Estimates for factoring 1024-bit integers

Thorsten Kleinjung, University of Bonn

Contents

GNFS Overview

Polynomial selection, matrix construction, square root computation

Sieving and cofactoring

- Strategies for cofactoring
- Estimates for different factor base sizes

Matrix step

Summary

Problem: factor

 $N = 135066410865995223349603216278805969938881475605667027524485$ 143851526510604859533833940287150571909441798207282164471551 373680419703964191743046496589274256239341020864383202110372 958725762358509643110564073501508187510676594629205563685529 475213500852879416377328533906109750544334999811150056977236 890927563

Available resources:

 $PC = 2.2$ GHz Athlon 64 CPU, ≤ 2 GB memory

Time: 1 or 2 years

How many PCs do we need?

GNFS Overview

- 1. Polynomial selection
- 2. Collection of relations
- 3. Construction of the matrix
- 4. Matrix step
- 5. Rest of computation (square root)

GNFS Overview

Polynomial selection

 f_1 = 1000000001002023904806000 x^6

 $+269697895236768163056606416340x^5$

 $-6212838818608524196100227896844747498x⁴$

 $-8471052513942755376507570481852462668136x^3$

 $+73860891685131025550440825288937867970123111795x^2$

+103239504258459269088961583772414261637624065053206^x

[−]113943198561639198776937620503643872967091171901277555912

of degree $d_1 = 6$ and

$$
f_2 = 514662055961724717752552412597334861x
$$

-226511983014638262784476372319943180970205534545

of degree $d_2 = 1$

Much more time for polynomial selection will probably give ^a polynomial pair whose yield is twice as high.

Construction of the matrix and square root computation Construction of the matrix

- Have to process 10-500 TB of sieving data
- Some parts can be done during sieving ^phase
- Much easier than matrix step

Square root computation

- Can be parallelized (easy)
- Can be done in ^a few months on one PC

Sieving and cofactoring

Aim: Find many pairs (a, b) , a, b coprime, such that $F_1(a, b)$ and $F_2(a, b)$ are L-smooth. (In this talk: $L = 2^{42}$, i.e., smooth=split completely into prime factors $< 2^{42}$)

- 1. Sieving:
	- finds divisors $\lt B_i$ of $F_i(a, b)$
	- discards (a, b) if not "enough" divisors are found
- 2. For each surviving (a, b) compute $F_i(a, b) = S_i R_i$ (divisors $\lt B_i$ in S_i), compositeness tests for R_1, R_2
- 3. Cofactoring:
	- tries to factor (R_1, R_2)
	- discards (a, b) if a factor $\geq L$ is encountered

Restrictions

Only ≤ 2 GB memory \Rightarrow must choose B_i smaller than "optimal" ("optimal" B_i would require 64 GB)

If B_i are small, traditional bounds for R_i will give a very low yield.

- \Rightarrow increase bounds for R_i
- \Rightarrow cofactoring needs a lot of time

We need ^a good strategy for cofactoring.

Cofactoring

Problem: Determine whether (R_1, R_2) is L-smooth.

Many available methods for factoring small numbers:

- MPQS: run time depends on size of input, "always" succeeds
- Pollards $p-1$: additional parameters, run time depends on parameters and size of input, success rate depends on parameters and size of prime factors of input number
- <u>ECM</u>: similar to $p-1$, but can be used several times for the same input number
- others

Which strategy shall we use to factor R_1 and R_2 ?

Example:

Available factoring algorithms:

- MPQS
- Pollards $p-1$ ($B_1 = 500, B_2 = 10000$)

Given: (R_1, R_2) , not prime, no prime divisor $\lt 2^{30}$.

 $2^{63} < R_1 < 2^{64}$ (smooth) $R_2 = 1$

Example:

Available factoring algorithms:

- MPQS
- Pollards $p-1$ ($B_1 = 500, B_2 = 10000$)

Given: (R_1, R_2) , not prime, no prime divisor $\lt 2^{30}$. $2^{63} < R_1 < 2^{64}$ (smooth) $R_2 = 1$

Strategy 1: factor R_1 by MPQS

 $time = 192 \mu s$ yield $= 1$

Strategy 2: use $p-1$, on failure use MPQS

 $time =?$ yield $= 1$

Details for $p - 1$ ($B_1 = 500, B_2 = 10000$)

 $time = 27.3 \mu s$ (for 64-bit numbers)

probability to find ^a b-bit factor:

64-bit integers (composite, no prime divisor $\langle 2^{30} \rangle$

64-bit integers (composite, no prime divisor $\langle 2^{30} \rangle$

 \Rightarrow probability of success for $p-1$: 0.2

Example:

Available factoring algorithms: MPQS and Pollards $p-1$ Given: (R_1, R_2) , not prime, no prime divisor $\lt 2^{30}$.

 $2^{63} < R_1 < 2^{64}$ (smooth) $R_2 = 1$

Strategy 1: factor R_1 by MPQS

 $time = 192 \mu s$ yield $= 1$

Strategy 2: use $p-1$, on failure use MPQS

 $time = 181 \mu s$ yield = 1

Example:

Available factoring algorithms: MPQS and Pollards $p-1$ Given: (R_1, R_2) , not prime, no prime divisor $\lt 2^{30}$.

 $2^{63} < R_1 < 2^{64}$ (smooth) $R_2 = 1$

Strategy 1: factor R_1 by MPQS

 $time = 192 \mu s$ yield $= 1$

Strategy 2: use $p-1$, on failure use MPQS

 $time = 181 \mu s$ yield $= 1$

Strategy 3: use $p-1$

 $time = 27.3 \mu s$ yield $= 0.2$

Strategy 4: do nothing

 $time = 0\mu s$ yield $= 0$

In general:

many available factoring methods

 \Rightarrow many strategies

 \bullet $_{\bullet}$

 \bullet

 \bullet

yield

✻

q

✲ time

q

 \bullet

 \bullet

 \bullet

Strategies for bit length (r_1, r_2)

 \bullet

 \bullet

Optimal strategy:

There exists an s such that

yield

Optimal strategy: on line of slope ^s such that no point above line

Sieving experiments for 1024-bit number N

Large prime bounds: 2^{42}

Lattice sieving area: $2^{16}\times 2^{15}$

Prime factors of special q in $[2^{20}, 2^{32}]$

Sieving experiments for 1024-bit number N

Large prime bounds: 2^{42}

Lattice sieving area: $2^{16} \times 2^{15}$

Prime factors of special q in $[2^{20}, 2^{32}]$

Matrix step

Extrapolate matrix size from factorisations of large numbers

Get between $6 \cdot 10^9$ and $12 \cdot 10^9$ rows/columns

Assumption: $d = 8 \cdot 10^9$ rows/columns, $w = 1.2 \cdot 10^{12}$ non-zero entries

 \Rightarrow need 4-5 TB to store the matrix

Matrix step - Block Wiedemann algorithm

Input: $d \times d$ matrix M over \mathbb{F}_2 , output: solution(s) of $Mv = 0$

- 1. Choose random vectors x_1, \ldots, x_m and y_1, \ldots, y_n , some conditions.
- 2. Compute scalar products $\langle x_k, M^i y_l \rangle$ for $i = 1, \ldots, \left(\frac{1}{m} + \frac{1}{n} \right) d$.
- 3. Find linear combinations of $M^i y_l$, orthogonal to enough $x_k(M^T)^j$ (Berlekamp-Massey).
- 4. Compute linear combinations $z_l =$ d \sum^n $i=1$ $a_{il}M^iy_l.$
- 5. Now $M^{small}z_l = 0$, find up to n solutions from $M^{i}z_l$, i small.

Matrix step - Parameters

Complexity $(d = 8 \cdot 10^9, w = 1.2 \cdot 10^{12})$:

Choose $m = n = 8192$

Berlekamp-Massey algorithm (step 3):

- 1 PC with 500 TB disk space needs 500 years
- Can be parallelized (might be hard)
- Parts can be done during step 2

Matrix step - Matrix×vector multiplication

Use 1024 clusters, each:

- 64×64 PCs, each 1.5 GB memory
- Gigabit network, torus topology
- handles 8 start vectors, i.e., 2 million multiplications in step 2 and 1 million in step 4

Extrapolation from existing clusters:

- Computation per multiplication: 3s
- Communication per multiplication: 5s
- \Rightarrow Time: 6 months for step 2 and 3 months for step 4

Matrix step - Problems

Computing errors:

- Orthogonality checks
- Use linearly dependent start vectors y_l
- Can check intermediate results in Berlekamp-Massey

Hardware failure:

- Store intermediate results frequently
- Backup PCs
- Use linearly dependent start vectors (as above)
- Several Berlekamp-Massey jobs

Summary

Main problems for factoring 1024-bit intergers:

- 1. Collecting relations
- 2. Matrix step
- One can do the collecting of relations with 8.4 million PCs in one year.
- One might be able to do the matrix step with 1024 clusters, each consisting of 4096-8192 PCs, in one year.