Estimates for factoring 1024-bit integers

Thorsten Kleinjung, University of Bonn

Contents

GNEF'S Overview
Polynomial selection, matrix construction, square root computation

Sieving and cofactoring
e Strategies for cofactoring

e Estimates for different factor base sizes

Matrix step

Summary

Problem: factor

N = 135066410865995223349603216278805969938881475605667027524485
143851526510604859533833940287150571909441798207282164471551
373680419703964191743046496589274256239341020864383202110372
958725762358509643110564073501508187510676594629205563685529
475213500852879416377328533906109750544334999811150056977236
890927563

Available resources:
PC = 2.2 GHz Athlon 64 CPU, < 2 GB memory

Time: 1 or 2 years

How many PCs do we need?

GNFS Overview

1.

= W

Polynomial selection
Collection of relations

Construction of the matrix

. Matrix step

. Rest of computation (square root)

GNFS Overview

1.

=~ W

Polynomial selection
Collection of relations

Construction of the matrix

. Matrix step

. Rest of computation (square root)

easy
hard
easy

HARD

easy

Polynomial selection

jﬁ = 1000000001002023904806000°
+269697895236768163056606416340x°
—6212838818608524196100227896844747498x*
—8471052513942755376507570481852462668136x°>
+73860891685131025550440825288937867970123111795x>
+103239504258459269088961583772414261637624065053206x
—113943198561639198776937620503643872967091171901277555912

of degree d; = 6 and

fb = 514662055961724717752552412597334861x
—226511983014638262784476372319943180970205534545

of degree dy =1

Much more time for polynomial selection will probably give a
polynomial pair whose yield is twice as high.

Construction of the matrix and square root computation

Construction of the matrix

e Have to process 10-500 TB of sieving data
e Some parts can be done during sieving phase

e Much easier than matrix step

Square root computation

e Can be parallelized (easy)

e Can be done in a few months on one PC

Sieving and cofactoring

Aim: Find many pairs (a, b), a,b coprime, such that F}(a,b) and
Fs(a,b) are L-smooth.

(In this talk: L = 242, i.e., smooth=split completely into prime
factors < 242)

1. Sieving:

e finds divisors < B; of Fj(a,b)

e discards (a,b) if not “enough” divisors are found
2. For each surviving (a,b) compute

Fi(a,b) = S;R; (divisors < B; in S;),

compositeness tests for R, Ry
3. Cofactoring:

e tries to factor (R1, Ro)

e discards (a,b) if a factor > L is encountered

Restrictions

Only < 2 GB memory = must choose B; smaller than “optimal”
(“optimal” B; would require 64 GB)

If B; are small, traditional bounds for R; will give a very low yield.

— Increase bounds for R;

= cofactoring needs a lot of time

We need a good strategy for cofactoring.

Cofactoring

Problem: Determine whether (Ry, Rs) is L-smooth.

Many available methods for factoring small numbers:

e MPQS: run time depends on size of input, “always” succeeds

e Pollards p — 1: additional parameters, run time depends on

parameters and size of input, success rate depends on

parameters and size of prime factors of input number

e ECM: similar to p — 1, but can be used several times for the

same input number

e others

Which strategy shall we use to factor R; and Ry?

Example:

Available factoring algorithms:

e MPQS

e Pollards p—1 (B; =500, By = 10000)
Given: (Ry, R>), not prime, no prime divisor < 239,

203 < Ry < 24 (smooth) Ry =1

Example:

Available factoring algorithms:

e MPQS

e Pollards p—1 (B; =500, By = 10000)
Given: (Ry, R>), not prime, no prime divisor < 239,

203 < Ry < 24 (smooth) Ry =1

Strategy 1: factor Ry by MPQS

time = 192us yield =1

Strategy 2: use p — 1, on failure use MPQS
time =7 yield =1

Details for p—1 (B; = 500, By = 10000)
time = 27.3us (for 64-bit numbers)

probability to find a b-bit factor:

b | probability

31 0.135
32 0.110
33 0.089

34 0.073

64-bit integers (composite, no prime divisor < 2°°)

(b1,02)

(64-bit integers being a product of a
b1-bit prime and a bo-bit prime)

7.35-10%°
7.33-10%°
5.89 - 101°
2.94 - 101°

64-bit integers (composite, no prime divisor < 2°°)

(b1,b2) | # (64-bit integers being a product of a
b1-bit prime and a bo-bit prime)

(31, 34) 7.35-101°

(32, 33) 7.33-10%°

(31, 33) 5.89 - 101°

(32,32) 2.94 - 1010

= probability of success for p — 1: 0.2

Example:
Available factoring algorithms: MPQS and Pollards p — 1
Given: (Ri, R3), not prime, no prime divisor < 23Y.

203 < Ry < 2% (smooth) Ry =1

Strategy 1: factor Ry by MPQS

time = 192us yield =1

Strategy 2: use p — 1, on failure use MPQS
time = 181 us yield =1

Example:
Available factoring algorithms: MPQS and Pollards p — 1
Given: (R1, Rz), not prime, no prime divisor < 25Y.

203 < Ry < 2% (smooth) Ry =1

Strategy 1: factor Ry by MPQS
time = 192us yield =1

Strategy 2: use p — 1, on failure use MPQS
time = 181 us yield =1

Strategy 3: use p — 1

time = 27.3us yield = 0.2
Strategy 4: do nothing

time = Ous yield =0

In general:
many available factoring methods

= many strategies

yield

A

time

Y

Strategies for bit length (71, 72)

Optimal strategy:

There exists an s such that

yield

A

> tlme

Optimal strategy: on line of slope s such that no point above line

Sieving experiments for 1024-bit number N

Large prime bounds: 242

Lattice sieving area: 26 x 21°

Prime factors of special ¢ in [220, 232]

Memory (B1, Bs) special ¢

bounds for (Ry, Rs)

2 GB | (1.15-10%,250-10°) | [50 - 10%2,260 - 1012
1 GB | (450-10°,100-10%) | [50-10%2 350 102
512 MB | (200-10%,50-10°%) | [50-10'2, 400 - 10'?]

(22007 2160)
(22007 2160)
(22107 2180)

Sieving experiments for 1024-bit number N

Large prime bounds: 242

Lattice sieving area: 26 x 219

Prime factors of special ¢ in [229, 2]

Memory (B1, B2) special g bounds for (R;, R2)
2 GB | (1.15-10%,250-10%) | [50-10%2,260 - 10'?] (2200 2160
1 GB | (450-10°,100-10%) | [50-10'2, 350 - 10'?] (2200 2160)

512 MB | (200-10°%50-10%) | [50-10'% 400 - 10'?] (2210 2180)

Memory | number of sp. ¢ | time per sp. ¢ | number of PCs
2 GB 1.95-10%2 135s 8.4-10°
1 GB 2.85 - 1012 111s 10 - 109
512 MB 3.3-101%2 116s 12 -10°

Matrix step

Extrapolate matrix size from factorisations of large numbers
Get between 6 - 107 and 12 - 10° rows/columns

Assumption: d = 8 - 10° rows/columns, w = 1.2 - 10'? non-zero

entries

= need 4-5 TB to store the matrix

Matrix step - Block Wiedemann algorithm

Input: d x d matrix M over Fy, output: solution(s) of Mv =0

1.

Choose random vectors x1,...,Z,, and y1,...,Y,, Some
conditions.
. Compute scalar products (zy, M'y;) fori=1,..., (% — %)d

. Find linear combinations of M%y;, orthogonal to enough

r,(M*1) (Berlekamp-Massey).

d

. Compute linear combinations z; = Y ayM'y;.

1=1

Now M*™mall, — (. find up to n solutions from M?z;, i small.

Matrix step - Parameters

Complexity (d = 8-10%, w = 1.2 - 1012):

Step XOR space
2 mTjL"dw w
3 O(MdHE) O(Md)
4 dw w

Choose m = n = 8192

Berlekamp-Massey algorithm (step 3):
e 1 PC with 500 TB disk space needs 500 years
e Can be parallelized (might be hard)

e Parts can be done during step 2

Matrix step - Matrixxvector multiplication

Use 1024 clusters, each:
e 64 x 64 PCs, each 1.5 GB memory
e (Gigabit network, torus topology

e handles & start vectors, i.e., 2 million multiplications in step 2

and 1 million in step 4
Extrapolation from existing clusters:
e Computation per multiplication: 3s

e Communication per multiplication: 5s

= Time: 6 months for step 2 and 3 months for step 4

Matrix step - Problems

Computing errors:
e Orthogonality checks
e Use linearly dependent start vectors y;

e Can check intermediate results in Berlekamp-Massey

Hardware failure:
e Store intermediate results frequently
e Backup PCs
e Use linearly dependent start vectors (as above)

e Several Berlekamp-Massey jobs

Summary

Main problems for factoring 1024-bit intergers:
1. Collecting relations

2. Matrix step

e One can do the collecting of relations with 8.4 million PCs in

one year.

e One might be able to do the matrix step with 1024 clusters,
each consisting of 4096-8192 PCs, in one year.

