
It's Time to Fix HTTPS

Yes, really.

Chris Palmer
noncombatant.org

Ideas developed with

Seth Schoen and Peter Eckersley
eff.org

Please note that I do not speak for any of
my past, present, or future employers.

Special thanks to

Andy Steingruebl (PayPal)
and

Christopher Soghoian
for valuable discussion

Jesse Burns (iSEC Partners) and Peter

for launching the HTTPS survey

Global PKI,
as currently implemented in

browsers,
does not work.

Everyday people do not understand
the browser PKI security model.

Nor do developers.

Nor do operations/administrators.

Usability (for all types of users)
is the number one security

problem on the internet right
now.

A key problem is perverse
incentives. Alice, Bob, and Trent

do not share the same goals,
means, and limitations.

Perverse Incentives:
Certificate Authorities

CAs are incented to sell lots of
certs at any price; to stay in the
browsers' trust root; to stay in

the good graces of law
enforcement/government.

The result is a race to the bottom:
When you hit $9.99, go back to the
top and zoom down the hill again.

("Extended validation" is the same

as "1990s validation".)

The result is that meaningless
certifications are common.

CAs will sign almost anything (non-

FQDNs...),
weak algorithms live too long,

and so on.

"I'll pay you to give someone
else a lemon."

Verisign also provides
CALEA compliance services...

Perverse Incentives:
Browser Vendors

Browser vendors are incented to make sure that
scary warnings are not their fault; to be fast, easy
to use; to make internet commerce possible, even

easy; to ship the spiffy new version before
competitor does; to avoid raising millennia-old

epistemological and ontological conundra.

As a result, browser vendors accept any CA into
the trust root. They avoid raising even true

positive warnings (including for, um, HTTP),
because some/many might turn out to be false.

(I don't have an explanation for Firefox' jihad
against self-signed certificates, however.)

Sidebar:

The browser is the ultimate
"CA". It is also the least

trustworthy.

Just get CSRF'd into visiting https://www.
firmaprofesional.com/ and...

Quiz Time!

If IE runs as Low IL and is UAC
virtualized, how can it silently

update the cert store?

A Medium-IL broker process
does the work of updating the
user's (not the machine's) CA

trust store.

Sounds like a High-IL thing to
do, if you ask me.

Especially with no user
notification or interaction!

Perverse Incentives:
Site Operators

Site operators are incented to pay the lowest
possible cost for a lemon; to shift blame and
liability to anyone else: CA, user, whoever; to

never be unavailable.

As a result, they get a perfectly good lemon for a
very fair price. Users have no idea if they are

talking to the real site. The costs of fraud,
phishing, MITM rise. Operators may punt those

back to the user.

Perverse Incentives:
People

People are incented to use the internet at
reasonable cost, without having to understand
things not even security experts understand; to
not pay the costs of fraud that is not their fault;

to talk to the true site; to have confidentiality and
integrity.

The result?

If you're not a wolf, you're a lamb.

The Basiji, the Great Firewall operators, the NSA,
spammers, phishers, dreadlocked sea captains,
and script kiddies can too-easily MITM people.

Banks may pass the costs back down to people ---
that "maximum $50 liability" means the liability

is just hidden.

Solution(s)

Prime Directive: Usability

Usability requires empathy.

Change the security model to be
one that people can understand.

If people don't understand it,
we engineered it wrong.

Secure usability requires
security assertions that:

●Can be stated in one sentence of colloquial
English.

●Could possibly be true.
●Could possibly be computed.

Let's start more modestly:

A security model that requires
only one advanced degree to understand.

More-Usable Security Assertions

"This is almost certainly the
same server you connected with

yesterday."

"You've been connecting to
almost certainly the same server

all month."

"This is probably the same
server you connected with

yesterday."

"Something seems fishy; this is
probably not the same server

you connected with yesterday.
You should call or visit your

bank/whatever to be sure
nothing bad has happened."

You guessed it: I prefer
TOFU/POP.

(Trust On First Use;
Persistence of Pseudonym)

The server's cryptographic
identifier (its certificate and the

certificate's signatures) is its
pseudonym.

There are some objections to the
TOFU/POP approach, however.

I'll consider three
famous objections now.

"But TOFU/POP Doesn't Scale"

Global PKI only "scales" if by "scale" you mean
"scales unsafely and unusably".

TOFU/POP does better than that.

More importantly, TOFU/POP works
--- unlike global PKI.

After all, you (developer, admin) have been using
TOFU/POP to log into the server as root. Maybe,

just maybe, it's also good enough for non-root
people too?

A key part of the "doesn't scale" argument is the
secure introduction problem. And it's true that

TOFU/POP suffers from the problem.

But PKI also suffers from the problem
(HTTP by default, without STS).

It's a considerably less-bad problem

than the status quo:
a false sense of security for PKI users.

"But TOFU/POP Doesn't Adapt"

Another criticism of TOFU/POP is that it does
not adapt to legitimate changes in the server's

pseudonym.

(Actually, much of the "need" to change is due to
CA problems. Oh, and actual hacks. It's hard for
a user to tell the difference between legitimate

certificate change and hacks.)

We therefore propose a new
heuristic: "trustiness".

We try to paper over the adaptation problem by

gathering information from many sources. Judge
the likelihood that the change is OK.

"But I don't have a 1:1 mapping
hostname:certificate"

We call this The Citibank Problem: every server
in the cluster has a different certificate.

(Why are they paying for that?

Some people have a rule to "never move/copy a
private key", so each server/load balancer gets its

own cert.)

The downside of this is that,
combined with the

untrsutworthiness of CAs,
it is very hard to know who we

are talking to.

Sources of Trustiness

● Infotainment in the X.509 blob
○Expiry
○CN == CNAME
○ Identity of signers in chain
○Quality of signing algorithm
○Size of public key
○Duration of validity period

■Lately I've seen certs that last until 2038.
●Revocation (CRL, OCSP, other?) clues
●Perspectives

○ "You can't fool all the people all the time"

Potential Sources of Trustiness

● DNSSEC
● Monkeysphere, Web of Trust

○ Orderly key transitions
○ Old key (co-)signs new one

● Has the certificate's signer changed?
● Future STS-like mechanisms

○ Statements that the site makes about what clients
should expect/expect in the future

Just a Simple Matter of
Pseudocode...

def trust_cert(cert, origin):
 if (cert trusted for this origin previously):
 if (cert not revoked and cert not expired):
 return Trust
 else:
 return trust_expired_or_revoked(cert, origin)
 elif (new origin)
 return trust_fresh_origin(cert, origin)
 else:
 # new cert for old origin
 return trust_changed_cert(cert, origin)

def trust_expired_or_revoked_cert(cert, origin)
 if (revoked)
 if (perspectives consensus):
 return Maybe_trust
 else:
 return Probably_MITM
 # expired
 if (no valid cert since expiration):
 # This is probably just a failure to replace
 # an expiring cert
 return Probably_trust
 else:
 return Maybe_trust

def trust_fresh_origin(cert, origin):
 if (cert not for this origin):
 if (perspectives consensus):
 return Maybe_trust
 else:
 return Probably_MITM
 elif (trusted signer) and (consensus):
 return Trust
 elif (trusted EV signer):
 return Trust
 elif (trusted signer) or (consensus):
 return Probably_trust

def trust_changed_cert(cert, origin):
 # This is really the hardest case
 if (old cert revoked) or (old cert expiring):
 return trust_fresh_origin(cert, origin)
 elif (perspectives consensus)
 if (trusted signer):
 return Trust
 else:
 return Maybe_trust
 else: # no consensus
 if (trusted signer)
 if user_opted_for_whitelist and (origin in whitelist):
 return Probably_trust
 else:
 return Maybe_trust
 else:
 return Probably_MITM

Obstacles to Improvement

Browser vendors:
"I'm not going to stick

MY neck out!"

Site operators:
"So it's been broken all along,
and we are still in business.

Why change?"

CAs:
"But we love CAs!"

Percival:
"Evite is down."

Muffy:

"What? WHAT?! Omigod,
omigod ---" hyperventilates

(MC Frontalot's new CD is great)

Signs of Progress

STS
(first step toward HTTPS/SPDY-only!)

Perspectives

Certificate Patrol

Certlock

Google now supports HTTPS for search (https:

//www.google.
com/support/websearch/bin/answer.py?

answer=173733&hl=en)

Phrases to Google For

("Web 2.0 Works Cited")

:)

Peter Gutmann's book DRAFT: http://www.cs.auckland.ac.
nz/~pgut001/pubs/book.pdf

MD5 Considered Harmful Today

Soghoian and Stamm Certified Lies

Firefox Bugzilla CNNIC

Sotirov and Zusman EV Black Hat

http://www.cs.auckland.ac.nz/%7Epgut001/pubs/book.pdf
http://www.cs.auckland.ac.nz/%7Epgut001/pubs/book.pdf
http://www.cs.auckland.ac.nz/%7Epgut001/pubs/book.pdf
http://www.cs.auckland.ac.nz/%7Epgut001/pubs/book.pdf

Kurt Seifried Breach of Trust

Moxie Marlinspike SSLStrip

Zooko's Triangle

Abandoned root certificate found in Firefox

Nasko Oskov netsekure.org

Thanks for listening!

Questions?

