width representations of characters
(these are called UCS-2 and UCS-4 respectively).
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+ The lexicographic sorting order of UCS-4 strings is preserved, and the Boyer-Moore fast search
algorithm can be used directly with UTF-8 data.

« All possible 231 UCS codes can be encoded using UTF-8.

+ The first byte of a multibyte sequence which represents a single non-ASCII UCS character is always
in the range 0xc0 to Oxfd and indicates how long this multibyte sequence is. All further bytes in a
multibyte sequence are in the range 0x80 to Oxbf. This allows easy resynchronization; if a byte is
missing, it’s easy to skip forward to the “next” character, and it’s always easy to skip forward and back
to the “next” or “preceding” character.

In short, the UTF-8 transformation format is becoming a dominant method for exchanging international
text information because it can support all of the world’s languages, yet it is backward compatible with
U.S. ASCII files as well as having other nice properties. For many purposes I recommend its use,
particularly when storing data in a “text” file.

5.11.3. UTF-8 Security Issues

The reason to mention UTF-8 is that some byte sequences are not legal UTF-8, and this might be an
exploitable security hole. UTF-8 encoders are supposed to use the “shortest possible” encoding, but
naive decoders may accept encodings that are longer than necessary. Indeed, earlier standards permitted
decoders to accept “non-shortest form” encodings. The problem here is that this means that potentially
dangerous input could be represented multiple ways, and thus might defeat the security routines
checking for dangerous inputs. The RFC describes the problem this way:

Implementers of UTF-8 need to consider the security aspects of how they handle illegal UTF-8 sequences. It is
conceivable that in some circumstances an attacker would be able to exploit an incautious UTF-8 parser by
sending it an octet sequence that is not permitted by the UTF-8 syntax.

A particularly subtle form of this attack could be carried out against a parser which performs security-critical
validity checks against the UTF-8 encoded form of its input, but interprets certain illegal octet sequences as
characters. For example, a parser might prohibit the NUL character when encoded as the single-octet sequence
00, but allow the illegal two-octet sequence CO 80 (illegal because it’s longer than necessary) and interpret it as
a NUL character (00). Another example might be a parser which prohibits the octet sequence 2F 2E 2E 2F
("/..1"), yet permits the illegal octet sequence 2F CO AE 2E 2F.

A longer discussion about this is available at Markus Kuhn’s UTF-8 and Unicode FAQ for Unix/Linux at
http://www.cl.cam.ac.uk/~mgk25/unicode.html.

5.11.4. UTF-8 Legal Values

Thus, when accepting UTF-8 input, you need to check if the input is valid UTF-8. Here is a list of all
legal UTF-8 sequences; any character sequence not matching this table is not a legal UTF-8 sequence. In
the following table, the first column shows the various character values being encoded into UTF-8. The
second column shows how those characters are encoded as binary values; an “x” indicates where the data
is placed (either a 0 or 1), though some values should not be allowed because they’re not the shortest
possible encoding. The last row shows the valid values each byte can have (in hexadecimal). Thus, a

program should check that every character meets one of the patterns in the right-hand column. A “-”
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indicates a range of legal values (inclusive). Of course, just because a sequence is a legal UTF-8
sequence doesn’t mean that you should accept it (you still need to do all your other checking), but
generally you should check any UTF-8 data for UTF-8 legality before performing other checks.

Table 5-1. Legal UTF-8 Sequences

UCS Code (Hex) Binary UTF-8 Format Legal UTF-8 Values (Hex)
00-7F OXXXXXXX 00-7F

80-7FF 110xxxxx 10XXXXXX C2-DF 80-BF

800-FFF 1110xxxx 10xxxxxx 10xxxxxx |EO AO*-BF 80-BF
1000-FFFF 1110xxxx 10xxxxxx 10xxxxxx | E1-EF 80-BF 80-BF

10000-3FFFF

11110xxx 10xxXXXX 10XXXXXX
10XXXXXX

FO 90*-BF 80-BF 80-BF

40000-FFFFFF

11110xxx 10xxXXXX 10XXXXXX
10XXXXXX

F1-F3 80-BF 80-BF 80-BF

40000-FFFFFF

11110xxx 10xxxxXX 10XXXXXX
10XXXXXX

F1-F3 80-BF 80-BF 80-BF

100000-10FFFFF

11110xxx 10xxxxxXx 10XXXXXX
10XXXXXX

F4 80-8F* 80-BF 80-BF

200000-3FFFFFF

111110xx 10xxxxxx 10XXXXXX
10xxxxxx 10XXXXXX

too large; see below

04000000-7FFFFFFF

1111110x 10xxxxXX 10XXXXXX
10xxxxxx 10xXXXXX 10XXXXXX

too large; see below

As I noted earlier, there are two standards for character sets, ISO 10646 and Unicode, who have agreed
to synchronize their character assignments. The earlier definitions of UTF-8 in ISO/IEC 10646-1:2000
and the IETF RFC also supported five and six byte sequences to encode characters outside the range
supported by Uniforum’s Unicode, but such values can’t be used to support Unicode characters. IETF
RFC 3629 modified the UTF-8 definition, and one of the changes was to specifically make any encodings
beyond 4 bytes illegal (i.e., characters must be between U+0000 and U+10FFFF inclusively). Thus, for
most purposes the five and six byte UTF-8 encodings aren’t legal, and you should normally reject them
(unless you have a special purpose for them).

This is set of valid values is tricky to determine, and in fact earlier versions of this document got some
entries wrong (in some cases it permitted overlong characters). Language developers should include a
function in their libraries to check for valid UTF-8 values, just because it’s so hard to get right.

I should note that in some cases, you might want to cut slack (or use internally) the hexadecimal
sequence CO 80. This is an overlong sequence that, if permitted, can represent ASCII NUL (NIL). Since
C and C++ have trouble including a NIL character in an ordinary string, some people have taken to using
this sequence when they want to represent NIL as part of the data stream; Java even enshrines the
practice. Feel free to use CO 80 internally while processing data, but technically you really should
translate this back to 00 before saving the data. Depending on your needs, you might decide to be
“sloppy”” and accept CO 80 as input in a UTF-8 data stream. If it doesn’t harm security, it’s probably a
good practice to accept this sequence since accepting it aids interoperability.
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Handling this can be tricky. You might want to examine the C routines developed by Unicode to handle
conversions, available at ftp://ftp.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c. It’s unclear
to me if these routines are open source software (the licenses don’t clearly say whether or not they can be
modified), so beware of that.

5.11.5. UTF-8 Related Issues

This section has discussed UTF-8, because it’s the most popular multibyte encoding of UCS, simplifying
a lot of international text handling issues. However, it’s certainly not the only encoding; there are other
encodings, such as UTF-16 and UTF-7, which have the same kinds of issues and must be validated for
the same reasons.

Another issue is that some phrases can be expressed in more than one way in ISO 10646/Unicode. For
example, some accented characters can be represented as a single character (with the accent) and also as
a set of characters (e.g., the base character plus a separate composing accent). These two forms may
appear identical. There’s also a zero-width space that could be inserted, with the result that
apparently-similar items are considered different. Beware of situations where such hidden text could
interfere with the program. This is an issue that in general is hard to solve; most programs don’t have
such tight control over the clients that they know completely how a particular sequence will be displayed
(since this depends on the client’s font, display characteristics, locale, and so on). One approach is to
require clients to send data in a normalized form, and if you don’t trust the clients, force their data into
that form. The W3C recommends Normalization Form C in their draft document Character Model for the
World Wide Web. Normalization form C is a good approach, because it’s what nearly all programs do
anyway, and it’s slightly more efficient in space. See the W3C document for more information.

5.12. Prevent Cross-site Malicious Content on Input

Some programs accept data from one untrusted user and pass that data on to a second user; the second
user’s application may then process that data in a way harmful to the second user. This is a particularly
common problem for web applications, we’ll call this problem “cross-site malicious content.” In short,
you cannot accept input (including any form data) without checking, filtering, or encoding it. For more
information, see Section 7.16.

Fundamentally, this means that all web application input must be filtered (so characters that can cause
this problem are removed), encoded (so the characters that can cause this problem are encoded in a way
to prevent the problem), or validated (to ensure that only “safe” data gets through). Filtering and
validation should often be done at the input, but encoding can be done either at input or output time. If
you’re just passing the data through without analysis, it’s probably better to encode the data on input (so
it won’t be forgotten), but if you’re processing the data, there are arguments for encoding on output
instead.

5.13. Filter HTML/URIs That May Be Re-presented

One special case where cross-site malicious content must be prevented are web applications which are
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designed to accept HTML or XHTML from one user, and then send it on to other users (see Section 7.16
for more information on cross-site malicious content). The following subsections discuss filtering this
specific kind of input, since handling it is such a common requirement.

5.13.1. Remove or Forbid Some HTML Data

It’s safest to remove all possible (X)HTML tags so they cannot affect anything, and this is relatively easy
to do. As noted above, you should already be identifying the list of legal characters, and rejecting or
removing those characters that aren’t in the list. In this filter, simply don’t include the following
characters in the list of legal characters: “<”, “>”, and “&” (and if they’re used in attributes, the

“"”). If browsers only operated according the HTML specifications, the “>"”
wouldn’t need to be removed, but in practice it must be removed. This is because some browsers assume
that the author of the page really meant to put in an opening "<" and “helpfully” insert one - attackers
can exploit this behavior and use the ">" to create an undesired "<".

double-quote character

Usually the character set for transmitting HTML is ISO-8859-1 (even when sending international text),
so the filter should also omit most control characters (linefeed and tab are usually okay) and characters
with their high-order bit set.

One problem with this approach is that it can really surprise users, especially those entering international
text if all international text is quietly removed. If the invalid characters are quietly removed without
warning, that data will be irrevocably lost and cannot be reconstructed later. One alternative is forbidding
such characters and sending error messages back to users who attempt to use them. This at least warns
users, but doesn’t give them the functionality they were looking for. Other alternatives are encoding this
data or validating this data, which are discussed next.

5.13.2. Encoding HTML Data

An alternative that is nearly as safe is to transform the critical characters so they won’t have their usual
meaning in HTML. This can be done by translating all "<" into "&It;", ">" into "&gt;", and "&" into
"&amp;". Arbitrary international characters can be encoded in Latin-1 using the format "&#value;" - do
not forget the ending semicolon. Encoding the international characters means you must know what the
input encoding was, of course.

One possible danger here is that if these encodings are accidentally interpreted twice, they will become a
vulnerability. However, this approach at least permits later users to see the "intent" of the input.

5.13.3. Validating HTML Data

Some applications, to work at all, must accept HTML from third parties and send them on to their users.
Beware - you are treading dangerous ground at this point; be sure that you really want to do this. Even
the idea of accepting HTML from arbitrary places is controversial among some security practitioners,
because it is extremely difficult to get it right.

However, if your application must accept HTML, and you believe that it’s worth the risk, at least identify
a list of “safe” HTML commands and only permit those commands.
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Here is a minimal set of safe HTML tags that might be useful for applications (such as guestbooks) that
support short comments: <p> (paragraph), <b> (bold), <i> (italics), <em> (emphasis), <strong>
(strong emphasis), <pre> (preformatted text), <br> (forced line break - note it doesn’t require a closing
tag), as well as all their ending tags.

Not only do you need to ensure that only a small set of “safe” HTML commands are accepted, you also
need to ensure that they are properly nested and closed (i.e., that the HTML commands are “balanced”).
In XML, this is termed “well-formed” data. A few exceptions could be made if you’re accepting standard
HTML (e.g., supporting an implied </p> where not provided before a <p> would be fine), but trying to
accept HTML in its full generality (which can infer balancing closing tags in many cases) is not needed
for most applications. Indeed, if you’re trying to stick to XHTML (instead of HTML), then
well-formedness is a requirement. Also, HTML tags are case-insensitive; tags can be upper case, lower
case, or a mixture. However, if you intend to accept XHTML then you need to require all tags to be in
lower case (XML is case-sensitive; XHTML uses XML and requires the tags to be in lower case).

Here are a few random tips about doing this. Usually you should design whatever surrounds the HTML
text and the set of permitted tags so that the contributed text cannot be misinterpreted as text from the
“main” site (to prevent forgeries). Don’t accept any attributes unless you’ve checked the attribute type
and its value; there are many attributes that support things such as Javascript that can cause trouble for
your users. You’ll notice that in the above list I didn’t include any attributes at all, which is certainly the
safest course. You should probably give a warning message if an unsafe tag is used, but if that’s not
practical, encoding the critical characters (e.g., "<" becomes "&lIt;") prevents data loss while
simultaneously keeping the users safe.

Be careful when expanding this set, and in general be restrictive of what you accept. If your patterns are
too generous, the browser may interpret the sequences differently than you expect, resulting in a
potential exploit. For example, FozZy posted on Bugtraq (1 April 2002) some sequences that permitted
exploitation in various web-based mail systems, which may give you an idea of the kinds of problems
you need to defend against. Here’s some exploit text that, at one time, could subvert user accounts in
Microsoft Hotmail:

<SCRIPT>
</COMMENT>
<= =—=> ——>

Here’s some similar exploit text for Yahoo! Mail:

<_a<script>
<<script> (Note: this was found by BugSan)

Here’s some exploit text for Vizzavi:

<b onmousover="...">go here</b>
<img [line_break] src="javascript:alert (document.location)">

Andrew Clover posted to Bugtraq (on May 11, 2002) a list of various text that invokes Javascript yet
manages to bypass many filters. Here are his examples (which he says he cut and pasted from elsewhere);
some only apply to specific browsers (IE means Internet Explorer, N4 means Netscape version 4).

<a href="javas&#99; ript&#35; [code] ">

<div onmouseover="[code]">
<img src="javascript:[code]">
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<img dynsrc="javascript:[code]"> [IE]

<input type="image" dynsrc="javascript:[code]"> [IE]
<bgsound src="javascript:[code]"> [IE]
&<script>[code]</script>

&{[code]}; [N4]

<img src=&{[code]};> [N4]

<link rel="stylesheet" href="javascript:[code]">
<iframe src="vbscript:[code]"> [IE]

<img src="mocha: [code]"> [N4]

<img src="livescript:[code]"> [N4]

<a href="about:<s&#99; ript>[code]</script>">

<meta http-equiv="refresh" content="0;url=javascript:[code]">
<body onload="[code]">

<div style="background-image: url (javascript:[code]);">
<div style="behaviour: url([link to code]);"> [IE]

<div style="binding: url([link to code]);"> [Mozilla]
<div style="width: expression([code]);"> [IE]

<style type="text/javascript">[code]</style> [N4]

<object classid="clsid:..." codebase="javascript:[code]"> [IE]
<style><!--</style><script>[code]//--></script>

<!-— —-— —-><script>[code]l</script><!-- —— ——>
<<script>[code]l</script>

<img src="blah"onmouseover="[code]">

<img src="blah>" onmouseover="[code]">

<xml src="javascript:[code]">

<xml id="X"><a><b>§&lt;script>[code]&lt;/script>;</b></a></xml>
<div datafld="b" dataformatas="html" datasrc="#X"></div>

[\xCO] [\xBC]script>[code] [\xCO] [\xBC]/script> [UTF-8; IE, Operal]

<! [CDATA[<!--]] ><script>[code]//—--></script>

This is not a complete list, of course, but it at least is a sample of the kinds of attacks that you must
prevent by strictly limiting the tags and attributes you can allow from untrusted users.

Konstantin Riabitsev has posted some PHP code to filter HTML (GPL); I’ve not examined it closely, but
you might want to take a look.

5.13.4. Validating Hypertext Links (URIs/URLS)

Careful readers will notice that I did not include the hypertext link tag <a> as a safe tag in HTML.
Clearly, you could add <a href="safe URI"> (hypertext link) to the safe list (not permitting any other
attributes unless you’ve checked their contents). If your application requires it, then do so. However,
permitting third parties to create links is much less safe, because defining a “safe URI”' turns out to be
very difficult. Many browsers accept all sorts of URIs which may be dangerous to the user. This section
discusses how to validate URIs from third parties for re-presenting to others, including URIs
incorporated into HTML.

First, there’s the problem that URLs -- while not necessarily dangerous per se -- reference spam sites,
and as a result, some organizations work hard to insert links to their own sites to increase their search
rankings. You need to remove the incentive for strangers to insert worthless links their site. Thus, if you
allow arbitrary users to insert information that creates links (like a blog or comment form), then you
should implement the approach described by Google’s "Preventing comment spam". Basically, add a
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rel="nofollow" to the hypertext link, so that it looks like this: <a href=".." rel="nofollow">. That way,
search engines will know that this link information was provided by a third party and shouldn’t be
followed for search ranking purposes.

First, let’s look briefly at URI syntax (as defined by various specifications). URIs can be either
“absolute” or “relative”. The syntax of an absolute URI looks like this:

scheme://authority[path] [?query] [#fragment]

A URI starts with a scheme name (such as “http”), the characters ““://”, the authority (such as
“www.dwheeler.com”), a path (which looks like a directory or file name), a question mark followed by a
query, and a hash (“#”) followed by a fragment identifier. The square brackets surround optional portions
- e.g., many URIs don’t actually include the query or fragment. Some schemes may not permit some of
the data (e.g., paths, queries, or fragments), and many schemes have additional requirements unique to
them. Many schemes permit the “authority” field to identify optional usernames, passwords, and ports,
using this syntax for the “authority” section:

[username [ :password]@]host [ :portnumber]

The “host” can either be a name (“www.dwheeler.com”) or an IPv4 numeric address (127.0.0.1). A
“relative” URI references one object relative to the “current” one, and its syntax looks a lot like a
filename:

path[?query] [#fragment]

There are a limited number of characters permitted in most of the URI, so to get around this problem,
other 8-bit characters may be “URL encoded” as %hh (where hh is the hexadecimal value of the 8-bit
character). For more detailed information on valid URIs, see IETF RFC 2396 and its related
specifications.

Now that we’ve looked at the syntax of URIs, let’s examine the risks of each part:

» Scheme: Many schemes are downright dangerous. Permitting someone to insert a “‘javascript” scheme
into your material would allow them to trivially mount denial-of-service attacks (e.g., by repeatedly
creating windows so the user’s machine freezes or becomes unusable). More seriously, they might be
able to exploit a known vulnerability in the javascript implementation. Some schemes can be a
nuisance, such as “mailto:” when a mailing is not expected, and some schemes may not be sufficiently
secure on the client machine. Thus, it’s necessary to limit the set of allowed schemes to just a few safe
schemes.

+ Authority: Ideally, you should limit user links to “safe” sites, but this is difficult to do in practice.
However, you can certainly do something about usernames, passwords, and port numbers: you should
forbid them. Systems expecting usernames (especially with passwords!) are probably guarding more
important material; rarely is this needed in publicly-posted URIs, and someone could try to use this
functionality to convince users to expose information they have access to and/or use it to modify the
information. Such URIs permit semantic attacks; see Section 7.17 for more information. Usernames
without passwords are no less dangerous, since browsers typically cache the passwords. You should
not usually permit specification of ports, because different ports expect different protocols and the
resulting “protocol confusion” can produce an exploit. For example, on some systems it’s possible to
use the “gopher” scheme and specify the SMTP (email) port to cause a user to send email of the
attacker’s choosing. You might permit a few special cases (e.g., http ports 8008 and 8080), but on the
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whole it’s not worth it. The host when specified by name actually has a fairly limited character set
(using the DNS standards). Technically, the standard doesn’t permit the underscore (““_") character, but
Microsoft ignored this part of the standard and even requires the use of the underscore in some
circumstances, so you probably should allow it. Also, there’s been a great deal of work on supporting
international characters in DNS names, which is not further discussed here.

+ Path: Permitting a path is usually okay, but unfortunately some applications use part of the path as

T3]

query data, creating an opening we’ll discuss next. Also, paths are allowed to contain phrases like “..”,
which can expose private data in a poorly-written web server; this is less a problem than it once was
and really should be fixed by the web server. Since it’s only the phrase “..” that’s special, it’s
reasonable to look at paths (and possibly query data) and forbid “../” as a content. However, if your
validator permits URL escapes, this can be difficult; now you need to prevent versions where some of
these characters are escaped, and may also have to deal with various “illegal” character encodings of

these characters as well.

» Query: Query formats (beginning with "?") can be a security risk because some query formats actually

cause actions to occur on the serving end. They shouldn’t, and your applications shouldn’t, as
discussed in Section 5.14 for more information. However, we have to acknowledge the reality as a
serious problem. In addition, many web sites are actually “redirectors” - they take a parameter
specifying where the user should be redirected, and send back a command redirecting the user to the
new location. If an attacker references such sites and provides a more dangerous URI as the
redirection value, and the browser blithely obeys the redirection, this could be a problem. Again, the
user’s browser should be more careful, but not all user browsers are sufficiently cautious. Also, many
web applications have vulnerabilities that can be exploited with certain query values, but in general
this is hard to prevent. The official URI specifications don’t sanction the “+” (plus) character, but in
practice the “+” character often represents the space character.

Fragment: Fragments basically locate a portion of a document; I’m unaware of an attack based on
fragments as long as the syntax is legal, but the legality of its syntax does need checking. Otherwise,
an attacker might be able to insert a character such as the double-quote (") and prematurely end the
URI (foiling any checking).

« URL escapes: URL escapes are useful because they can represent arbitrary 8-bit characters; they can

also be very dangerous for the same reasons. In particular, URL escapes can represent control
characters, which many poorly-written web applications are vulnerable to. In fact, with or without
URL escapes, many web applications are vulnerable to certain characters (such as backslash,
ampersand, etc.), but again this is difficult to generalize.

+ Relative URIs: Relative URIs should be reasonably safe (if you manage the web site well), although in

some applications there’s no good reason to allow them either.

Of course, there is a trade-off with simplicity as well. Simple patterns are easier to understand, but they
aren’t very refined (so they tend to be too permissive or too restrictive, even more than a refined pattern).
Complex patterns can be more exact, but they are more likely to have errors, require more performance
to use, and can be hard to implement in some circumstances.

Here’s my suggestion for a “simple mostly safe”” URI pattern which is very simple and can be
implemented “by hand” or through a regular expression; permit the following pattern:

(http|ftplhttps) ://[-A-Za-z0-9._/1+
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This pattern doesn’t permit many potentially dangerous capabilities such as queries, fragments, ports, or
relative URISs, and it only permits a few schemes. It prevents the use of the “%” character, which is used
in URL escapes and can be used to specify characters that the server may not be prepared to handle.
Since it doesn’t permit either “:”” or URL escapes, it doesn’t permit specifying port numbers, and even
using it to redirect to a more dangerous URI would be difficult (due to the lack of the escape character).
It also prevents the use of a number of other characters; again, many poorly-designed web applications

can’t handle a number of “unexpected” characters.

Even this “mostly safe” URI permits a number of questionable URIs, such as subdirectories (via “/”’) and
attempts to move up directories (via *..”); illegal queries of this kind should be caught by the server. It
permits some illegal host identifiers (e.g., “20.20”), though I know of no case where this would be a
security weakness. Some web applications treat subdirectories as query data (or worse, as command
data); this is hard to prevent in general since finding “all poorly designed web applications” is hopeless.
You could prevent the use of all paths, but this would make it impossible to reference most Internet
information. The pattern also allows references to local server information (through patterns such as
"http:///", "http://localhost/", and "http://127.0.0.1") and access to servers on an internal network; here
you’ll have to depend on the servers correctly interpreting the resulting HTTP GET request as solely a
request for information and not a request for an action, as recommended in Section 5.14. Since query
forms aren’t permitted by this pattern, in many environments this should be sufficient.

Unfortunately, the “mostly safe” pattern also prevents a number of quite legitimate and useful URIs. For
example, many web sites use the “?” character to identify specific documents (e.g., articles on a news
site). The “#” character is useful for specifying specific sections of a document, and permitting relative
URISs can be handy in a discussion. Various permitted characters and URL escapes aren’t included in the
“mostly safe” pattern. For example, without permitting URL escapes, it’s difficult to access many
non-English pages. If you truly need such functionality, then you can use less safe patterns, realizing that
you’re exposing your users to higher risk while giving your users greater functionality.

One pattern that permits queries, but at least limits the protocols and ports used is the following, which
I’ll call the “simple somewhat safe pattern”:

(http|ftplhttps) ://[-A-Za-z0-9._]1+(\/ ([A-2a-z0-9\=\_\.\I\~\*\"\ (\)\&\2]+))*/?

This pattern actually isn’t very smart, since it permits illegal escapes, multiple queries, queries in ftp, and
so on. It does have the advantage of being relatively simple.

Creating a “somewhat safe” pattern that really limits URISs to legal values is quite difficult. Here’s my
current attempt to do so, which I call the “sophisticated somewhat safe pattern”, expressed in a form
where whitespace is ignored and comments are introduced with "#":

(
(
# Handle http, https, and relative URIs:
((https?://([A-Z2a-z0-9] [A-Za-z0-9\-]1* (\. [A-Za-2z0-9] [A-Za-z0-9\-1%)*\.?)) |
([A-Za=z0-9\-\_\.\NI\~\*\"\N(\) ] | (5[2-9A-Fa-f] [0-9a-fA-F]))+)?
((/ ([A=2a=z0-9\=\_\.\I\~\*\"\N(\) ] | (5[2-9A-Fa-f] [0-9a-fA-F]))+)*/?) # path
(\2( # query:
(([2=Z2a=z0-9\-\_\. NI\~ N (\)\+] | (5[2-9A-Fa-f] [0-9a-fA-F])) +=
([2-Za=z0-9\-\_\. NI\~ N (\)\+] | (5[2-9A-Fa-f] [0-9a-fA-F]))+
(\& ([A-2a-z0-9\-\_\.\NIN~\*\" N (\)\+] | (%[2-9A-Fa-f] [0-9a-fA-F])) +=
([A=2a=z0-9\=-\_\.\NI\N~\*\" N\ (\)\+] | (3[2-9A-Fa-f] [0-9a-fA-F])) +) )
|
(([A-2a=z0-9\-\_\.\I\~\*x\"\ (\)\+] | ($[2-9A-Fa-f] [0-9a-fA-F]))+ # isindex
)
)) 2
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(\# ([2-2a-2z0-9\=\_\.\!I\~\*\"\ (\)\+] | ($[2-9A-Fa-f] [0-9a-fA-F]))+)? # fragment
) |
# Handle ftp:
(ftp:// ([A-2a-z0-9] [A-Za-z0-9\-1% (\. [A-Za—-z0-9] [A-Za-z0-9\-]*) *\.?)
((/ ([A=2a-20-9\=\_\.\I\~\*\"\(\) ] | (3[2-9A-Fa-f] [0-9a-fA-F]))+)*/?) # path
(\# ([2-Z2a-2z0-9\=\_\.\I\~\*\"\ (\)\+] | (3[2-9A-Fa-f] [0-9a—fA-F]))+)? # fragment
)
)

Even the sophisticated pattern shown above doesn’t forbid all illegal URIs. For example, again, "20.20"
isn’t a legal domain name, but it’s allowed by the pattern; however, to my knowledge this shouldn’t cause
any security problems. The sophisticated pattern forbids URL escapes that represent control characters
(e.g., %00 through $1F) - the smallest permitted escape value is %20 (ASCII space). Forbidding control
characters prevents some trouble, but it’s also limiting; change "2-9" to "0-9" everywhere if you need to
support sending all control characters to arbitrary web applications. This pattern does permit all other
URL escape values in paths, which is useful for international characters but could cause trouble for a few
systems which can’t handle it. The pattern at least prevents spaces, linefeeds, double-quotes, and other
dangerous characters from being in the URI, which prevents other kinds of attacks when incorporating
the URI into a generated document. Note that the pattern permits “+” in many places, since in practice
the plus is often used to replace the space character in queries and fragments.

Unfortunately, as noted above, there are attacks which can work through any technique that permit query
data, and there don’t seem to be really good defenses for them once you permit queries. So, you could
strip out the ability to use query data from the pattern above, but permit the other forms, producing a
“sophisticated mostly safe” pattern:

(

(
# Handle http, https, and relative URIs:
((https?:// ([A-Z2a-2z0-9] [A-Za-z0-9\-1% (\. [A-Za-2z0-9] [A-Za-z0-9\-]*)*«\.?)) |

([A=Za=z0=9\=\_\.\NI\~\*«\"\(\) ]| (3[2-9A-Fa-f] [0-9a-fA-F]))+)?
((/ ([A=2a=20-9\=\_\.\I\~\*\"\(\) 1 | (3[2-9A-Fa-f] [0-9a-fA-F]))+)*/?) # path
(\# ([A-2a-20-9\=\_\.\IN~\*\" N (\)\+] | (¥[2-9A-Fa-f] [0-%9a-fA-F]))+)? # fragment

)

# Handle ftp:

(ftp:// ([A-2a-z0-9] [A-Za-z0-9\-]* (\. [A-Za-z0-9] [A-Za-z0-9\-]*) »\.?)
((/ ([A=2a=20-9\=\_\.\I\~\*\"\(\) 1 | (3[2-9A-Fa-f] [0-9a-fA-F]))+)+/?) # path
(\# ([A-2a-20-9\-\_\.\I\~\*\" N (\)\+] | (¥[2-9A-Fa-f] [0-%9a-fA-F]))+)? # fragment
)

)

As far as I can tell, as long as these patterns are only used to check hypertext anchors selected by the user
(the "<a>" tag) this approach also prevents the insertion of “web bugs”. Web bugs are simply text that
allow someone other than the originating web server of the main page to track information such as who
read the content and when they read it - see Section 8.7 for more information. This isn’t true if you use
the <img> (image) tag with the same checking rules - the image tag is loaded immediately, permitting
someone to add a “web bug”. Once again, this presumes that you’re not permitting any attributes; many
attributes can be quite dangerous and pierce the security you're trying to provide.

Please note that all of these patterns require the entire URI match the pattern. An unfortunate fact of
these patterns is that they limit the allowable patterns in a way that forbids many useful ones (e.g., they
prevent the use of new URI schemes). Also, none of them can prevent the very real problem that some
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web sites perform more than queries when presented with a query - and some of these web sites are
internal to an organization. As a result, no URI can really be safe until there are no web sites that accept
GET queries as an action (see Section 5.14). For more information about legal URLs/URIs, see IETF
RFC 2396; domain name syntax is further discussed in IETF RFC 1034.

5.13.5. Other HTML tags

You might even consider supporting more HTML tags. Obvious next choices are the list-oriented tags,
such as <ol> (ordered list), <ul> (unordered list), and <li> (list item). However, after a certain point
you’re really permitting full publishing (in which case you need to trust the provider or perform more
serious checking than will be described here). Even more importantly, every new functionality you add
creates an opportunity for error (and exploit).

One example would be permitting the <img> (image) tag with the same URI pattern. It turns out this is
substantially less safe, because this permits third parties to insert “web bugs” into the document,
identifying who read the document and when. See Section 8.7 for more information on web bugs.

5.13.6. Related Issues

Web applications should also explicitly specify the character set (usually ISO-8859-1), and not permit
other characters, if data from untrusted users is being used. See Section 9.5 for more information.

Since filtering this kind of input is easy to get wrong, other alternatives have been discussed as well. One
option is to ask users to use a different language, much simpler than HTML, that you’ve designed - and
you give that language very limited functionality. Another approach is parsing the HTML into some
internal “safe” format, and then translating that safe format back to HTML.

Filtering can be done during input, output, or both. The CERT recommends filtering data during the
output process, just before it is rendered as part of the dynamic page. This is because, if it is done
correctly, this approach ensures that all dynamic content is filtered. The CERT believes that filtering on
the input side is less effective because dynamic content can be entered into a web sites database(s) via
methods other than HTTP, and in this case, the web server may never see the data as part of the input
process. Unless the filtering is implemented in all places where dynamic data is entered, the data
elements may still be remain tainted.

However, I don’t agree with CERT on this point for all cases. The problem is that it’s just as easy to
forget to filter all the output as the input, and allowing “tainted” input into your system is a disaster
waiting to happen anyway. A secure program has to filter its inputs anyway, so it’s sometimes better to
include all of these checks as part of the input filtering (so that maintainers can see what the rules really
are). And finally, in some secure programs there are many different program locations that may output a
value, but only a very few ways and locations where a data can be input into it; in such cases filtering on
input may be a better idea.

5.14. Forbid HTTP GET To Perform Non-Queries

Web-based applications using HTTP should prevent the use of the HTTP “GET” or “HEAD” method for
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anything other than queries. HTTP includes a number of different methods; the two most popular
methods used are GET and POST. Both GET and POST can be used to transmit data from a form, but the
GET method transmits data in the URL, while the POST method transmits data separately.

The security problem of using GET to perform non-queries (such as changing data, transferring money,
or signing up for a service) is that an attacker can create a hypertext link with a URL that includes
malicious form data. If the attacker convinces a victim to click on the link (in the case of a hypertext
link), or even just view a page (in the case of transcluded information such as images from HTML’s img
tag), the victim will perform a GET. When the GET is performed, all of the form data created by the
attacker will be sent by the victim to the link specified. This is a cross-site malicious content attack, as
discussed further in Section 7.16.

If the only action that a malicious cross-site content attack can perform is to make the user view
unexpected data, this isn’t as serious a problem. This can still be a problem, of course, since there are
some attacks that can be made using this capability. For example, there’s a potential loss of privacy due
to the user requesting something unexpected, possible real-world effects from appearing to request
illegal or incriminating material, or by making the user request the information in certain ways the
information may be exposed to an attacker in ways it normally wouldn’t be exposed. However, even
more serious effects can be caused if the malicious attacker can cause not just data viewing, but changes
in data, through a cross-site link.

Typical HTTP interfaces (such as most CGI libraries) normally hide the differences between GET and
POST, since for getting data it’s useful to treat the methods “the same way.” However, for actions that
actually cause something other than a data query, check to see if the request is something other than
POST; if it is, simply display a filled-in form with the data given and ask the user to confirm that they
really mean the request. This will prevent cross-site malicious content attacks, while still giving users the
convenience of confirming the action with a single click.

Indeed, this behavior is strongly recommended by the HTTP specification. According to the HTTP 1.1
specification (IETF RFC 2616 section 9.1.1), “the GET and HEAD methods SHOULD NOT have the

significance of taking an action other than retrieval. These methods ought to be considered ‘safe’. This
allows user agents to represent other methods, such as POST, PUT and DELETE, in a special way, so

that the user is made aware of the fact that a possibly unsafe action is being requested.”

In the interest of fairness, I should note that this doesn’t completely solve the problem, because on some
browsers (in some configurations) scripted posts can do the same thing. For example, imagine a web
browser with ECMAscript (Javascript) enabled receiving the following HTML snippet - on some
browsers, simply displaying this HTML snippet will automatically force the user to send a POST request
to a website chosen by the attacker, with form data defined by the attacker:

<form action=http://remote/script.cgi method=post name=b>
<input type=hidden name=action value="do something">
<input type=submit>

</form>

<script>document.b.submit () </script>

My thanks to David deVitry pointing this out. However, although this advice doesn’t solve all problems,
it’s still worth doing. In part, this is because the remaining problem can be solved by smarter web
browsers (e.g., by always confirming the data before allowing ECMAscript to send a web form) or by
web browser configuration (e.g., disabling ECMAscript). Also, this attack doesn’t work in many
cross-site scripting exploits, because many websites don’t allow users to post “script” commands but do
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allow arbitrary URL links. Thus, limiting the actions a GET command can perform to queries
significantly improves web application security.

5.15. Counter SPAM

Any program that can send email elsewhere, by request from the network, can be used to transport spam.
Spam is the usual name for unsolicited bulk email (UBE) or mass unsolicited email. It’s also sometimes
called unsolicited commercial email (UCE), though that name is misleading - not all spam is
commercial. For a discussion of why spam is such a serious problem and more general discussion about
it, see my essay at http://www.dwheeler.com/essays/stopspam.html, as well as http://mail-abuse.org/,
http://spam.abuse.net/, CAUCE, and IETF RFC 2635. Spam receivers and intermediaries bear most of
the cost of spam, while the spammer spends very little to send it. Therefore many people regard spam as
a theft of service, not just some harmless activity, and that number increases as the amount of spam
increases.

If your program can be used to generate email sent to others (such as a mail transfer agent, generator of
data sent by email, or a mailing list manager), be sure to write your program to prevent its unauthorized
use as a mail relay. A program should usually only allow legitimate authorized users to send email to
others (e.g., those inside that company’s mail server or those legitimately subscribed to the service).
More information about this is in IETF RFC 2505 Also, if you manage a mailing list, make sure that it
can enforce the rule that only subscribers can post to the list, and create a “log in” feature that will make
it somewhat harder for spammers to subscribe, spam, and unsubscribe easily.

One way to more directly counter SPAM is to incorporate support for the MAPS (Mail Abuse Prevention
System LLC) RBL (Realtime Blackhole List), which maintains in real-time a list of IP addresses where
SPAM is known to originate. For more information, see http://mail-abuse.org/rbl/. Many current Mail
Transfer Agents (MTAs) already support the RBL; see their websites for how to configure them. The
usual way to use the RBL is to simply refuse to accept any requests from IP addresses in the blackhole
list; this is harsh, but it solves the problem. Another similar service is the Open Relay Database (ORDB)
at http://ordb.org, which identifies dynamically those sites that permit open email relays (open email
relays are misconfigured email servers that allow spammers to send email through them). Another
location for more information is SPEWS. I believe there are other similar services as well.

I suggest that many systems and programs, by default, enable spam blocking if they can send email on to
others whose identity is under control of a remote user - and that includes MTAs. At the least, consider
this. There are real problems with this suggestion, of course - you might (rarely) inhibit communication
with a legitimate user. On the other hand, if you don’t block spam, then it’s likely that everyone else will
blackhole your system (and thus ignore your emails). It’s not a simple issue, because no matter what you
do, some people will not allow you to send them email. And of course, how well do you trust the
organization keeping up the real-time blackhole list - will they add truly innocent sites to the blackhole
list, and will they remove sites from the blackhole list once all is okay? Thus, it becomes a trade-off - is it
more important to talk to spammers (and a few innocents as well), or is it more important to talk to those
many other systems with spam blocks (losing those innocents who share equipment with spammers)?
Obviously, this must be configurable. This is somewhat controversial advice, so consider your options
for your circumstance.
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5.16. Limit Valid Input Time and Load Level

Place time-outs and load level limits, especially on incoming network data. Otherwise, an attacker might
be able to easily cause a denial of service by constantly requesting the service.

Notes

1. Technically, a hypertext link can be any “uniform resource identifier” (URI). The term “Uniform
Resource Locator” (URL) refers to the subset of URISs that identify resources via a representation of
their primary access mechanism (e.g., their network "location"), rather than identifying the resource
by name or by some other attribute(s) of that resource. Many people use the term “URL” as
synonymous with “URI”, since URLs are the most common kind of URI. For example, the encoding
used in URIs is actually called “URL encoding”.
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An enemy will overrun the land; he will
pull down your strongholds and plunder
your fortresses.

Amos 3:11 (NIV)

Programs often use memory buffers to capture input and process data. In some cases (particularly in C or
C++ programs) it may be possible to perform an operation, but either read from or write to a memory
location that is outside of the intended boundary of the buffer. In many cases this can lead to an
extremely serious security vulnerability. This is such a common problem that it has a CWE identifier,
CWE-119. Exceeding buffer bounds is a problem with a program’s internal implementation, but it’s such
a common and serious problem that I’ve placed this information in its own chapter.

There are many variations of a failure to restrict operations to buffer bounds. A subcategory of exceeding
buffer bounds is a buffer overflow. The term buffer overflow has a number of varying definitions. For our
purposes, a buffer overflow occurs if a program attempts to write more data in a buffer than it can hold or
write into a memory area outside the boundaries of the buffer. A particularly common situation is writing
character data beyond the end of a buffer (through copying or generation). A buffer overflow can occur
when reading input from the user into a buffer, but it can also occur during other kinds of processing in a
program. Buffer overflows are also called buffer overruns. This subcategory is such a common problem
that it has its own CWE identifier, CWE-120.

Buffer overflows are an extremely common and dangerous security flaw, and in many cases a buffer
overlow can lead immediately to an attacker having complete control over the vulnerable program. To
give you an idea of how important this subject is, at the CERT, 9 of 13 advisories in 1998 and at least
half of the 1999 advisories involved buffer overflows. An informal 1999 survey on Bugtraq found that
approximately 2/3 of the respondents felt that buffer overflows were the leading cause of system security
vulnerability (the remaining respondents identified “mis-configuration” as the leading cause) [Cowan
1999]. This is an old, well-known problem, yet it continues to resurface [McGraw 2000].

Attacks that exploit a buffer overflow vulnerability are often named depending on where the buffer is,
e.g., a “stack smashing” attack attacks a buffer on the stack, while a “heap smashing” attack attacks a
buffer on the heap (memory that is allocated by operators such as malloc and new). More details can be
found from Alephl [1996], Mudge [1995], LSD [2001], or the Nathan P. Smith’s Stack Smashing
Security Vulnerabilities website at http://destroy.net/machines/security/. A discussion of the problem and
some ways to counter them is given by Crispin Cowan et al, 2000, at
http://immunix.org/StackGuard/discex00.pdf. A discussion of the problem and some ways to counter
them in Linux is given by Pierre-Alain Fayolle and Vincent Glaume at
http://www.enseirb.fr/~glaume/indexen.html.

Allowing attackers to read data beyond a buffer boundary can also result in vulnerabilities, and this
weakness has its own identifier (CWE-125). For example, the Heartbleed vulnerability was this kind of
weakness. The Heartbleed vulnerability in OpenSSL allowed attackers to extract critically-important
data such as private keys, and then use them (e.g., so they could impersonate trusted sites).
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Figure 6-1. A physical buffer overflow: The Montparnasse derailment of 1895

Most high-level programming languages are essentially immune to exceeding buffer boundaries, either
because they automatically resize arrays (this applies to most languages such as Perl), or because they
normally detect and prevent buffer overflows (e.g., Ada95). However, the C language provides no
protection against such problems, and C++ can be easily used in ways to cause this problem too.
Assembly language and Forth also provide no protection, and some languages that normally include such
protection (e.g., C#, Ada, and Pascal) can have this protection disabled (for performance reasons). Even
if most of your program is written in another language, many library routines are written in C or C++, as
well as “glue” code to call them, so other languages often don’t provide as complete a protection from
buffer overflows as you’d like.
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6.1. Dangers in C/C++

C users must avoid using dangerous functions that do not check bounds unless they’ve ensured that the
bounds will never get exceeded. Functions to avoid in most cases (or ensure protection) include the
functions strcpy(3), strcat(3), sprintf(3) (with cousin vsprintf(3)), and gets(3). These should be replaced
with functions such as strncpy(3), strncat(3), snprintf(3), and fgets(3) respectively, but see the discussion
below. The function strlen(3) should be avoided unless you can ensure that there will be a terminating
NIL character to find. The scanf() family (scanf(3), fscanf(3), sscanf(3), vscanf(3), vsscanf(3), and
vfscanf(3)) is often dangerous to use; do not use it to send data to a string without controlling the
maximum length (the format %s is a particularly common problem). Other dangerous functions that may
permit buffer overruns (depending on their use) include realpath(3), getopt(3), getpass(3), streadd(3),
strecpy(3), and strtrns(3). You must be careful with getwd(3); the buffer sent to getwd(3) must be at least
PATH_MAX bytes long. The select(2) helper macros FD_SET(), FD_CLR(), and FD_ISSET() do not
check that the index fd is within bounds; make sure that fd >= 0 and fd <= FD_SETSIZE (this particular
one has been exploited in pppd).

Unfortunately, snprintf()’s variants have additional problems. Officially, snprintf() is not a standard C
function in the ISO 1990 (ANSI 1989) standard, though sprintf() is, so not all systems include snprintf().
Even worse, some systems’ snprintf() do not actually protect against buffer overflows; they just call
sprintf directly. Old versions of Linux’s libc4 depended on a “libbsd” that did this horrible thing, and I'm
told that some old HP systems did the same. Linux’s current version of snprintf is known to work
correctly, that is, it does actually respect the boundary requested. The return value of snprintf() varies as
well; the Single Unix Specification (SUS) version 2 and the C99 standard differ on what is returned by
snprintf(). Finally, it appears that at least some versions of snprintf don’t guarantee that its string will end
in NIL; if the string is too long, it won’t include NIL at all. Note that the glib library (the basis of GTK,
and not the same as the GNU C library glibc) has a g_snprintf(), which has a consistent return semantic,
always NIL-terminates, and most importantly always respects the buffer length.

Of course, the problem is more than just calling string functions poorly. Here are a few additional
examples of types of buffer overflow problems, graciously suggested by Timo Sirainen, involving
manipulation of numbers to cause buffer overflows.

First, there’s the problem of signedness. If you read data that affects the buffer size, such as the "number
of characters to be read," be sure to check if the number is less than zero or one. Otherwise, the negative
number may be cast to an unsigned number, and the resulting large positive number may then permit a
buffer overflow problem. Note that sometimes an attacker can provide a large positive number and have
the same thing happen; in some cases, the large value will be interpreted as a negative number (slipping
by the check for large numbers if there’s no check for a less-than-one value), and then be interpreted later
into a large positive value.

/* 1) signedness — DO NOT DO THIS. =/
char xbuf;
int i, len;

read (fd, &len, sizeof (len));

/* OOPS! We forgot to check for < 0 */
if (len > 8000) { error("too large length"); return; }

buf = malloc(len);
read (fd, buf, len); /* len casted to unsigned and overflows =x/
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Here’s a second example identified by Timo Sirainen, involving integer size truncation. Sometimes the
different sizes of integers can be exploited to cause a buffer overflow. Basically, make sure that you don’t
truncate any integer results used to compute buffer sizes. Here’s Timo’s example for 64-bit architectures:

/* An example of an ERROR for some 64-bit architectures,
if "unsigned int" is 32 bits and "size_t" is 64 bits: */

void *mymalloc (unsigned int size) { return malloc(size); }

char xbuf;
size_t len;

read (fd, &len, sizeof (len));
/+ we forgot to check the maximum length =/
/x 64-bit size_t gets truncated to 32-bit unsigned int =x/

buf = mymalloc(len);
read(fd, buf, len);

Here’s a third example from Timo Sirainen, involving integer overflow. This is particularly nasty when
combined with malloc(); an attacker may be able to create a situation where the computed buffer size is
less than the data to be placed in it. Here is Timo’s sample:

/* 3) integer overflow */
char xbuf;
size_t len;

read (fd, &len, sizeof (len));

/+ we forgot to check the maximum length =/

buf = malloc(len+l); /x +1 can overflow to malloc(0) =*/
read (fd, buf, len);
buf[len] = "\0’;

6.2. Library Solutions in C/C++

One partial solution in C/C++ is to use library functions that do not have buffer overflow problems. The
first subsection describes the “standard C library” solution, which can work but has its disadvantages.
The next subsection describes the general security issues of both fixed length and dynamically
reallocated approaches to buffers. The following subsections describe various alternative libraries, such
as strlcpy and libmib. Note that these don’t solve all problems; you still have to code extremely carefully
in C/C++ to avoid all buffer overflow situations.
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6.2.1. Standard C Library Solution

The “standard” solution to prevent buffer overflow in C (which is also used in some C++ programs) is to
use the standard C library calls that defend against these problems. This approach depends heavily on the
standard library functions strncpy(3) and strncat(3). If you choose this approach, beware: these calls have
somewhat surprising semantics and are hard to use correctly. The function strncpy(3) does not
NIL-terminate the destination string if the source string length is at least equal to the destination’s, so be
sure to set the last character of the destination string to NIL after calling strncpy(3). If you’re going to
reuse the same buffer many times, an efficient approach is to tell strncpy() that the buffer is one character
shorter than it actually is and set the last character to NIL once before use. Both strncpy(3) and strncat(3)
require that you pass the amount of space left available, a computation that is easy to get wrong (and
getting it wrong could permit a buffer overflow attack). Neither provide a simple mechanism to
determine if an overflow has occurred. Finally, strncpy(3) has a significant performance penalty
compared to the strepy(3) it supposedly replaces, because strncpy(3) NIL-fills the remainder of the
destination. I’ve gotten emails expressing surprise over this last point, but this is clearly stated in
Kernighan and Ritchie second edition [Kernighan 1988, page 249], and this behavior is clearly
documented in the man pages for Linux, FreeBSD, and Solaris. This means that just changing from
strcpy to strncpy can cause a severe reduction in performance, for no good reason in most cases.

Warning!! The function strncpy(s1, s2, n) can also be used as a way of copying only part of s2, where n
is less than strlen(s2). When used this way, strncpy() basically provides no protection against buffer
overflow by itself - you have to take separate actions to ensure that n is smaller than the buffer of s1.
Also, when used this way, strncpy() does not usually add a trailing NIL after copying n characters. This
makes it harder to determine if a program using strncpy() is secure.

You can also use sprintf() while preventing buffer overflows, but you need to be careful when doing so;
it’s so easy to misapply that it’s hard to recommend. The sprintf control string can contain various
conversion specifiers (e.g., "%s"), and the control specifiers can have optional field width (e.g., "%10s")
and precision (e.g., "%.10s") specifications. These look quite similar (the only difference is a period) but
they are very different. The field width only specifies a minimum length and is completely worthless for
preventing buffer overflows. In contrast, the precision specification specifies the maximum length that
that particular string may have in its output when used as a string conversion specifier - and thus it can be
used to protect against buffer overflows. Note that the precision specification only specifies the total
maximum length when dealing with a string; it has a different meaning for other conversion operations.
If the size is given as a precision of "*", then you can pass the maximum size as a parameter (e.g., the
result of a sizeof() operation). This is most easily shown by an example - here’s the wrong and right way
to use sprintf() to protect against buffer overflows:

char buf [BUFFER_SIZE];
sprintf (buf, "%xs", sizeof (bu

)
)

, "long-string"); /* WRONG x/

f)-1
sprintf (buf, "%.%s", sizeof (buf)-1, "long-string"); /* RIGHT x/

In theory, sprintf() should be very helpful because you can use it to specify complex formats. Sadly, it’s
easy to get things wrong with sprintf(). If the format is complex, you need to make sure that the
destination is large enough for the largest possible size of the entire format, but the precision field only
controls the size of one parameter. The "largest possible" value is often hard to determine when a
complicated output is being created. If a program doesn’t allocate quite enough space for the longest
possible combination, a buffer overflow vulnerability may open up. Also, sprintf() appends a NUL to the
destination after the entire operation is complete - this extra character is easy to forget and creates an

opportunity for off-by-one errors. So, while this works, it can be painful to use in some circumstances.
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Also, a quick note about the code above - note that the sizeof() operation used the size of an array. If the
code were changed so that “buf” was a pointer to some allocated memory, then all “sizeof()” operations
would have to be changed (or sizeof would just measure the size of a pointer, which isn’t enough space

for most values).

The scanf() family is sadly a little murky as well. An obvious question is whether or not the maximum
width value can be used in %s to prevent these attacks. There are multiple official specifications for
scanf(); some clearly state that the width parameter is the absolutely largest number of characters, while
others aren’t as clear. The biggest problem is implementations; modern implementations that I know of
do support maximum widths, but I cannot say with certainty that all libraries properly implement
maximum widths. The safest approach is to do things yourself in such cases. However, few will fault you
if you simply use scanf and include the widths in the format strings (but don’t forget to count \0, or you’ll
get the wrong length). If you do use scanf, it’s best to include a test in your installation scripts to ensure
that the library properly limits length.

6.2.2. Static and Dynamically Allocated Buffers

Functions such as strncpy are useful for dealing with statically allocated buffers. This is a programming
approach where a buffer is allocated for the “longest useful size” and then it stays a fixed size from then
on. The alternative is to dynamically reallocate buffer sizes as you need them. It turns out that both
approaches have security implications.

There is a general security problem when using fixed-length buffers: the fact that the buffer is a fixed
length may be exploitable. This is a problem with strncpy(3) and strncat(3), snprintf(3), strlcpy(3),
strlcat(3), and other such functions. The basic idea is that the attacker sets up a really long string so that,
when the string is truncated, the final result will be what the attacker wanted (instead of what the
developer intended). Perhaps the string is catenated from several smaller pieces; the attacker might make
the first piece as long as the entire buffer, so all later attempts to concatenate strings do nothing. Here are
some specific examples:

» Imagine code that calls gethostbyname(3) and, if successful, immediately copies hostent->h_name to a
fixed-size buffer using strncpy or snprintf. Using strncpy or snprintf protects against an overflow of an
excessively long fully-qualified domain name (FQDN), so you might think you’re done. However, this
could result in chopping off the end of the FQDN. This may be very undesirable, depending on what
happens next.

- Imagine code that uses strncpy, strncat, snprintf, etc., to copy the full path of a filesystem object to
some buffer. Further imagine that the original value was provided by an untrusted user, and that the
copying is part of a process to pass a resulting computation to a function. Sounds safe, right? Now
imagine that an attacker pads a path with a large number of ’/’s at the beginning. This could result in
future operations being performed on the file “/”. If the program appends values in the belief that the
result will be safe, the program may be exploitable. Or, the attacker could devise a long filename near
the buffer length, so that attempts to append to the filename would silently fail to occur (or only
partially occur in ways that may be exploitable).

When using statically-allocated buffers, you really need to consider the length of the source and
destination arguments. Sanity checking the input and the resulting intermediate computation might deal
with this, too.
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Another alternative is to dynamically reallocate all strings instead of using fixed-size buffers. This
general approach is recommended by the GNU programming guidelines, since it permits programs to
handle arbitrarily-sized inputs (until they run out of memory). Of course, the major problem with
dynamically allocated strings is that you may run out of memory. The memory may even be exhausted at
some other point in the program than the portion where you’re worried about buffer overflows; any
memory allocation can fail. Also, since dynamic reallocation may cause memory to be inefficiently
allocated, it is entirely possible to run out of memory even though technically there is enough virtual
memory available to the program to continue. In addition, before running out of memory the program
will probably use a great deal of virtual memory; this can easily result in “thrashing”, a situation in
which the computer spends all its time just shuttling information between the disk and memory (instead
of doing useful work). This can have the effect of a denial of service attack. Some rational limits on input
size can help here. In general, the program must be designed to fail safely when memory is exhausted if
you use dynamically allocated strings.

6.2.3. strlcpy and stricat

An alternative, being employed by OpenBSD, is the strlcpy(3) and strlcat(3) functions by Miller and de
Raadt [Miller 1999]. This is a minimalist, statically-sized buffer approach that provides C string copying
and concatenation with a different (and less error-prone) interface. Source and documentation of these
functions are available under a newer BSD-style open source license at
ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/strlcpy.3.

First, here are their prototypes:

size_t strlcpy (char =xdst, const char xsrc, size_t size);
size_t strlcat (char xdst, const char xsrc, size_t size);

Both strlcpy and strlcat take the full size of the destination buffer as a parameter (not the maximum
number of characters to be copied) and guarantee to NIL-terminate the result (as long as size is larger
than 0). Remember that you should include a byte for NIL in the size.

The strlcpy function copies up to size-1 characters from the NUL-terminated string src to dst,
NIL-terminating the result. The strlcat function appends the NIL-terminated string src to the end of dst. It
will append at most size - strlen(dst) - 1 bytes, NIL-terminating the result.

One minor disadvantage of strlcpy(3) and strlcat(3) is that they are not, by default, installed in most
Unix-like systems. In OpenBSD, they are part of <string.h>. This is not that difficult a problem; since
they are small functions, you can even include them in your own program’s source (at least as an option),
and create a small separate package to load them. You can even use autoconf to handle this case
automatically. If more programs use these functions, it won’t be long before these are standard parts of
Linux distributions and other Unix-like systems. Also, these functions have been recently added to the
“glib” library (I submitted the patch to do this), so using recent versions of glib makes them available. In
¢glib these functions are named g_strlcpy and g_strlcat (not strlcpy or strlcat) to be consistent with the
glib library naming conventions.

Also, strlcat(3) has slightly varying semantics when the provided size is O or if there are no NIL
characters in the destination string dst (inside the given number of characters). In OpenBSD, if the size is
0, then the destination string’s length is considered 0. Also, if size is nonzero, but there are no NIL
characters in the destination string (in the size number of characters), then the length of the destination is
considered equal to the size. These rules make handling strings without embedded NILs consistent.
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Unfortunately, at least Solaris doesn’t (at this time) obey these rules, because they weren’t specified in
the original documentation. I've talked to Todd Miller, and he and I agree that the OpenBSD semantics
are the correct ones (and that Solaris is incorrect). The reasoning is simple: under no condition should
strlcat or strlcpy ever examine characters in the destination outside of the range of size; such access
might cause core dumps (from accessing out-of-range memory) and even hardware interactions (through
memory-mapped I/O). Thus, given:

a = strlcat ("Yy", "123", 0);

The correct answer is 3 (0+3=3), but Solaris will claim the answer is 4 because it incorrectly looks at
characters beyond the "size" length in the destination. For now, I suggest avoiding cases where the size is
0 or the destination has no NIL characters. Future versions of glib will hide this difference and always
use the OpenBSD semantics.

6.2.4. libmib

One toolset for C that dynamically reallocates strings automatically is the “libmib allocated string
functions” by Forrest J. Cavalier III, available at http://www.mibsoftware.com/libmib/astring. There are
two variations of libmib; “libmib-open” appears to be clearly open source under its own X11-like license
that permits modification and redistribution, but redistributions must choose a different name, however,
the developer states that it “may not be fully tested.” To continuously get libmib-mature, you must pay
for a subscription. The documentation is not open source, but it is freely available. If you are considering
the use of this library, you should also look at Messier and Viega’s Safestr library (discussed next).

6.2.5. Safestr library (Messier and Viega)

The Safe C String (Safestr) library by Messier and Viega is available from http://www.zork.org/safestr.
Safestr provides a set of string functions for C that automatically reallocates strings as necessary. Safestr
strings easily convert to regular C "char *" strings, using the same trick used by most malloc()
implementations: safestr stores important information at addresses "before" the pointer passed around -
S0 it’s easier to use safestr in existing programs. Safestr supports setting strings to be read-only, and
supports “trusted” value of strings that can be used to help detect problems. Safestr is released under a
open source BSD-style license. Note that safestr requires XXL, a library that adds support for exception
handling and asset management in C.

6.2.6. C++ std::string class

C++ developers can use the std::string class, which is built into the language. This is a dynamic
approach, as the storage grows as necessary. However, it’s important to note that if that class’s data is
turned into a “char *” (e.g., by using data() or c_str()), the possibilities of buffer overflow resurface, so
you need to be careful when when using such methods. Note that c_str() always returns a NIL-terminated
string, but data() may or may not (it’s implementation dependent, and most implementations do not
include the NIL terminator). Avoid using data(), and if you must use it, don’t be dependent on its format.

Many C++ developers use other string libraries as well, such as those that come with other large libraries
or even home-grown string libraries. With those libraries, be especially careful - many alternative C++
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string classes include routines to automatically convert the class to a “char *” type. As a result, they can
silently introduce buffer overflow vulnerabilities.

6.2.7. Libsafe

Arash Baratloo, Timothy Tsai, and Navjot Singh (of Lucent Technologies) have developed Libsafe, a
wrapper of several library functions known to be vulnerable to stack smashing attacks. This wrapper
(which they call a kind of “middleware”) is a simple dynamically loaded library that contains modified
versions of C library functions such as strcpy(3). These modified versions implement the original
functionality, but in a manner that ensures that any buffer overflows are contained within the current
stack frame. Their initial performance analysis suggests that this library’s overhead is very small. Libsafe
papers and source code are available at http://www.research.avayalabs.com/project/libsafe. The Libsafe
source code is available under the completely open source LGPL license.

Libsafe’s approach appears somewhat useful. Libsafe should certainly be considered for inclusion by
Linux distributors, and its approach is worth considering by others as well. For example, I know that the
Mandrake distribution of Linux (version 7.1) includes it. However, as a software developer, Libsafe is a
useful mechanism to support defense-in-depth but it does not really prevent buffer overflows. Here are
several reasons why you shouldn’t depend just on Libsafe during code development:

« Libsafe only protects a small set of known functions with obvious buffer overflow issues. At the time
of this writing, this list is significantly shorter than the list of functions in this book known to have this
problem. It also won’t protect against code you write yourself (e.g., in a while loop) that causes buffer
overflows.

« Even if libsafe is installed in a distribution, the way it is installed impacts its use. The documentation
recommends setting LD_PRELOAD to cause libsafe’s protections to be enabled, but the problem is
that users can unset this environment variable... causing the protection to be disabled for programs
they execute!

+ Libsafe only protects against buffer overflows of the stack onto the return address; you can still
overrun the heap or other variables in that procedure’s frame.

« Unless you can be assured that all deployed platforms will use libsafe (or something like it), you’ll
have to protect your program as though it wasn’t there.

« LibSafe seems to assume that saved frame pointers are at the beginning of each stack frame. This isn’t
always true. Compilers (such as gcc) can optimize away things, and in particular the option
"-fomit-frame-pointer" removes the information that libsafe seems to need. Thus, libsafe may fail to
work for some programs.

The libsafe developers themselves acknowledge that software developers shouldn’t just depend on
libsafe. In their words:

It is generally accepted that the best solution to buffer overflow attacks is to fix the defective programs.
However, fixing defective programs requires knowing that a particular program is defective. The true benefit of
using libsafe and other alternative security measures is protection against future attacks on programs that are
not yet known to be vulnerable.
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6.2.8. Other Libraries

The glib (not glibc) library is a widely-available open source library that provides a number of useful
functions for C programmers. GTK+ and GNOME both use glib, for example. As I noted earlier, in glib
version 1.3.2, g_strlcpy() and g_strlcat() have been added through a patch which I submitted. This should
make it easier to portably use those functions once these later versions of glib become widely available.
At this time I do not have an analysis showing definitively that the glib library functions protect against
buffer overflows. However, many of the glib functions automatically allocate memory, and those
functions automatically fail with no reasonable way to intercept the failure (e.g., to try something else
instead). As a result, in many cases most glib functions cannot be used in most secure programs. The
GNOME guidelines recommend using functions such as g_strdup_printf(), which is fine as long as it’s
okay if your program immediately crashes if an out-of-memory condition occurs. However, if you can’t
accept this, then using such routines isn’t appropriate.

6.3. Compilation Solutions in C/C++
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A completely different approach is to use compilation methods that perform bounds-checking (see
[Sitaker 1999] for a list). In my opinion, such tools are very useful in having multiple layers of defense,
but it’s not wise to use this technique as your sole defense. There are at least two reasons for this. First of
all, such tools generally only provide a partial defense against buffer overflows (and the “complete”
defenses are generally 12-30 times slower); C and C++ were simply not designed to protect against
buffer overflows. Second of all, for open source programs you cannot be certain what tools will be used
to compile the program; using the default “normal” compiler for a given system might suddenly open
security flaws.

One of the more useful tools is “StackGuard”, a modification of the standard GNU C compiler gcc.
StackGuard works by inserting a “guard” value (called a “canary”) in front of the return address; if a
buffer overflow overwrites the return address, the canary’s value (hopefully) changes and the system
detects this before using it. This is quite valuable, but note that this does not protect against buffer
overflows overwriting other values (which they may still be able to use to attack a system). There is work
to extend StackGuard to be able to add canaries to other data items, called “PointGuard”. PointGuard
will automatically protect certain values (e.g., function pointers and longjump buffers). However,
protecting other variable types using PointGuard requires specific programmer intervention (the
programmer has to identify which data values must be protected with canaries). This can be valuable, but
it’s easy to accidentally omit protection for a data value you didn’t think needed protection - but needs it
anyway. More information on StackGuard, PointGuard, and other alternatives is in Cowan [1999].

IBM has developed a stack protection system called ProPolice based on the ideas of StackGuard. IBM
doesn’t include the ProPolice name in its current website - it’s just called a "GCC extension for protecting
applications from stack-smashing attacks". However, it’s hard to talk about something without using a
name, so I’ll continue to use the name ProPolice. Like StackGuard, ProPolice is a GCC (Gnu Compiler
Collection) extension for protecting applications from stack-smashing attacks. Applications written in C
are protected by automatically inserting protection code into an application at compilation time.
ProPolice is slightly different than StackGuard, however, by adding three features: (1) reordering local
variables to place buffers after pointers (to avoid the corruption of pointers that could be used to further
corrupt arbitrary memory locations), (2) copying pointers in function arguments to an area preceding
local variable buffers (to prevent the corruption of pointers that could be used to further corrupt arbitrary
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memory locations), and (3) omitting instrumentation code from some functions (it basically assumes that
only character arrays are dangerous; while this isn’t strictly true, it’s mostly true, and as a result
ProPolice has better performance while retaining most of its protective capabilities). The IBM website
includes information for how to build Red Hat Linux and FreeBSD with this protection; OpenBSD has
already added ProPolice to their base system, and the Trusted Debian project uses this too. I think this is
extremely promising, and I hope to see this capability included in future versions of gcc and used in
various distributions. In fact, I think this kind of capability should be the default - this would mean that
the largest single class of attacks would no longer enable attackers to take control in most cases.

On Windows, Microsoft’s compilers include the /GS option to include StackGuard-like protection
against buffer overflows. However, it’s worth noting that at least on Microsoft Windows 2003 Server
these protection mechanisms can be defeated.

As arelated issue, in Linux you could modify the Linux kernel so that the stack segment is not
executable; such a patch to Linux does exist (see Solar Designer’s patch, which includes this, at
http://www.openwall.com/linux/ However, as of this writing this is not built into the Linux kernel. Part of
the rationale is that this is less protection than it seems; attackers can simply force the system to call
other “interesting” locations already in the program (e.g., in its library, the heap, or static data segments).
Also, sometimes Linux does require executable code in the stack, e.g., to implement signals and to
implement GCC “trampolines”. Solar Designer’s patch does handle these cases, but this does complicate
the patch. Personally, I'd like to see this merged into the main Linux distribution, since it does make
attacks somewhat more difficult and it defends against a range of existing attacks. However, I agree with
Linus Torvalds and others that this does not add the amount of protection it would appear to and can be
circumvented with relative ease. You can read Linus Torvalds’ explanation for not including this support
at http://old.lwn.net/1998/0806/a/linus-noexec.html.

A related "non-executable segment” approach was developed by Ingo Molnar, termed Exec Shield.
Molnar’s exec shield limits the region that executable code can exist, and then moves executable code
below that region. If the code is moved to an area where a zero byte must occur, then it’s harder to
exploit because many ASCII-based attacks cannot insert a zero byte. This isn’t foolproof, but it does
prevent certain attacks. However, many programs invoke libraries that in aggregate are so large that their
addresses can have a non-zero in them, making them much more vulnerable.

A different approach is to limit transfer of control; this doesn’t prevent all buffer overflow attacks (e.g.,
those that attack data) but it can make other attacks harder [Kiriansky 2002]

In short, it’s better to work first on developing a correct program that defends itself against buffer
overflows. Then, after you’ve done this, by all means use techniques and tools like StackGuard as an
additional safety net. If you’ve worked hard to eliminate buffer overflows in the code itself, then
StackGuard (and tools like it) are are likely to be more effective because there will be fewer “chinks in
the armor” that StackGuard will be called on to protect.

6.4. Other Languages

The problem of buffer overflows is an excellent argument for using other programming languages such
as Perl, Python, Java, and Ada95. After all, nearly all other programming languages used today (other
than assembly language) protect against buffer overflows. Using those other languages does not
eliminate all problems, of course; in particular see the discussion in Section 8.3 regarding the NIL
character. There is also the problem of ensuring that those other languages’ infrastructure (e.g., run-time

81



Chapter 6. Restrict Operations to Buffer Bounds (Avoid Buffer Overflow)

library) is available and secured. Still, you should certainly consider using other programming languages
when developing secure programs to protect against buffer overflows.
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Like a city whose walls are broken down
is a man who lacks self-control.
Proverbs 25:28 (NIV)

Some program designs are relatively easy to secure; others are practically impossible. If you want a
secure application, you’ll need to follow good security design principles. In particular, you should
minimize the privileges your program (and its parts) have, so that the inevitable mistakes are much less
likely to become security vulnerabilities.

7.1. Follow Good Security Design Principles

Saltzer [1974] and later Saltzer and Schroeder [1975] list the following design principles when creating
secure programs, which are still valid:

« Least privilege. Each user and program should operate using the fewest privileges possible. This
principle limits the damage from an accident, error, or attack. It also reduces the number of potential
interactions among privileged programs, so unintentional, unwanted, or improper uses of privilege are
less likely to occur. This idea can be extended to the internals of a program: only the smallest portion
of the program which needs those privileges should have them. See Section 7.4 for more about how to
do this.

« Economy of mechanism/Simplicity. The protection system’s design should be simple and small as
possible. In their words, “techniques such as line-by-line inspection of software and physical
examination of hardware that implements protection mechanisms are necessary. For such techniques
to be successful, a small and simple design is essential.” This is sometimes described as the “KISS”
principle (“keep it simple, stupid”).

+ Open design. The protection mechanism must not depend on attacker ignorance. Instead, the
mechanism should be public, depending on the secrecy of relatively few (and easily changeable) items
like passwords or private keys. An open design makes extensive public scrutiny possible, and it also
makes it possible for users to convince themselves that the system about to be used is adequate.
Frankly, it isn’t realistic to try to maintain secrecy for a system that is widely distributed; decompilers
and subverted hardware can quickly expose any “secrets” in an implementation. Even if you pretend
that source code is necessary to find exploits (it isn’t), source code has often been stolen and
redistributed (at least once from Cisco and twice from Microsoft). This is one of the oldest and
strongly supported principles, based on many years in cryptography. For example, the older
Kerckhoffs’s Law states that "A cryptosystem should be designed to be secure if everything is known
about it except the key information." Claude Shannon, the inventor of information theory, restated
Kerckhoff’s Law as: "[Assume] the enemy knows the system." Indeed, security expert Bruce Schneier
goes further and argues that smart engineers should “demand open source code for anything related to
security”, as well as ensuring that it receives widespread review and that any identified problems are
fixed [Schneier 1999].

« Complete mediation. Every access attempt must be checked; position the mechanism so it cannot be
subverted. For example, in a client-server model, generally the server must do all access checking
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because users can build or modify their own clients. This is the point of all of Chapter 5, as well as
Section 7.2.

« Fail-safe defaults (e.g., permission-based approach). The default should be denial of service, and the
protection scheme should then identify conditions under which access is permitted. See Section 7.7
and Section 7.10 for more.

« Separation of privilege. Ideally, access to objects should depend on more than one condition, so that
defeating one protection system won’t enable complete access.

« Least common mechanism. Minimize the amount and use of shared mechanisms (e.g. use of the /tmp
or /var/tmp directories). Shared objects provide potentially dangerous channels for information flow
and unintended interactions. See Section 7.11 for more information.

« Psychological acceptability / Easy to use. The human interface must be designed for ease of use so
users will routinely and automatically use the protection mechanisms correctly. Mistakes will be
reduced if the security mechanisms closely match the user’s mental image of his or her protection
goals.

A good overview of various design principles for security is available in Peter Neumann’s Principled
Assuredly Trustworthy Composable Architectures. For examples of complete failures to consider these
issues (not limited to information technology), see the "winners" of Privacy International’s "Stupid
Security" Competition.

7.2. Secure the Interface

Interfaces should be minimal (simple as possible), narrow (provide only the functions needed), and
non-bypassable. Trust should be minimized. Consider limiting the data that the user can see.

7.3. Separate Data and Control
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Any files you support should be designed to completely separate (passive) data from programs that are
executed. Applications and data viewers may be used to display files developed externally, so in general
don’t allow them to accept programs (also known as “scripts” or “macros”). The most dangerous kind is
an auto-executing macro that executes when the application is loaded and/or when the data is initially
displayed; from a security point-of-view this is generally a disaster waiting to happen.

If you truly must support programs downloaded remotely (e.g., to implement an existing standard), make
sure that you have extremely strong control over what the macro can do (this is often called a
“sandbox”). Past experience has shown that real sandboxes are hard to implement correctly. In fact, I
can’t remember a single widely-used sandbox that hasn’t been repeatedly exploited (yes, that includes
Java). If possible, at least have the programs stored in a separate file, so that it’s easier to block them out
when another sandbox flaw has been found but not yet fixed. Storing them separately also makes it easier
to reuse code and to cache it when helpful.
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7.4. Minimize Privileges

As noted earlier, it is an important general principle that programs have the minimal amount of privileges
necessary to do its job (this is termed “least privilege”). That way, if the program is broken, its damage is
limited. The most extreme example is to simply not write a secure program at all - if this can be done, it
usually should be. For example, don’t make your program setuid or setgid if you can; just make it an
ordinary program, and require the administrator to log in as such before running it.

In Linux and Unix, the primary determiner of a process’ privileges is the set of id’s associated with it:
each process has a real, effective and saved id for both the user and group (a few very old Unixes don’t
have a “saved” id). Linux also has, as a special extension, a separate filesystem UID and GID for each
process. Manipulating these values is critical to keeping privileges minimized, and there are several ways
to minimize them (discussed below). You can also use chroot(2) to minimize the files visible to a
program, though using chroot() can be difficult to use correctly. There are a few other values determining
privilege in Linux and Unix, for example, POSIX capabilities (supported by Linux 2.2 and greater, and
by some other Unix-like systems).

7.4.1. Minimize the Privileges Granted

Perhaps the most effective technique is to simply minimize the highest privilege granted. In particular,
avoid granting a program root privilege if possible. Don’t make a program setuid root if it only needs
access to a small set of files; consider creating separate user or group accounts for different function.

A common technique is to create a special group, change a file’s group ownership to that group, and then
make the program setgid to that group. It’s better to make a program setgid instead of setuid where you
can, since group membership grants fewer rights (in particular, it does not grant the right to change file
permissions).

This is commonly done for game high scores. Games are usually setgid games, the score files are owned
by the group games, and the programs themselves and their configuration files are owned by someone
else (say root). Thus, breaking into a game allows the perpetrator to change high scores but doesn’t grant
the privilege to change the game’s executable or configuration file. The latter is important; if an attacker
could change a game’s executable or its configuration files (which might control what the executable
runs), then they might be able to gain control of a user who ran the game.

If creating a new group isn’t sufficient, consider creating a new pseudouser (really, a special role) to
manage a set of resources - often a new pseudogroup (again, a special role) is also created just to run a
program. Web servers typically do this; often web servers are set up with a special user (“nobody”) so
that they can be isolated from other users. Indeed, web servers are instructive here: web servers typically
need root privileges to start up (so they can attach to port 80), but once started they usually shed all their
privileges and run as the user “nobody”. However, don’t use the “nobody” account (unless you’re writing
a webserver); instead, create your own pseudouser or new group. The purpose of this approach is to
isolate different programs, processes, and data from each other, by exploiting the operating system’s
ability to keep users and groups separate. If different programs shared the same account, then breaking
into one program would also grant privileges to the other. Usually the pseudouser should not own the
programs it runs; that way, an attack who breaks into the account cannot change the program it runs. By
isolating different parts of the system into running separate users and groups, breaking one part will not
necessarily break the whole system’s security.
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If you’re using a database system (say, by calling its query interface), limit the rights of the database user
that the application uses. For example, don’t give that user access to all of the system stored procedures if
that user only needs access to a handful of user-defined ones. Do everything you can inside stored
procedures. That way, even if someone does manage to force arbitrary strings into the query, the damage
that can be done is limited. If you must directly pass a regular SQL query with client supplied data (and
you usually shouldn’t), wrap it in something that limits its activities (e.g., sp_sqlexec). (My thanks to SPI
Labs for these database system suggestions).

If you must give a program privileges usually reserved for root, consider using POSIX capabilities as
soon as your program can minimize the privileges available to your program. POSIX capabilities are
available in Linux 2.2 and in many other Unix-like systems. By calling cap_set_proc(3) or the
Linux-specific capsetp(3) routines immediately after starting, you can permanently reduce the abilities of
your program to just those abilities it actually needs. For example the network time daemon (ntpd)
traditionally has run as root, because it needs to modify the current time. However, patches have been
developed so ntpd only needs a single capability, CAP_SYS_TIME, so even if an attacker gains control
over ntpd it’s somewhat more difficult to exploit the program.

I say “somewhat limited” because, unless other steps are taken, retaining a privilege using POSIX
capabilities requires that the process continue to have the root user id. Because many important files
(configuration files, binaries, and so on) are owned by root, an attacker controlling a program with such
limited capabilities can still modify key system files and gain full root-level privilege. A Linux kernel
extension (available in versions 2.4.X and 2.2.19+) provides a better way to limit the available privileges:
a program can start as root (with all POSIX capabilities), prune its capabilities down to just what it
needs, call prctl(PR_SET_KEEPCAPS,1), and then use setuid() to change to a non-root process. The
PR_SET_KEEPCAPS setting marks a process so that when a process does a setuid to a nonzero value,
the capabilities aren’t cleared (normally they are cleared). This process setting is cleared on exec().
However, note that PR_SET_KEEPCAPS is a Linux-unique extension for newer versions of the linux
kernel.

One tool you can use to simplify minimizing granted privileges is the “compartment” tool developed by
SuSE. This tool, which only works on Linux, sets the filesystem root, uid, gid, and/or the capability set,
then runs the given program. This is particularly handy for running some other program without
modifying it. Here’s the syntax of version 0.5:

Syntax: compartment [options] /full/path/to/program

Options:
——chroot path chroot to path
——user user change UID to this user
——group group change GID to this group
—-—init program execute this program before doing anything

——cap capset set capset name. You can specify several
—-—verbose be verbose
-—quiet do no logging (to syslog)

Thus, you could start a more secure anonymous ftp server using:

compartment —--chroot /home/ftp —-—-cap CAP_NET_BIND_SERVICE anon-ftpd
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At the time of this writing, the tool is immature and not available on typical Linux distributions, but this
may quickly change. You can download the program via http://www.suse.de/~marc. A similar tool is
dreamland; you can that at http://www.7ka.mipt.ru/~szh/dreamland.

Note that not all Unix-like systems, implement POSIX capabilities, and PR_SET_KEEPCAPS is
currently a Linux-only extension. Thus, these approaches limit portability. However, if you use it merely
as an optional safeguard only where it’s available, using this approach will not really limit portability.
Also, while the Linux kernel version 2.2 and greater includes the low-level calls, the C-level libraries to
make their use easy are not installed on some Linux distributions, slightly complicating their use in
applications. For more information on Linux’s implementation of POSIX capabilities, see
http://linux.kernel.org/pub/linux/libs/security/linux-privs.

FreeBSD has the jail() function for limiting privileges; see the jail documentation for more information.
There are a number of specialized tools and extensions for limiting privileges; see Section 3.10.

7.4.2. Minimize the Time the Privilege Can Be Used

As soon as possible, permanently give up privileges. Some Unix-like systems, including Linux,
implement “saved” IDs which store the “previous” value. The simplest approach is to reset any
supplemental groups if appropriate (e.g., using setgroups(2)), and then set the other id’s twice to an
untrusted id. In setuid/setgid programs, you should usually set the effective gid and uid to the real ones,
in particular right after a fork(2), unless there’s a good reason not to. Note that you have to change the
gid first when dropping from root to another privilege or it won’t work - once you drop root privileges,
you won’t be able to change much else. Note that in some systems, just setting the group isn’t enough, if
the process belongs to supplemental groups with privileges. For example, the “rsync” program didn’t
remove the supplementary groups when it changed its uid and gid, which created a potential exploit.

It’s worth noting that there’s a well-known related bug that uses POSIX capabilities to interfere with this
minimization. This bug affects Linux kernel 2.2.0 through 2.2.15, and possibly a number of other
Unix-like systems with POSIX capabilities. See Bugtraq id 1322 on http://www.securityfocus.com for
more information. Here is their summary:

POSIX "Capabilities" have recently been implemented in the Linux kernel. These "Capabilities" are an
additional form of privilege control to enable more specific control over what privileged processes can do.
Capabilities are implemented as three (fairly large) bitfields, which each bit representing a specific action a
privileged process can perform. By setting specific bits, the actions of privileged processes can be controlled --
access can be granted for various functions only to the specific parts of a program that require them. It is a
security measure. The problem is that capabilities are copied with fork() execs, meaning that if capabilities are
modified by a parent process, they can be carried over. The way that this can be exploited is by setting all of the
capabilities to zero (meaning, all of the bits are off) in each of the three bitfields and then executing a setuid
program that attempts to drop privileges before executing code that could be dangerous if run as root, such as
what sendmail does. When sendmail attempts to drop privileges using setuid(getuid()), it fails not having the
capabilities required to do so in its bitfields and with no checks on its return value . It continues executing with
superuser privileges, and can run a users .forward file as root leading to a complete compromise.
One approach, used by sendmail, is to attempt to do setuid(0) after a setuid(getuid()); normally this
should fail. If it succeeds, the program should stop. For more information, see
http://sendmail.net/?feed=000607linuxbug. In the short term this might be a good idea in other programs,
though clearly the better long-term approach is to upgrade the underlying system.
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7.4.3. Minimize the Time the Privilege is Active

Use setuid(2), seteuid(2), setgroups(2), and related functions to ensure that the program only has these
privileges active when necessary, and then temporarily deactivate the privilege when it’s not in use. As
noted above, you might want to ensure that these privileges are disabled while parsing user input, but
more generally, only turn on privileges when they’re actually needed.

Note that some buffer overflow attacks, if successful