
A Probabilistic Trust Model for GnuPG

Jacek Jonczy†, Markus Wüthrich†, and Rolf Haenni†,‡
†University of Berne, Switzerland

‡Bern University of Applied Sciences, Switzerland
jonczy@iam.unibe.ch

Abstract

Trust networks are possible solutions for the key authentic-
ity problem in a decentralized public-key infrastructure. A
particular trust model, the so-called Web of Trust, has been
proposed for and is implemented in the popular e-mail en-
cryption software PGP and its open source derivatives like
GnuPG. In this paper, we investigate the drawbacks and
weaknesses of the current PGP and GnuPG trust model, and
we propose a new approach to handle trust and key valid-
ity in a more sophisticated way. A prototype of our solution
has been implemented and tested with the current GnuPG
release.1

1 Introduction

Due to the rapid emergence and constant evolution of vari-
ous distributed systems and applications in large, inherently
insecure networks, methods and techniques to establish in-
formation security play an increasingly crucial role. One of
the most fundamental challenges is the problem of establish-
ing a secured channel between two users of the network. For
this, classical single-key cryptography requires the two users
to previously exchange a common secret key over a secure
channel, which is impracticable for large or even global net-
works.

With the advent of public-key cryptography, the keys to
exchange are public, i.e. the channel used for the exchange
is no longer required to be secure. At first sight, this seems
to be an ideal solution for the key exchange problem, but
an important subproblem remains, namely to ensure that a
public key actually belongs to its supposed owner. We will
refer to it as the key validation problem. Note that spoofing
another’s identity is easily possible in any of several ways,
i.e. the key validation problem is anything but trivial, partic-
ularly when the two users involved have never met and know
nothing about each other.

As a solution for the key validation problem, public-key
infrastructures (PKI) have been proposed and implemented
in many different ways. One type of PKI requires one or
several central authorities responsible for issuing digital cer-
tificates for public keys. Such a certificate is an unforgeable
warranty for the binding between the involved public key and

1This research is supported by the Hasler Foundation, project no. 2042,
and the Swiss National Science Foundation, project no. PP002–102652.

its owner.2 It is of crucial importance for the reliable opera-
tion of such a centralized PKI that the certificate authorities
are fully trustworthy.

At the other end of the conceptual range are PKIs, which
avoid central certificate authorities entirely. The most promi-
nent example of such a decentralized PKI is a distributed
trust model called Web of Trust. It is used in PGP, GnuPG,
and other OpenPGP-compatible systems. The basic concept
of this particular model goes back to Zimmermann’s first
PGP release in the early 90ies, and since then it has not
changed much [13, 16]. In this paper, we will refer to it as
the PGP trust model, as suggested in [1].

Distributed trust models allow any user in the network to
issue certificates for any other user.3 The issuers of such
certificates are called introducers, who can make them pub-
licly available, typically by uploading them to key servers,
from which they are accessible to other users. Someone’s
personal collection of certificates is called key ring. In this
way, responsibility for validating public keys is delegated to
people you trust. In comparison with a centralized PKI, this
scheme is much more flexible and leaves trust decisions in
the hands of individual users. These trust decisions are fi-
nally decisive for a user to validate public keys (i.e. to accept
them as authentic) on the basis of the given local key ring.

In this paper, we will first give a short overview of the
PGP trust model. The main goal is to point out some of
its inherent weaknesses and deficiencies. To overcome these
difficulties, we will then propose a more flexible PGP trust
model, in which we propose to see the key validation prob-
lem as a two-terminal network reliability problem in a cor-
responding stochastic graph [11]. This view is similar to
the one proposed in [6], but it requires less theoretical back-
ground knowledge. In the last part of this paper, we describe
the prototype implementation of this model in GnuPG.

2 The PGP Trust Model

The PGP trust model has some particular characteristics.
First of all, (only) three levels of trust are supported: com-

2Strictly speaking, a certificate is a warranty for the binding between the
involved public key and a description of the owner [9]. Such a description
can consist of a single attribute (name, first name, birth date, e-mail address,
etc.) or a combination thereof. In the PGP context, this description is called
user ID and typically consists of an e-mail address.

3In the PGP jargon, issuing a certificate is called signing a key, and cer-
tificates are therefore called signed public keys or simply signatures.



plete trust, marginal trust, and no trust.4 The owner of the
key ring, who needs to manually assign these trust values for
all other users, automatically receives full trust.5

When a user places trust in an introducer, implicitly it
means that the user possesses a certain amount of confidence
in the introducer’s capability to issue valid certificates, i.e.
correct bindings between users and public keys. This is the
general intuition, but the actual meaning of the three trust
levels in PGP is not defined explicitly.

Key Validation in PGP. Based on such trust values, the
PGP trust model suggests to accept a given public key in the
key ring as completely valid, if either

(a) the public key belongs to the owner of the key ring,
(b) the key ring contains at least C certificates from com-

pletely trusted introducers with valid public keys,
(c) the key ring contains at least M certificates from

marginally trusted introducers with valid public keys.

To compensate for the above-mentioned ambiguity of
the trust levels, the PGP trust model allows the users
to idividually adjust the two skepticism parameters C
(also called COMPLETES NEEDED) and M (also called
MARGINALS NEEDED). In general, higher numbers for
these parameters imply that more people would be needed to
conspire against you. The default values in PGP are C = 1
and M = 2, and C = 1 and M = 3 in GnuPG. If a given
key is not completely valid according to the above rules, but
if at least one certificate of a marginally or completely trusted
introducer with a valid public key is present, then the key at-
tains the status marginally valid. Otherwise, the key is con-
sidered to be invalid.6 The distinction between marginally
valid and invalid keys is often neglected, so will we in the
sequel.

An example to illustrate the PGP trust model is the cer-
tificate graph shown in Fig. 1. An arrow from X to Y rep-
resents a certificate issued by X for Y . Gray circles indicate
complete trust (A, E, G, J , L, N ), gray semicircles indicate
marginal trust (C, D, F , M ), and white circles indicate no
trust (B, H , I , K, O). The results of the key validation are
shown for the C = 1 and M = 2. Completely valid public
keys are represented by nested circles (A, B, C, D, E, H , I ,
J , N , O). Note that all public keys with a certificate issued
by A, the owner of the key ring, are completely valid.

How Trustworthy is the PGP Trust Model? The PGP
trust model has both advantages and drawbacks. An im-
portant advantage is the simplicity of the above-mentioned
evaluation rules. This leads to a very efficient evaluation al-
gorithm, which performs on a given key ring in time linear to
its size. Another advantage is the above-mentioned adjusta-
bility of the skepticism parameters C and M , which allows

4It is common to separate unknown trust from no trust, but this has no
significance for the PGP key validation algorithm.

5This particular type of full trust is also called implicit or ultimate trust.
6A more general way of defining the validity of public keys is by means

of the so-called key legitimacy L = c/C+m/M , where c and m denote the
number of certificates from completely resp. marginally trusted introducers
with valid keys [14]. Then a key is completely valid for L ≥ 1, marginally
valid for 0 < L < 1, and invalid for L = 0.

A

C EB

F

D

I J

O

G

NL M

Owner

K

H

Figure 1. Example of a PGP key ring.

the users to express their own policy regarding the threshold
of his confidence in the PGP key validation mechanism.7

A major deficiency of the PGP trust model is that the lim-
ited levels of trust in PGP is clearly insufficient to reflect
possible varying opinions about an introducer’s trustworthi-
ness.8 In real life, it may well be that among two marginally
trustworthy introducers one of them is twice more trustwor-
thy than the other. Unfortunately, the PGP trust model does
not support such distinctions.

A similar problem arises from the limited levels of valid-
ity, which does not always allow to properly separate quite
different situations within a certificate graph. As an example,
consider two different keys with an unequal number of cer-
tificates, all from marginally trusted introducers. If in both
cases the number of certificates is beyond the threshold M ,
according to the third key validation rule, the keys will be
rated equally as completely valid. This conclusion does not
measure up to the fact that more positive evidence is avail-
able for the validity of the key with the greater number of
certificates.

Another quite severe problem arises from the pragmatic
nature of the third key validation rule. As demonstrated in
[6, 10], this can lead to quite counter-intuitive conclusions.
Consider the two key rings shown in Fig. 2. On the left hand
side, there are two certificate chains of length 3 from A to
B, each of them containing one completely trusted and one
marginally trusted introducer. On the right hand side, the
situation is very similar, except that there are more than two
(possibly infinitely many) certificate chains of length 3 from
A to B, in which the order of the two introducers is reversed.
In such a situation, one would clearly expect B to have a
higher degree of validity in the second case, but the PGP
trust model tells us to accept B in the first and reject B in the
second case (for the default values C = 1 and M = 2).

A similar type of problem arises from the fact that the
PGP trust model does not take into account the possibility of
people controlling multiple public keys. As a consequence,

7Another adjustable PGP parameter is CERT DEPTH, which defines the
maximum certification chain length. As in the example of the previous sub-
section, this parameter is often ignored.

8It is interesting to know that the OpenPGP message format specifica-
tion reserves an entire octet to store trust values: “The trust amount is in a
range from 0–255, interpreted such that values less than 120 indicate partial
trust and values of 120 or greater indicate complete trust. Implementations
should emit values of 60 for partial trust and 120 for complete trust” [3].



A

B

A

B

Figure 2. Counter-intuitive PGP key validation.

it could well happen that a key with certificates from two
marginally trusted and apparently different users is consid-
ered to be valid (for M = 2), but in reality they are issued by
the one and the same person. This is a problem of invisible
dependencies, which could easily be exploited by malicious
users to make people accept non-existing bindings between
users and keys [10].

To conclude this subsection, let us mention two features
of more sophisticated trust models, which are not available
in the PGP trust model. The first one is the ability to is-
sue recommendations (i.e. certificates relative to somebody’s
trustworthiness as a reliable introducer) or other higher level
statements in the sense of Maurer’s multi-level trust model
[12].9 The second missing feature is the support of negative,
mixed, or weighted statements as proposed in [7].

3 Probabilistic Key Validation

The overcome some of the above-mentioned deficiencies of
the PGP trust model, we propose to translate the key valida-
tion problem into an appropriate network reliability problem
[4]. Network reliability problems are well-studied in reli-
ability theory, and they have many applications in network
design and other areas.

In a general setting, the starting point is a network rep-
resented as a directed stochastic graph, where vertices are
subject to independent failures with given probabilities and
arcs (directed edges) are perfectly reliable.10 The problem
then is to compute the probabilities that the network provides
an operating connection between two, some, or all vertices.
Only the directed two-terminal problem, which is also called
source-to-terminal or s,t-connectedness problem, is relevant
for the particular application of this paper. This is the prob-
lem of computing the probability of establishing at least one
operating network path from a vertex s (the source) to an-
other vertex t (the terminal).

9The OpenPGP message format specification foresees the possible inclu-
sion of higher level certificates such as recommendations: “Signer asserts
that the key is not only valid, but also trustworthy, at the specified level.
Level 0 has the same meaning as an ordinary validity signature. Level 1
means that the signed key is asserted to be a valid trusted introducer, [. . . ].
Level 2 means that the signed key is asserted to be trusted to issue level 1
trust signatures, i.e. that it is a “meta introducer”. Generally, a level n trust
signature asserts that a key is trusted to issue level n–1 trust signatures” [3].

10In a directed stochastic graph, it is always possible to replace vertex
failures by corresponding arc failures, and vice versa [4]. Furthermore, ev-
ery undirected network can easily be transformed into a directed one.

Formulating Trust-Based Key Validation as a Net-
work Reliability Problem. If we intuitively map the s,t-
connectedness problem to the trust-based key validation con-
text, we get the following setting: the graph represents the
key ring, vertices are introducers (resp. their public keys),
arcs are certificates, and failure probabilities are (negated)
trust values assigned to introducers. In other words, a trust
value is now understood as somebody’s probability of being
a reliable introducer.11 This allows us to specify trust values
on an infinitely fine scale between 0 (no trust) and 1 (com-
plete trust).

The example in Fig. 3 depicts the subgraph obtained from
the key ring of Fig. 1, if one is concerned with the validity of
K’s public key only. The PGP trust values are replaced by
respective probabilities: 0.9 for complete trust, 0.5 and 0.6
for marginal trust, and 0.1 for no trust. Note that the trust
value assigned to K has no impact on its own key validation.

A

C

B F

G

K

0.1

0.6 0.9

0.5

source terminal

Figure 3. A PGP key ring as reliability network.

The translation into a network reliability problem offers us
now a broad range of computational techniques to solve the
key validation problem. We will first use the above example
to illustrate a simple but not very efficient method, and then
give a short overview of more advanced techniques.

Computing Network Reliabilities. Consider again the
network of Fig. 3, in which the key validation problem con-
sists in A’s attempt to validate K’s public key. For this,
there must be at least one complete certificate path from A
to K, and if no such path exists, the validity of K’s pub-
lic key cannot be established from A’s point of view. In
the example of Fig. 3, there are five certificate paths from A
to K, namely {A,B, F, K}, {A,B, G,K}, {A,C,G,K},
{A,C, G, F,K}, and {A,B,G, F,K}. Note that the last
two paths are not minimal and therefore irrelevant for the
overall network reliability. From the remaining three paths,
we can also omit the source A (who’s trust value is 1 by de-
fault) and the terminal K (who’s trust value has no impact).12

Finally, we obtain the following set of minimal paths:

minpathsK = {{B,F}, {B,G}, {C,G}}.

To calculate the network reliability for a connection from
A to K, which will be our measure for the validity of K’s

11We do not specify whether these probabilities are interpreted as fre-
quencies or as subjective degrees of belief.

12This is a slight deviation from the classical s,t-connectedness problem,
where every vertex in the path is relevant, including the source and the ter-
minal.



public key, we have to compute the probability of the set
minpathsK . The probability of a single path is simply the
product of its (stochastically independent) trust values, and
for the overall probability of the set minpathsK , we can ap-
ply the so-called inclusion-exclusion formula:

P (minpathsK) = P ({B,F}) + P ({B,G}) + P ({C,G})
− P ({B,F,G})− P ({B,F,C,G})− P ({B,C,G})
+ P ({B,F,C,G}) = 0.581.

This result is the probabilistic measure we propose for the
validity of K’s public key. Depending on A’s own validation
policy, e.g. by specifying a validity threshold λ ∈ [0, 1], the
key may be accepted as valid or not. This result is very dif-
ferent from the PGP scenario in Fig. 1, where K’s public key
is considered invalid (except for C = 1 and M = 1).

Our proposal for a probabilistic evaluation of trust net-
works solves some of the deficiencies of the PGP trust model
mentioned in Section 2. First of all, it eliminates the lim-
ited levels of trust and validity, which leads to an increased
overall flexibility. At the same time, it solves the problem of
counter-intuitive conclusions in situations like the one shown
in Fig. 2. This improves both the robustness and the coher-
ence of the results.

Other Network Reliability Methods. Applying the
inclusion-exclusion formula to a set of minimal paths is
an exact, but not a very efficient solution for the s,t-
connectedness or other network reliability problems. Reli-
ability theory provides a variety of other techniques, with a
general distinction between exact and approximate methods.

Most exact methods start by either enumerating complete
states, pathsets, or cutsets. These enumeration methods are
often combined with reduction techniques (e.g. series and
parallel reductions), decomposition techniques (e.g. Shan-
non’s decomposition, BDDs, d-DNNFs, cd-PDAGs), or so-
called sum-of-disjoint-products algorithms. Note that all ex-
act methods inherently suffer from an exponential worst-case
complexity.

Approximate methods are either lower and upper bound
estimations or sampling algorithms (e.g. Monte-Carlo, im-
portance sampling). The method implemented in GnuPG is
a Monte-Carlo sampling algorithm. For a complete and de-
tailed discussion of network reliability techniques, we refer
to the literature [2, 4].

4 Implementation

This section is devoted to the implementation of the proba-
bilistic trust model in GnuPG.13 We will give an overview of
the most important changes as well as a brief description of
the implemented algorithms. Furthermore, we will show by
an example how to use GnuPG with its new functionality.

Modification of the GnuPG Source. For the implementa-
tion of the new trust model, we have used GnuPG v.1.4.5.14

13All project related information, including download and installation in-
structions can be found under http://leeloo.unibe.ch/∼mwuethrich/bachelor.

14This is the most recent stable version on September 15th, 2006.

All affected source files can be found within the g10 folder of
the GPG source archive. The following list shows all modi-
fied or extendend files with a brief description of their func-
tionalities. For more details, we refer to [15].

gpg.c : main function and parsing of arguments passed on
the command line.

options.h : data structures to store the options passed on
the command line.

tdbio.c, tdbio.h : definition of a trust database file struc-
ture as well as all input/output related functions.

trustdb.c, trustdb.h : algorithms for public key valida-
tion.

pkclist.c : functions related to primary keys.
tdbdump.c : implementation of commands for the import

and export of owner trust values.
keyedit.c : implementation of the --edit-key command.

The most important changes affect the trustdb.c source
file. It contains now the algorithms of our probabilistic key
validation method and is the main entry point for updating
the trust database. There are two major extensions: (1) an
algorithm for the computation of minimal certificate paths,
and (2) an algorithm for the computation of the key validity
based on these paths.

The first algorithm is implemented as a breath-first search
(BFS) in the certificate graph. After the entire graph has been
searched, all minimal certificate paths are stored for each
key. The choice of a BFS algorithm has two reasons. First,
the key validation according to the original PGP trust model
is also implemented as a BFS, which allows to reuse some
code for the new algorithm. Second, by performing a BFS
(instead of a depth-first search), we avoid the production of
many non-minimal paths. For further information about this
procedure, we refer to [15].

To overcome the problem of the exponential worst-case
complexity of exact methods, we implemented the second
algorithm as a Monte-Carlo sampling process, from which
we obtain approximate solutions. The main advantage of
this method is that it performs well and is easy to imple-
ment, see [15] for details. Another possible implementation
is described in [8].

Example Usage. Consider again the example in Fig. 3. A’s
key ring contains public keys of B, C, F , G, and K. Our
goal now is to validate these keys using the extended GnuPG
implementation. We will illustrate the necessary steps in
form of respective GnuPG command line instructions.

Let us first have a look at the generic command for
executing the GnuPG program. For general information
about the possible parameters options, command, and args,
we refer to the GNU Privacy Handbook [5] or to the gpg
man page.15

gpg [options] command [args]

In order to switch to the probabilistic key validation model,
the option --trust-model must be set at the beginning.
Note that this option is only necessary the first time gpg is

15http://www.gnupg.org/(en)/documentation/manpage.en.html



called within a session.

gpg --trust-model probabilistic [options] command [args]

The command --edit-key allows us to edit key information.
For example, by supplying a user’s email address as identi-
fier, we can specify trust levels:

gpg --edit-key K@foo.bar trust

As a result of this command, the following dialog to enter a
trust value between 0 and 1 shows up. A precision up to six
decimal places is taken into account, i.e. more exact values
are rounded.

[...]
Please decide how far you trust this user to correctly
verify other user’s keys (by looking at passports,
checking fingerprints from different sources, etc.)

Enter a number between 0.0 and 1.0
0.0 means you don’t trust this person at all
1.0 means you fully trust this person
m = back to the main menu

Your decision? 0.75

After this, the key ring is reevaluated and the correspond-
ing key validities in the trust database are updated. With the
following command, the trust database can also be updated
manually:

gpg --update-trustdb

For our sample key ring, the output looks as follows:

gpg: sampling trials set to 2000, validity threshold
set to 0.6, probabilistic trust model

E53E6AC8:A <A@foo.bar> trust:1.000 valid:1.000 ok
7866C82B:C <C@foo.bar> trust:0.600 valid:1.000 ok
85ADC1BB:B <B@foo.bar> trust:0.100 valid:1.000 ok
8694CBC0:F <F@foo.bar> trust:0.500 valid:0.586 not ok
D6BAAD0F:G <G@foo.bar> trust:0.900 valid:0.640 ok
36A66930:K <K@foo.bar> trust:0.000 valid:0.581 not ok

gpg: next trustdb check due at 2006-09-15

Two supplementary options are available for the new trust
model, namely:

--sampling-trials This option specifies the number of tri-
als within the sampling algorithm used for computing
the key validity. The default value is set to 1000. A
higher value means more accurate results, but also in-
creased efficiency.

--validity-threshold This option replaces the original
skepticism parameters used in GnuPG. Any key whose
validity is equal or higher than the specified threshold
will be accepted as valid (marked with ok). Note that
a key with a value below the threshold may still be au-
thentic, but the given key ring does allow us to prove it.
The default value of the threshold is 0.5.

For the above trust database output, we used 2000 sampling
trials and a validity threshold of 0.6.

5 Conclusion

The main contribution of this paper is the proposal for a
probabilistic trust model for GnuPG. The key validation
problem has been transformed into a directed two-terminal
network reliability problem. As a result, several weaknesses
of PGP’s trust model are eliminated. The most important

improvement comes from the gradual trust values, which
then result in gradual levels of validity. Our new model
also avoids counter-intuitive scenarios like the one shown in
Fig. 2. To conclude, we think that the proposed key vali-
dation method is a reasonable, flexible, and useful enhance-
ment of the existing GnuPG functionality. At the moment, it
is not officially included in the GnuPG software, but we hope
it will at some future time.

References

[1] A. Abdul-Rahman. The PGP trust model. EDI-Forum: the
Journal of Electronic Commerce, 10(3):27–31, 1997.

[2] M. O. Ball, C. J. Colbourn, and J. S. Provan. Network relia-
bility. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L.
Nemhauser, editors, Network Models, volume 7 of Handbooks
in Operations Research and Management Science, pages 673–
762. Elsevier, 1995.

[3] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. RFC
2440: OpenPGP Message Format. IETF Network Working
Group, 1998.

[4] C. J. Colbourn. The Combinatorics of Network Reliability. Ox-
ford University Press, New York, USA, 1987.

[5] M. Copeland, J. Grahn, and D. A. Wheeler. The GNU Privacy
Handbook. The Free Software Foundation, 1999.

[6] R. Haenni. Using probabilistic argumentation for key valida-
tion in public-key cryptography. International Journal of Ap-
proximate Reasoning, 38(3):355–376, 2005.

[7] J. Jonczy and R. Haenni. Credential networks: a general model
for distributed trust and authenticity management. In A. Ghor-
bani and S. Marsh, editors, PST’05: 3rd Annual Conference
on Privacy, Security and Trust, pages 101–112, St. Andrews,
Canada, 2005.

[8] J. Jonczy and R. Haenni. Implementing credential networks. In
K. Stølen, W. H. Winsborough, F. Martinelli, and F. Massacci,
editors, iTrust’06, 4rd International Conference on Trust Man-
agement, LNCS 3986, pages 164–178, Pisa, Italy, 2006.

[9] R. Kohlas, J. Jonczy, and R. Haenni. Towards precise seman-
tics for authenticity and trust. In PST’06, 4th Annual Confer-
ence on Privacy, Security and Trust, Toronto, Canada, 2006.

[10] R. Kohlas and U. Maurer. Confidence valuation in a public-
key infrastructure based on uncertain evidence. In H. Imai and
Y. Zheng, editors, PKC’2000, Third International Workshop
on Practice and Theory in Public Key Cryptography, LNCS
1751, pages 93–112, Melbourne, Australia, 2000. Springer.

[11] G. Mahoney, W. Myrvold, and G. C. Shoja. Generic reliability
trust model. In A. Ghorbani and S. Marsh, editors, PST’05:
3rd Annual Conference on Privacy, Security and Trust, pages
113–120, St. Andrews, Canada, 2005.

[12] U. Maurer. Modelling a public-key infrastructure. In
E. Bertino, H. Kurth, G. Martella, and E. Montolivo, editors,
ESORICS, European Symposium on Research in Computer Se-
curity, LNCS 1146, pages 324–350. Springer, 1996.

[13] W. Stallings. Protect Your Privacy, a Guide for PGP Users.
Prentice Hall, 1995.

[14] W. Stallings. Cryptography and Network Security: Principles
and Practice. Prentice Hall, 3rd edition, 2003.

[15] M. Wüthrich. GnuPG and probabilistic key validation. Bach-
elor thesis, IAM, University of Berne, Switzerland, 2006.

[16] P. R. Zimmermann. The Official PGP User’s Guide. MIT
Press, 1994.


