
Protocol Interactions and the Chosen Protocol
Attack

John Kelsey Bruce Schneier David Wagner
Counterpane Systems U.C. Berkeley

101 E. Minnehaha Parkway C.S. Div., Soda Hall
Minneapolis, MN 55419 Berkeley, CA 94720-1776

{kelsey,schneier}@counterpane.com daw@cs.berkeley.edu

Abstract. There are many cases in the literature in which reuse of the
same key material for different functions can open up security holes. In
this paper, we discuss such interactions between protocols, and present a
new attack, called the chosen protocol attack, in which an attacker may
write a new protocol using the same key material as a target protocol,
which is individually very strong, but which interacts with the target
protocol in a security-relevant way. We finish with a brief discussion of
design principles to resist this class of attack.

1 Introduction

One of the most difficult engineering aspects of designing any secure system—
cryptographic protocol, cryptographic primitive, etc.—is identifying all of the
assumptions that may affect security. Most of the time, when designing cryp-
tographic protocols, we silently assume that the only access anyone has to the
keys involved is through the protocol steps, or other steps much like them.

However, the real world is not that clean: Tamper-resistant tokens can hold
only a few public-key/private-key key pairs at one time; users are somtimes lucky
to have even one certified public key. Given these sorts of design constraints,
it’s likely that the same private key(s) will be used for several different systems
running on the same device. These systems will probably be designed by different
people and fielded together without any analysis of their potential interactions.

A protocol may be quite secure alone, but may lose its security when another
protocol exists that can be carried out with the same key pair. In fact, it is
always possible, in principle, to defeat the security of protocol P, if we are able
to choose another protocol, Q, to be run by the same participants in parallel
with the target protocol. A general construction for protocol Q (the “chosen-
protocol” attack) will be given below. In some cases, the chosen-protocol attack
is not practical. However, on many systems such as smart cards and users’ PCs,
the attack can be both practical and effective.

In this paper, we discuss protocol interactions which can weaken the security
of one or both protocols. We then describe a new attack, the “chosen protocol”
attack, in which a new protocol is designed to interact with an existing protocol,
to create a security hole. After discussing generalities, we give several specific
examples of this attack. We then look at accidental protocol interactions. Finally,



we discuss protocol design rules that appear to render the chosen protocol attack
impossible.

2 Protocol Interactions

Let P and Q be two different protocols, both of which use the same key material,
but which do different things. These protocols are said to interact whenever
some information derived from P allows an attacker to successfully mount some
attack on Q. For example, suppose that both protocols rely for their replay-
resistance on a digitally-signed timestamp from one party of the protocol. Then
the protocols interact, since an attacker can now use his observations of the
execution of P to mount a replay attack on Q.

When P = Q, the possible protocol interactions reduce to a subset of possible
attacks on the protocol. A replay attack (replaying messages from one instance
of a protocol to attack another instance of the same protocol) is an example of
an interaction between a protocol and itself, as is a standard man-in-the-middle
attack.

There are a great many ways in which two different protocols can interact.
For example, it may be possible for a third party to simply observe the messages
in P, and then mount an attack on Q. Alternatively, it may be possible for
an attacker to mount a variant of the man-in-the-middle attack: Alice believes
she is executing protocol P with Bob, but instead, she is executing protocol P
with Mallory, who uses the information derived to execute protocol Q with Bob
in Alice’s name. In still other cases, it may be possible for Mallory to execute
protocol P in his own name with Alice, and simultaneously execute protocol Q
with Bob in Alice’s name. It is not necessary for the legitimate execution of P
to complete successfully, so long as the attack on Q is made possible.

2.1 Sharing Keys Among Many Different Protocols

The one attribute common to all protocol interactions is that they involve the
use of shared key material, either public/private key pairs or symmetric keys,
between different protocols and applications. Most systems today use a different
symmetric key or public/private key pair for each different function or applica-
tion. This generally reduces the number of protocols having access to a given key
or key pair to a manageable number. However, there are three forces pushing us
toward a world in which different applications share common key material:

1. Certification. Certification of public keys is a costly process. Relatively few
users are likely to want to maintain twenty certificates, paying a few dollars
per year for each.

2. Cryptographic APIs. As cryptographic APIs become widespread, and more
non-cryptographic applications make limited use of cryptography, it becomes
increasingly likely that many different protocols will emerge, all of which may
make use of the user’s certified public key by default.

2



3. Smart cards. Smart cards and other cryptographic tokens often have limits
on the number of key pairs they can store. If many applications are allowed
to use the same smart card, then there will likely be some use of keys for
different applications.

Already VeriSign certificates are used to provide security for PEM [Lin93,
Ken93, Bal93, Kal93, Sch95, Sch96], S/MIME [RSA96, Dus96], SSL [FKK96],
and SET [VM96]. Entrust Technologies [Cur96, Oor96] markets technology to
provide for a common key archetecture over multiple applications.

3 Accidental Interactions

There are several examples of very simple known-protocol attacks. (These at-
tacks are generally much simpler than the chosen protocol attacks.)

3.1 RSA signing and encryption

It has long been known that carelessly providing RSA signatures with an RSA
key used for encryption could lead to a simple attack: The attacker intercepts
a public-key encrypted block intended for Alice, and then presents it to her,
requesting a signature. If Alice complies, then the attacker ends up with the
decryption.

3.2 RSA signing and zero knowledge

A standard way of doing zero-knowledge proofs using RSA also provides an RSA
signing oracle for a clever attacker.[And97a, MOV97]

3.3 A Banking Protocol Interaction

In [AK97], Ross Anderson describes a potentially disasterous interaction be-
tween two mechanisms in a bank’s system for managing ATM cards. The bank
requested a program to update all its PIN numbers for a new systemwide key,
and the hardware/software vendor provided such a program, with the warning
that it should be run immediately and then deleted. This program could be used
to recover the PIN numbers of anyone’s card using a protocol interaction.

3.4 Blind and Regular Signatures

Using the same RSA modulus for both regular and blinded signatures can, nat-
urally, allow various attacks. In most blind signature schemes, the signer does
not know what he is signing; he might be signing anything. Therefore, the blind
signer can be used as a RSA signing oracle to sign arbitrary messages, which
can then be used to defraud the protocol using regular signatures.

3



3.5 Interactions Among Different Applications

One of the most interesting places we can get a protocol interaction is when
an identical protocol is used for different purposes in different applications, and
no signed or authenticated statements bind an execution of the protocol to its
specific application.

One example threat is that a user may be authorized to execute one ap-
plication on a secure server, but not another application. If both use the same
protocol to establish the user’s identity, then the user may be able to access
functions from which he should be restricted. Another threat is that the user
may voluntarily run one protocol with an outsider, who then can use this in-
formation to run another protocol with some other entity in the original user’s
name.

One fairly serious threat can come in the form of electronic mail packages
that may be set up to automatically send a digitally-signed reply of a message.
(For example, a person might be sent some large binary, with a note in the
subject line saying “hit reply to be removed from our mailing list.”)

4 The Chosen-Protocol Attack

The “chosen-protocol attack” is an attack in which some attacker convinces one
or more intended victims to accept and start using a new, tailor-made protocol,
called the “chosen protocol.” This protocol is designed specifically to interact
with some already-running protocol, called the “target protocol.” The chosen
protocol should have no obvious weaknesses, but must allow an attack on the
target protocol.

A chosen protocol can always be built to interact the security of any given
target protocol, if there are no restrictions on what the protocol steps are allowed.
This can be shown by example. Suppose there is a target protocol which uses
private key material only for signing and decrypting. If the chosen protocol gives
the attacker a decryption oracle and a signing oracle, then the attacker is trivially
able to defeat the target protocol. By installing an oracle of this type, we can
trivially break any other protocol that shares the same key material. (For that
matter, the first step of the chosen protocol could, in principle, simply be to
send all the private key material to the attacker.)

It is more interesting to consider chosen protocols that aren’t obviously dan-
gerous or weak, but that still allow the attack on the target protocol. Below, we
give a method for constructing chosen protocols which seems to satisfy this re-
quirement. However, without a rigorous definition of what a reasonable-looking
protocol is, it isn’t possible to prove that reasonable-looking chosen protocols
of this kind actually exist. One interesting definition of “reasonable-looking” is
that the protocol is not susceptible to attacks based only on the messages that
occur in this protocol. However, it is certainly not clear how to prove that any
given protocol has this property.

We can give a more general argument for why chosen protocol attacks will
generally exist for any target protocol. Here, we consider a protocol P and a

4



protocol Q which are intended to be run between Alice and Bob. In the attack,
Eve will run an instance of Q with Alice in Bob’s name, and use information
from this to run an instance of P with Bob, in Alice’s name.

Consider a normal execution of P . Each time Alice needs to generate a pro-
tocol message, she must have the information necessary to do so. Thus, that
information must be contained in messages she has received during P ’s execu-
tion, or information she already has. Each time Alice is supposed to receive some
information from a protocol message, again, she must have the information to do
so, and that information, once again, must come either from previous messages
received during P , or from information Alice already has. Now, consider an in-
stance of Eve executing P with Bob in Alice’s name, and executing Q with Alice
in Bob’s name. The first protocol message of Q that Alice sends to Eve must
contain the information needed to make the first message in P that is supposed
to come from Alice. Whatever response Eve gets from Bob, the next couple of
steps in Q can be used to recover that information from Alice and get it back
to Eve, and to form the right response to Bob’s messages. (Note that during
these steps of Q, Eve can give Alice things to put into this response message, to
accomplish her purposes.) This can continue for as long as is needed. Since Alice
has all the information Eve needs, if she is willing to use that information as
Eve wants it used, even without giving her a signing or decryption oracle, Alice
will wind up allowing Eve to attack the other protocol.

This leads to the way to foil this attack: Make certain that Alice never gives
Eve correct signatures, decryptions, MACs, etc., for any other protocol in the
chosen protocol she runs with Eve. This will be discussed further below.

4.1 Justification

At first glance, the chosen protocol attack may look like a purely academic
attack. However, we can provide some realistic scenarios for chosen-protocol
attacks:

1. The same cryptographic keys may be reused by different products. For exam-
ple, if the user’s certified keypair is used both in a home-banking product and
in a video game to confirm high scores, the lower-security product’s protocols
may be chosen to interact with the higher-security product’s protocols.

2. Infiltration of lower-security products. We might expect a company design-
ing an application to securely transmit financial or medical records over the
internet to be very careful in the design of its protocols. However, the com-
pany may reuse the same key material in some lower-security protocols used
in the same product. The design of these lower security protocols may not
be as carefully overseen as that of the high-security protocols.

3. Protocols used in commercial products can often be strongly influenced by
requests from important customers. Such requests could be used to install a
chosen protocol for this class of attack. Such protocols may wind up being
adopted later as worldwide standards.

5



5 Constructing Chosen Protocols

In this section, we present three chosen protocols which we believe to be plausi-
ble. Each is designed to work with the target protocol, so that sharing of keys
makes some degree of sense. This is not a necessary trait of chosen protocols,
although may provide plausable deniability to an attacker deliberately designing
a chosen protocol.

5.1 Agora

In [GS96], the authors introduce Agora, a simple electronic payment protocol
designed specifically for pay-per-view web pages. The protocol for making a pay-
ment can be described as follows. (In this description, Alice is buying something
from Bob.)

Protocol A: Agora (the Target Protocol):

1. Alice (the customer) sends to Bob (the merchant):
M0 = Request for a price quotation from the merchant.

2. Bob forms:
N = a running sequence number kept by the merchant,
P = the price,
X1 = MerchantCertBob, N, P ,

and sends to Alice:
M1 = X1, SIGNSKB (X1).

(He must also immediately increment N .)
3. If Alice wants to make the purchase, she verifies the certificate (including

expiration date) and signature, forms:
X2 = UserCertAlice, N, P ,

and sends to Bob
M2 = X2, SIGNSKA(X2).

4. Bob verifies Alice’s certificate, her signature, and the values of N and P . If
all is well, he delivers whatever was paid for. (In this context, this is probably
a pay-per-view web page.)

Our aim is to build a special class of man-in-the-middle attack. In our at-
tack, Alice thinks she’s carrying out Protocol B (the chosen protocol) with Bob.
Unfortunately for her, Mallory is sitting in the middle, using her protocol steps
to allow him to carry out Protocol A (the target protocol) with Bob, in Alice’s
name.

For each step in the target protocol, we determine what information Mallory
needs from Alice and from Bob in order to carry out the protocol. We can then
design the chosen protocol to allow Mallory to get that information.

For example: In Step 3, Mallory needs

M2 = X2, SIGNSKA(UserCertAlice, N, price)

6



from Alice. If he has this, he can successfully impersonate Alice to Bob. Therefor,
Mallory also needs a plausable story behind a protocol designed to get him this
information.

In light of concerns about children viewing inappropriate web pages, we might
imagine another protocol, used with the same keys and certificates, for verifica-
tion of adulthood with servers that don’t charge for viewing their pages. We will
design this chosen protocol so that it can be used by attacker Mallory to charge
Alice for the web pages he views on Bob’s page.

This age-verification protocol uses the same certificates as Agora, and works
as follows:

Protocol B: Age-Verification Protocol (the Chosen Protocol):

1. Alice sends a request to Bob to view his page:
M0 = Request to view page.

2. Bob responds by forming:
R1 = A random challenge.
M1 = R1.

(Note that R1 is designed to be the same size as the concatenation of the N
and price in the Protocol A.)

3. Alice responds by forming:
X2 = UserCertA, R1.

and sending
M2 = X2, SIGNSKA(X2).

This protocol is secure when executed on its own, even though it has been
designed specifically to subvert Protocol A.

To make this into a man-in-the-middle sort of attack, we put Mallory in
Bob’s place when Alice executes Protocol B (the age-verification protocol). Here
is how Mallory uses his man-in-the-middle status with Alice in Protocol B to
impersonate her in Protocol A:

1. Alice completex step 1 of Protocol B.
2. Mallory intercepts the message Alice sent to Bob in Step 1 of Proctocol B.
3. Mallory executes Step 1 of Protocol A with Bob.
4. Bob executes Step 2 of Protocol A with “Alice.”
5. Mallory intercepts Bob’s reply to Alice in Step 2 of Protocol A.
6. Mallory recovers N and P from M1 of Protocol A and sends them to Alice

as R1, in Step 2 of Protocol B.
7. Alice responds with Step 3 of Protocol B.
8. Mallory allows to pass through to Bob.

At this point, Bob thinks he completed Protocol A with Alice, while Alice
thinks she completed protocol B with Bob. Mallory is now free to intercept
whatever information he forced Alice to buy from Bob.

This man-in-the-middle attack can work again and again. Each time Alice
verifies her age to Mallory, he can now use her information to view web pages
on an arbitrary merchants’ pages, and stick her with the bill.

7



5.2 The Wide Mouth Frog Protocol

The Wide Mouth Frog protocol [BAN90, Sch96] is a well-known protocol for
exchanging a symmetric encryption key using a trusted third party with whom
each party shares a secret symmetric key. Its simplicity makes it an ideal example
of how the chosen-protocol attack can work on symmetric, as well as public-key,
protocols.

The key-exchange protocol, which will be our target protocol, works as
follows1:

Protocol C: Wide Mouth Frog Protocol (the Target Protocol)

1. Alice wants to establish a session key with Bob. She begins by forming:
K = a random 192-bit triple-DES key,
TA = current timestamp,

and sends to Trent, the trusted third party,
M0 = IDA, EKA(TA, IDB ,K).

2. Trent looks up the right secret key, KA, and then decrypts the message and
verifies the validity of the timestamp and IDB . If all is well, he forms

TB = current timestamp (may be different than TA),
and sends to Bob

M1 = EKB (TB , IDA,K).
3. At this point, Bob decrypts the message and verifies the timestamp and
IDA. If all is well, he now has a shared key with Alice, which he knows is
authentic and fresh.

Our chosen protocol will be built to use this trusted third party and infras-
tructure of shared keys to allow secure logins. Now, we have a user, Alice, and
a host, Mallory. This is how the basic protocol works:

Protocol D: Secure Login Protocol (the Chosen Protocol)

1. Mallory forms:
R0 = A 64-bit random number.
Tx = Current Timestamp.

and sends to Alice:
M0 = LoginChallenge, Tx, R0.

2. Alice responds by sending Trent:
M1 = LoginRequest, IDA, EKA(TA, R0, hash(passphrase), IDM ).

where TA is the current timestamp, R0 is the random number sent by Mal-
lory, and IDM and IDA are Mallory’s and Alice’s IDs.

3. Trent verifies the timestamp and IDs, and then sends to Mallory:
M2 = LoginMessage,EKM (TM , hash(R0, hash(passphrase)), IDA).

4. At this point, Mallory verifies the timestamp and the hash. Note that Mallory
only has access to the hash of the passphrase, and that outsiders never see
even that.

Now, the chosen-protocol attack works as follows:
1 We are filling in some specific values left open by the protocol’s designers.

8



1. Mallory sends IDB as R0 in the first step of Protocol D.
2. Mallory catches Alice’s response to Trent, strips away the LoginRequest

header, and sends the rest of the message off to Trent as the first step of
Protocol C.

3. Trent treats this as a valid request for a secure session with Bob from Alice.
He sends the message to Bob.

4. Mallory now intercepts all messages from Bob to Alice, and impersonates
her. Bob is convinced.

5.3 The DASS Public-Key Protocol

DASS (Distributed Authentication Security Service) is a protocol for mutual
authentication and key exchange developed by Digital Equipment Corporation
and marketed in a product called SPX [TAP90, TA91].

Protocol E: DASS (the Target Protocol)

– Protocol steps deleted for space considerations. See [Sch96].

To build a chosen protocol, we have to add some additional functionality
to the system. In this example, we add a new protocol to have Trent generate
random public keys for us, as needed.

Protocol F: Protocol for Requesting a Temporary Public Key (the Chosen
Protocol)

1. Alice forms
R0 = a random number the same length as an ID,

and sends to Trent
M0 = RequestForPK, IDA, R0.

2. Trent generates a new public key, PKT , forms
K1 = a random encryption key,

and sends back
M1 = PKEPKA(K1), EK1(SKT ), SIGNSKT (R0, PKT ).

With this, we can build a chosen-protocol attack based on being the man-in-
the-middle between Bob and Trent. We choose R0 to be some person’s ID, and
then use the signed block to convince Bob that it’s the right public key. Thus,
this protocol looks like:

1. Mallory selects
R0 = IDA,

and sends to Trent
M0 = RequestForPK, IDM , R0.

2. Trent generates a new public key, PKT , forms
K1 = a random encryption key,

and sends back to Mallory
M1 = PKEPKM (K1), EK1(SKT ), SIGNSKT (R0, PKT ).

9



3. Mallory now encrypts a random session key under Bob’s public key, including
the timestamp, key lifetime, and Alice’s ID. All this is exactly as appears in
the third message of DASS.

4. Bob sends IDA to Trent.
5. Mallory intercepts this request. He sends back SIGNSKT (R0, PKT ), recov-

ered from the second message in the chosen protocol.
6. Bob decrypts this message, and uses PKT to verify the signature on the first

message sent to Bob. Bob is now convinced he shares a secret symmetric key
with Alice, when in fact, he shares it with Mallory instead.

6 Design Principles for Avoiding Weakening Interactions

To prevent protocol interactions, we impose a few requirements on all protocols
implemented with a given key or key pair.2 If these rules of thumb are followed,
then we believe a chosen protocol attack cannot work.

1. The first and most important rule to follow is to limit the scope of each key.
A key should typically have only a small number of closely related functions.
There is sometimes a temptation to reuse keys for related applications—this
should be avoided whenever possible. If there is only one certified key pair,
it should be used to sign (and perhaps even derive) other single-use public
keys, as in [And97b, SH97]. This eliminates the overwhelming majority of
possible protocol interactions.

2. Each application, protocol, version, and protocol step or operation that can
be performed using a given key must have its own unique identifier, which
must have a fixed length, and be used in a standard way in all protocol
steps and operations. Note that it is very important that different versions
of a protocol, or the same protocol running in two different applications, be
differentiated here. The goal here is that each different use of a given key has
a different unique identifier, and that this identifier is involved in whatever
cryptographic operations are done using that key.
This guideline is similar to the design approach, fail-stop protocols, advo-
cated in [GS95]. There they suggested signing every protocol message, and
including in each message a header containing the sender’s name, the recip-
ient’s name, the protocol identifier and version number, a sequence number,
and a nonce or timestamp. The point is to ensure that, if an active attacker
injects a fake message, protocol execution will immediately halt. This al-
lows one to consider only passive attacks when verifying the confidentiality
of protocol secrets, which makes it possible to prove that secrets remain
secret; this, in turn, allows one to apply BAN logic to verify the security
of the protocol. In particular, their work on extensible fail-stop (and fail-
safe) protocols provides significant progress towards ensuring composibility
of protocols, even when private keys are reused. We conclude that the fail-
stop design approach is valuable in the context of chosen-protocol attacks,

2 Some of these rules were inspired by [And95].

10



and that including unique identifiers in each message is a powerful defensive
design technique.

3. In message authentication and signing operations, simply including the fixed
unique identifier a fixed place in the authentication operation will prevent
chosen-protocol attacks from other messages that follow the same guidelines.

4. In public- and secret-key encryption operations and key-derivation opera-
tions, the unique identifier should be used in a way that makes the message
impossible to decrypt without using the right unique identifier. There are
several straightforward ways to do this: The simplest one conceptually is
to use the protocol-identifier as a symmetric encryption key, and use it to
encrypt whatever value is to be decrypted by the receiver in a way that an
attacker cannot undo. For example:

(a) When a public-key encryption is being used to send a symmetric en-
cryption key, then that symmetric encryption key is encrypted under
the protocol-identifier first, and then under the public key.

(b) When symmetric encryption is being used, the message is first encrypted
under the protocol-identifier, and then under the real symmetric encryp-
tion key. (Note that this will not work when the order of encryption is
interchangeable, as in an OFB stream cipher.)

(c) When symmetric encryption is being used that is order independent, or
when the above guideline is too computationally expensive, the message
is encrypted under a random symmetric key, and that key is encrypted
and authenticated (in an order-dependent way, such as by using a block
cipher) first with the protocol-identifier, and then with the actual secret
symmetric key that would otherwise have encrypted the message.

(d) When a symmetric key is being derived from shared secret information
(such as might result from a Diffie-Hellman key agreement operation),
the symmetric key is derived by hashing together the shared secret in-
formation and the protocol identifier.

5. Smartcards should include support for, and enforcement of, these mecha-
nisms. Smartcards should be aware of public key reuse across protocols and
applications.

The basic guideline is that every time some key is used, there must be a
cryptographic binding between the message produced and the unique identi-
fier of that message. This binding ensures that a message in one protocol can-
not be substituted for some message in another protocol adhering to the same
guidelines. In authentication and signing operations, simply including the unique
identifier in the authenticated or signed operation is sufficient to prevent inter-
protocol reuse of the signed message. In encryption operations, trying to decrypt
a message with the wrong protocol or step identifier simply gives us an incorrect
decryption.

11



7 Conclusions

The chosen-protocol attack resonates with a fairly common theme in security:
security does not necessarily compose. Two protocols can each be secure on
their own, but when they are implemented together the composed system may
no longer be secure.

The chosen protocol attack brings to mind Bob Morris’s comments at Crypto
’96; he discussed building systems that are secure “even when they contain a
John Walker” [Mor96] or, more generally, a nameless insider intent on attacking
or subverting the system. What do you do if you’ve got an attacker on the
design team for one of the (many) cryptographic protocols you rely on? How do
you compartmentalize for robust security? The Internet owes its success to its
mass decentralization, and its clever uses of existing infrastructure components
in new and useful ways; we need to ensure that Internet security can survive in
this environment.

8 Acknowledgements

The authors wish to thank Ross Anderson, Susan Langford, Mark Lomas, James
Riordan, Paul Syverson, and all those who made comments during and after the
presentation at SPW’97 for their invaluable help in improving this paper.

References

[And95] R. Anderson, “Robustness Principles for Public Key Protocols,” Advances
in Cryptology — CRYPTO ’95, Springer-Verlag, 1995, pp. 236-247.

[And97a] R. Anderson personal communication, 1997.
[And97b] R. Anderson, “Perfect Forward Secrecy”, presented at the rump session of

Eurocrypt ’97, 1997.
[AK97] R. Anderson, M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,”

these proceedings.
[Bal93] D. Balenson, “Privacy Enhancement for Internet Electronic Mail: Part III—

Algorithms, Modes, and Identifiers,” RFC 1423, Feb 1993.
[BAN90] M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentication,”

ACM Transactions on Computer Systems, v. 8, n. 1, Feb 1990, pp. 18–36.
[Cur96] I. Curry, “Entrust Overview, Version 1.0,” Entrust Technologies, Oct. 96.

http://www.entrust.com/downloads/overview.pdf
[Dus96] S. Dusse, “S/MIME Message Specification: PKCS Security Services

for MIME,” IETF Networking Group Internet Draft, Sep 1996.
ftp://ietf.org/internet-drafts/draft-dusse-mime-msg-spec-00.txt

[FKK96] A. Freier, P. Karlton, and P. Kocher, “The SSL Protocol Version 3.0”,
ftp://ftp.netscape.com/pub/review/ssl-spec.tar.Z, March 4 1996, In-
ternet Draft, work in progress.

[GS95] L. Gong and P. Syverson, “Fail-Stop Protocols: An Approach to Designing
Secure Protocols,” Fifth International Working Conference on Dependable
Computing for Critical Applications, Sept. 1995.

12



[GS96] E. Gabber and A. Silberschatz, “Agora: A Minimal Distributed Protocol
for Electronic Commerce,” The Second USENIX Workshop on Electronic
Commerce Proceedings, USENIX Association, 1996, pp. 223–232.

[Kal93] B.S. Kaliski, “Privacy Enhancement for Internet Electronic Mail: Part IV—
Key Certificates and Related Services,” RFC 1424, Feb 1993.

[Ken93] S.T Kent, “Privacy Enhancement for Internet Electronic Mail: Part II—
Certificate Based Key Management,” RFC 1422, Feb 1993.

[Lin93] J. Linn, “Privacy Enhancement for Internet Electronic Mail: Part I—
Message Encipherment and Authentication Procedures,” RFC 1421, Feb
1993.

[Mor96] R. Morris, invited talk at Crypto ’96.
[MOV97] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, Handbook of Applied

Cryptography, p. 418, CRC Press, 1997.
[Oor96] P.C. van Ooorschot,

”Standards Supported by Entrust, Version 2.0,” Entrust Technologies, Dec
1996. http://www.entrust.com/downloads/standards.pdf

[RSA96] RSA Data Security, Inc., “S/MIME Implementation Guide Inter-
operability Profiles, Version 2,” S/MIME Editor, Draft, Oct 1996.
ftp://ftp.rsa.com/pub/S-MIME/IMPGV2.txt

[Sch96] B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons,
1996.

[Sch95] B. Schneier, E-Mail Security, John Wiley & Sons, 1995.
[SH97] B. Schneier and C. Hall, “An Improved E-Mail Security Protocol,” in prepa-

ration.
[TA91] J. Tardo and K. Alagappan, “SPX: Global Authentication Using Public Key

Certificates,” Proceedings of the 1991 IEEE Computer Society Symposium
on Security and Privacy, 1991, pp. 232–244.

[TAP90] J. Tardo, K. Alagappan, and R. Pitkin, “Public Key Based Authentication
Using Internet Certificates,” USENIX Security II Workshop Proceedings,
1990, pp. 121–123.

[VM96] Visa and MasterCard, “Secure Electronic Transaction (SET) Specification,
Books
1-3” June 1996, http://www.visa.com.cgi-bin/vee/sf/set/intro.html
or http://www.mastercard.com/set/set.htm.

This article was processed using the LATEX macro package with LLNCS style

13


