
Estimates for factoring 1024-bit integers

Thorsten Kleinjung, University of Bonn

Contents

GNFS Overview

Polynomial selection, matrix construction, square root computation

Sieving and cofactoring

• Strategies for cofactoring

• Estimates for different factor base sizes

Matrix step

Summary

Problem: factor

N = 135066410865995223349603216278805969938881475605667027524485

143851526510604859533833940287150571909441798207282164471551

373680419703964191743046496589274256239341020864383202110372

958725762358509643110564073501508187510676594629205563685529

475213500852879416377328533906109750544334999811150056977236

890927563

Available resources:

PC = 2.2 GHz Athlon 64 CPU, ≤ 2 GB memory

Time: 1 or 2 years

How many PCs do we need?

GNFS Overview

1. Polynomial selection

2. Collection of relations

3. Construction of the matrix

4. Matrix step

5. Rest of computation (square root)

GNFS Overview

1. Polynomial selection easy

2. Collection of relations hard

3. Construction of the matrix easy

4. Matrix step HARD

5. Rest of computation (square root) easy

Polynomial selection

f1 = 1000000001002023904806000x6

+269697895236768163056606416340x5

−6212838818608524196100227896844747498x4

−8471052513942755376507570481852462668136x3

+73860891685131025550440825288937867970123111795x2

+103239504258459269088961583772414261637624065053206x

−113943198561639198776937620503643872967091171901277555912

of degree d1 = 6 and

f2 = 514662055961724717752552412597334861x

−226511983014638262784476372319943180970205534545

of degree d2 = 1

Much more time for polynomial selection will probably give a

polynomial pair whose yield is twice as high.

Construction of the matrix and square root computation

Construction of the matrix

• Have to process 10-500 TB of sieving data

• Some parts can be done during sieving phase

• Much easier than matrix step

Square root computation

• Can be parallelized (easy)

• Can be done in a few months on one PC

Sieving and cofactoring

Aim: Find many pairs (a, b), a, b coprime, such that F1(a, b) and

F2(a, b) are L-smooth.

(In this talk: L = 242, i.e., smooth=split completely into prime

factors < 242)

1. Sieving:

• finds divisors < Bi of Fi(a, b)

• discards (a, b) if not “enough” divisors are found

2. For each surviving (a, b) compute

Fi(a, b) = SiRi (divisors < Bi in Si),

compositeness tests for R1, R2

3. Cofactoring:

• tries to factor (R1, R2)

• discards (a, b) if a factor > L is encountered

Restrictions

Only ≤ 2 GB memory ⇒ must choose Bi smaller than “optimal”

(“optimal” Bi would require 64 GB)

If Bi are small, traditional bounds for Ri will give a very low yield.

⇒ increase bounds for Ri

⇒ cofactoring needs a lot of time

We need a good strategy for cofactoring.

Cofactoring

Problem: Determine whether (R1, R2) is L-smooth.

Many available methods for factoring small numbers:

• MPQS: run time depends on size of input, “always” succeeds

• Pollards p− 1: additional parameters, run time depends on

parameters and size of input, success rate depends on

parameters and size of prime factors of input number

• ECM: similar to p− 1, but can be used several times for the

same input number

• others

Which strategy shall we use to factor R1 and R2?

Example:

Available factoring algorithms:

• MPQS

• Pollards p− 1 (B1 = 500, B2 = 10000)

Given: (R1, R2), not prime, no prime divisor < 230.

263 < R1 < 264 (smooth) R2 = 1

Example:

Available factoring algorithms:

• MPQS

• Pollards p− 1 (B1 = 500, B2 = 10000)

Given: (R1, R2), not prime, no prime divisor < 230.

263 < R1 < 264 (smooth) R2 = 1

Strategy 1: factor R1 by MPQS

time = 192µs yield = 1

Strategy 2: use p− 1, on failure use MPQS

time =? yield = 1

Details for p− 1 (B1 = 500, B2 = 10000)

time = 27.3µs (for 64-bit numbers)

probability to find a b-bit factor:

b probability

31 0.135

32 0.110

33 0.089

34 0.073

64-bit integers (composite, no prime divisor < 230)

(b1, b2) # (64-bit integers being a product of a

b1-bit prime and a b2-bit prime)

(31, 34) 7.35 · 1015

(32, 33) 7.33 · 1015

(31, 33) 5.89 · 1015

(32, 32) 2.94 · 1015

64-bit integers (composite, no prime divisor < 230)

(b1, b2) # (64-bit integers being a product of a

b1-bit prime and a b2-bit prime)

(31, 34) 7.35 · 1015

(32, 33) 7.33 · 1015

(31, 33) 5.89 · 1015

(32, 32) 2.94 · 1015

⇒ probability of success for p− 1: 0.2

Example:

Available factoring algorithms: MPQS and Pollards p− 1

Given: (R1, R2), not prime, no prime divisor < 230.

263 < R1 < 264 (smooth) R2 = 1

Strategy 1: factor R1 by MPQS

time = 192µs yield = 1

Strategy 2: use p− 1, on failure use MPQS

time = 181µs yield = 1

Example:

Available factoring algorithms: MPQS and Pollards p− 1

Given: (R1, R2), not prime, no prime divisor < 230.

263 < R1 < 264 (smooth) R2 = 1

Strategy 1: factor R1 by MPQS

time = 192µs yield = 1

Strategy 2: use p− 1, on failure use MPQS

time = 181µs yield = 1

Strategy 3: use p− 1

time = 27.3µs yield = 0.2

Strategy 4: do nothing

time = 0µs yield = 0

In general:

many available factoring methods

⇒ many strategies

-

6

time

yield

q
qq q
q q q q q

q q

Strategies for bit length (r1, r2)

Optimal strategy:

There exists an s such that

-

6

time

yield

q
qq q
q q q q q

q qe
��

��
��
��

��
��

slope s

Optimal strategy: on line of slope s such that no point above line

Sieving experiments for 1024-bit number N

Large prime bounds: 242

Lattice sieving area: 216 × 215

Prime factors of special q in [220, 232]

Memory (B1, B2) special q bounds for (R1, R2)

2 GB (1.15 · 109, 250 · 106) [50 · 1012, 260 · 1012] (2200, 2160)

1 GB (450 · 106, 100 · 106) [50 · 1012, 350 · 1012] (2200, 2160)

512 MB (200 · 106, 50 · 106) [50 · 1012, 400 · 1012] (2210, 2180)

Sieving experiments for 1024-bit number N

Large prime bounds: 242

Lattice sieving area: 216 × 215

Prime factors of special q in [220, 232]

Memory (B1, B2) special q bounds for (R1, R2)

2 GB (1.15 · 109, 250 · 106) [50 · 1012, 260 · 1012] (2200, 2160)

1 GB (450 · 106, 100 · 106) [50 · 1012, 350 · 1012] (2200, 2160)

512 MB (200 · 106, 50 · 106) [50 · 1012, 400 · 1012] (2210, 2180)

Memory number of sp. q time per sp. q number of PCs

2 GB 1.95 · 1012 135s 8.4 · 106

1 GB 2.85 · 1012 111s 10 · 106

512 MB 3.3 · 1012 116s 12 · 106

Matrix step

Extrapolate matrix size from factorisations of large numbers

Get between 6 · 109 and 12 · 109 rows/columns

Assumption: d = 8 · 109 rows/columns, w = 1.2 · 1012 non-zero

entries

⇒ need 4-5 TB to store the matrix

Matrix step - Block Wiedemann algorithm

Input: d× d matrix M over F2, output: solution(s) of Mv = 0

1. Choose random vectors x1, . . . , xm and y1, . . . , yn, some

conditions.

2. Compute scalar products 〈xk,M iyl〉 for i = 1, . . . , (1
m + 1

n)d.

3. Find linear combinations of M iyl, orthogonal to enough

xk(MT)j (Berlekamp-Massey).

4. Compute linear combinations zl =

d
n∑
i=1

ailM
iyl.

5. Now M smallzl = 0, find up to n solutions from M izl, i small.

Matrix step - Parameters

Complexity (d = 8 · 109, w = 1.2 · 1012):

Step XOR space

2 m+n
m dw w

3 O((m+n)3

n d1+ε) O((m+n)2

n d)

4 dw w

Choose m = n = 8192

Berlekamp-Massey algorithm (step 3):

• 1 PC with 500 TB disk space needs 500 years

• Can be parallelized (might be hard)

• Parts can be done during step 2

Matrix step - Matrix×vector multiplication

Use 1024 clusters, each:

• 64× 64 PCs, each 1.5 GB memory

• Gigabit network, torus topology

• handles 8 start vectors, i.e., 2 million multiplications in step 2

and 1 million in step 4

Extrapolation from existing clusters:

• Computation per multiplication: 3s

• Communication per multiplication: 5s

⇒ Time: 6 months for step 2 and 3 months for step 4

Matrix step - Problems

Computing errors:

• Orthogonality checks

• Use linearly dependent start vectors yl

• Can check intermediate results in Berlekamp-Massey

Hardware failure:

• Store intermediate results frequently

• Backup PCs

• Use linearly dependent start vectors (as above)

• Several Berlekamp-Massey jobs

Summary

Main problems for factoring 1024-bit intergers:

1. Collecting relations

2. Matrix step

• One can do the collecting of relations with 8.4 million PCs in

one year.

• One might be able to do the matrix step with 1024 clusters,

each consisting of 4096-8192 PCs, in one year.

