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Introduction

Vision

The goal of this open-source number theory textbook is to gather up all the core subfields of
number theory into one text. By making it open-source, everyone will be able to contribute
in terms of adding new material and improving existing material, and tailor it to their own
learning or teaching.

It is an era of mass collaboration, in mathematics and many other fields. I aim to follow
the example of other successful online textbooks such as CRing and the Stacks Project.
Because we all are good at different subfields, we will be able to achieve much more if each
person writes notes on an area they have studied well. For instance, I have found that one
of the best ways to learn a semi-advanced topic is to find an undergraduate thesis on it:
because the author has spent a long time thinking on the subject, had long conversations
with advisors, and taken time to lay out the big motivations and deeper connections.

The philosophy behind this textbook is the following. If you’d like to contribute to this
work I’d recommend following these guidelines.

1. Take a problem-oriented approach. In other words, give motivation behind abstract
theory by relating them to interesting, concrete problems.

2. Create a user-friendly learning resource: Start each chapter by telling the reader
why the material matters, what problems in number theory it solves, and how it fits
into the big picture.1 For instance, class field theory gives a way to understand field
extensions through information intrinsic to the field, it gives framework for reciprocity
laws (among many other things, see chapter 28), and it is part of the larger Langlands
program. Give a summary of the takeaway ideas after the chapter, and exercises that
help the reader conceptually grasp the material. Always motivate proofs, especially
long hard ones, and tell the reader why the big theorems matter. Make connections
between different ways of approaching a particular problems. Highlight recurring tech-
niques.

(These points have not all been implemented in the chapters here, but it is what I’m
shooting for.)

3. Be a self-contained work: This means that proofs should refer to theorems in the
text itself, possibly from a previous part (for instance, refer to the Algebraic Number

1I learned this style from Patrick Winston. You can see it in action in his textbook on Artificial Intelli-
gence.
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Theory section in the Class Field Theory section.) (I may eventually move some of
the material into appendices, such as the complex analysis background required for
analytic number theory.)

4. Connect up elementary with advanced number theory, and offer a road map of the
subject.

Some more notes:

1. All material is under a creative commons license.

2. This will be posted open-source on my website, http://web.mit.edu/~holden1/www/
math/notes.htm.

3. Please contribute! You will be credited. It doesn’t have to be finished/polished stuff—
after all, it takes much less time to edit material that’s already written than to write
it myself.

4. Much of this is in very rough shape right now.

5. Email suggestions and corrections to holden1@mit.edu.

6. (*) denotes optional material. (†) denotes theorems that will be made obsolete by
stronger theorems later (for example, the p ≡ 1 (mod n) case of Dirichlet’s theorem),
and so can be skipped.

This file was last updated August 27, 2012.
Contributors: Holden Lee, Oleg Muskarov, Teo Andrica
Thanks for proofreading: Delong Meng, Timo Keller
For a list of references, see refs.bib.
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Chapter 1

Factorization and Divisibility

§1 Look at the exponent

Theorem 1.1: We have that

ordp(n!) =
∞∑
k=1

⌊
n

pk

⌋
=

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·

Given that n =
∑r

k=0 akp
k, find

ordp(n!) =
n−

∑r
i=0 ai

p− 1
.

Proof.

Example 1.2 (AMC ??): Let x and y be positive integers such that 7x5 = 11y13. The
minimum possible value of x can be written in the form acbd where a, b, c, d are positive
integers. Compute a+ b+ c+ d.
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Chapter 2

Modular Arithmetic

§1 Modular Arithmetic

Let a, b be integers and let m be a positive integer. We say that a and b are congruent
modulo m if m divides a− b. This is denoted as a ≡ b mod m. If m does not divide a− b,
then we write a 6≡ b mod m. The relation a ≡ b for integers a, b has many of the same
properties as the relation a = b.

Proposition 1.1: The following properties hold for integers a, b, c and positive integers m.

1. a ≡ a mod m;

2. If a ≡ b mod m, then b ≡ a mod m;;

3. If a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m;

4. If ai ≡ bi mod m for 1 ≤ i ≤ n, then a1 + a2 + · · ·+ an ≡ b1 + b2 + · · ·+ bn mod m;

5. If a+ b ≡ c mod m, then a ≡ c− b mod m;

6. If a ≡ b mod m, then a+ c ≡ b+ c mod m;

7. If ai ≡ bi mod m, then a1a2 · · · an ≡ b1b2 · · · bn mod m;

8. If a ≡ b mod m, then ac ≡ bc mod m;

9. If a ≡ b mod m, then an ≡ bn mod m for all positive integers n;

10. If a ≡ b mod m and f(x) is a polynomial with integer coefficients, then f(a) ≡ f(b)
mod m.

Proof. The above properties can be proven as follows:

1. m | a− a = 0 for all m.

2. As m | a− b, a− b = km. Then b− a = (−k)m, so b ≡ a mod m.

3. As m | a− b, b− c, we have m | (a− b) + (b− c) = a− c. Hence c ≡ a mod m.

5
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4. As m | ai − bi for 1 ≤ i ≤ n, we have m | (a1 − b1) + (a2 − b2) + · · ·+ (an − bn). Hence
a1 + a2 + · · ·+ an ≡ b1 + b2 + · · ·+ bn mod m.

5. As m | (a+ b)− c, we have m | a− (c− b). Hence a ≡ c− b mod m.

6. As m | a − b and m | c − c, we have m | (a − b) + (c − c) = (a + c) − (b + c). Hence
a+ c ≡ b+ c mod m.

7. As m | ai− bi, we have ai− bi = tim for integers ti and 1 ≤ i ≤ n. Hence a1a2 · · · an =
(b1+t1m)(b2+t2m) · · · (bn+tnm). Expanding the left side gives the form b1b2 · · · bn+tm
for some integer t. Hence a1a2 · · · an ≡ b1b2 · · · bn mod m.

8. If m | a− b, then m | c(a− b) = (ca)− (cb). Hence ca ≡ cb mod m.

9. Set ai = a and bi = b for 1 ≤ i ≤ n and use result 7.

10. Set f(x) = c0+c1x+· · ·+cnxn. Then f(a)−f(b) = c1(a−b)+c2(a2−b2)+· · ·+cn(an−bn).
All of these terms are divisible by a − b, hence a − b | f(a) − f(b). As m | a − b, we
have thus m | f(a)− f(b). Hence f(a) ≡ f(b) mod m as desired.

Proposition 1.2: 1. If a ≡ b mod m, then gcd (a,m) = gcd (b,m).

2. a ≡ b mod m if and only if a and b have the same remainder upon division by m.

3. a ≡ b mod mi for 1 ≤ i ≤ n if and only if a ≡ b mod lcm (m1,m2, · · · ,mn).

4. If ka = kb mod m, then a ≡ b mod
(

m
gcd (m,k)

)
. In particular, if gcd (m, k) = 1, then

a ≡ b mod m.

Proof. We show the desired results as follows:

1. As a ≡ b mod m, we have m | a − b, and thus a − b = tm for some integer t.
Let d1 = gcd (a,m), d2 = gcd (b,m). Then d1 | a,m, so d1 | a − tm = b. Hence
d1 | gcd (b,m) = d2. We may similarly show d2 | d1. As d1, d2 > 0, we have thus
d1 = d2.

2. Let a = mq1+r1, b = mq2+r2, where 0 ≤ r1, r2 < m. Then a−b = m(q1−q2)+(r1−r2).
We have a ≡ b mod m iff m | a − b, which is in turn equivalent to m | m(q1 − q2) +
(r1 − r2). This is equivalent to m | r1 − r2. As |r1 − r2| < m, we have m | r1 − r2 iff
r1 − r2 = 0, or r1 = r2. This achieves the desired result.

3. If mi | a − b for 1 ≤ i ≤ n, then a − b is a common multiple of the mi and hence is
divisible by lcm (m1,m2, · · · ,mn). On the other hand, if lcm (m1,m2, · · · ,mn) | a− b,
then mi | a− b for all i. This proves our result.

4. Let d = gcd (m, k). Write k = dk1,m = dm1; then gcd (m1, k1) = 1. As k(a− b)/m =
k1(a − b)/m1 is an integer, and as gcd (m1, k1) = 1, we must have m1 | a − b. As
m1 = m

gcd (m,k)
, we achieve the desired result.

6
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Problem 1.3: Verify the following congruences:

1. 270 + 370 ≡ 0 mod 13;

2. 32009 ≡ 3 mod 10;

3. (20719 − 41)10 ≡ 24 mod 100;

4. 225 ≡ −1 mod 641.

Proof. 1. We have 26 ≡ −1 mod 13. Hence 270 = 24 · (26)11 ≡ −24 ≡ 10 mod 13.
We have 33 ≡ 1 mod 13. Hence 370 = 3 · (33)23 ≡ 3 · 123 ≡ 3 mod 13. Hence
270 + 370 ≡ 10 + 3 ≡ 0 mod 13.

2. We have 34 = 81 ≡ 1 mod 10. Hence 32009 = 3 · (34)502 ≡ 3 · 1502 ≡ 3 mod 10.

3. We have 74 = 2401 ≡ 1 mod 100. Hence 20719 ≡ 719 = 73 · (74)4 ≡ 73 · 14 = 343 ≡ 43
mod 100. Hence 20719 − 41 ≡ 2 mod 100. But then (20719 − 41)10 ≡ 210 = 1024 ≡ 24
mod 100.

4. We have 641 = 5 · 27 + 1 = 54 + 24. Hence 5 · 27 ≡ −1 mod 641 and 54 ≡ −(24)
mod 641. Then we have 225

= 232 = 24 · (27)4 ≡ −(54)(27)4 = −(5 · 27)4 ≡ (−1)5 = −1
mod 641.

Remark 1.4: If we define the Fermat numbers as in the lecture on greatest common divisors
and least common multiples, it may be verified that F0, F1, · · · , F4 are prime. The above
result shows that F5 is not prime; it has been computed that none of F5 through F20 are
prime. It is still an open question as to whether there are any k > 4 for which Fk is prime.

Problem 1.5: Find the last digit of:

1. 22312 − 4415;

2. 91003 − 7902 + 3801.

Proof. 1. We have 22312 ≡ 312 ≡ (34)4 ≡ 13 ≡ 1 mod 10. Similarly, 4415 ≡ 415 ≡ (45)3 ≡
43 ≡ 4 mod 10. Hence 22312 − 4415 ≡ 1− 4 ≡ 7 mod 10, so its last digit is 7.

2. We have 91003 ≡ (−1)1003 ≡ −1 ≡ 9 mod 10. In addition, 7902 ≡ 49451 ≡ (−1)451 ≡ −1
mod 10. Finally, 3801 ≡ 3 · (34)200 ≡ 3 · 1200 ≡ 3 mod 10. Hence 91003 − 7902 + 3801 ≡
(−1)− (−1) + 3 ≡ 3 mod 10, so the last digit is 3.

Problem 1.6: Prove that for integers x, y and prime p, we have (x+ y)p ≡ xp + yp mod p.

Proof. The binomial theorem gives (x+y)p =
(
p
0

)
xpy0+

(
p
1

)
xp−1y1+· · ·+

(
p
p−1

)
x1yp−1+

(
p
p

)
x0yp.

As proved in the previous day’s lecture, p |
(
p
k

)
for 1 ≤ k ≤ p−1. Hence p | (x+y)p−(xp+yp),

so (x+ y)p ≡ xp + yp mod p.

7
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Problem 1.7: Show that if p is a prime and 0 ≤ k ≤ p−1 is an integer, then
(
p−1
k

)
≡ (−1)k

mod p.

Proof. The case k = 0 is trivial. If k ≥ 1, we have p− 1 ≡ −1 mod p, p− 2 ≡ −2 mod p,
and so on till p − k ≡ −k mod p. Hence

(
p−1
k

)
k! = (p − 1)(p − 2) · · · (p − k) ≡ (−1)kk!

mod p. As gcd (p, k!) = 1, we have thus
(
p−1
k

)
≡ (−1)k mod p.

Residue Classes
Given m a positive integer, we say that two integers a and b belong to the same residue

class modulo m if a ≡ b mod m - that is, if they have equal remainder upon division by m.
Congruence modulo m divides the set of integers Z into m disjoint residue classes, commonly
denoted by a+mZ for a = 0, 1, · · · ,m− 1 and defined as a+mZ = {a+mk : k ∈ Z}.

A set S of integers is called a complete set of residue classes modulo m if for each
0 ≤ i ≤ m− 1 there is some s ∈ S such that s ≡ i mod m. It is obvious that any set S of
m consecutive integers is a complete set of residue classes modulo n for all 1 ≤ n ≤ m.

Problem 1.8: Prove that:

1. n2 ≡ 0, 1 mod 3;

2. n2 ≡ 0,±1 mod 5;

3. n2 ≡ 0, 1, 2, 4 mod 7;

4. n3 ≡ 0,±1 mod 9;

5. n4 ≡ 0, 1 mod 16.

Proof. 1. For all n, n = 0,±1 mod 3. Hence n2 ≡ 0, 1 mod 3.

2. For all n, n ≡ 0,±1,±2 mod 5. Hence n2 ≡ 0, 1, 4 ≡ 0, 1,−1 mod 5.

3. For all n, n ≡ 0,±1,±2,±3 mod 7. Hence n2 ≡ 0, 1, 4, 2 mod 7.

4. For all n, n = 3k, 3k ± 1. If n = 3k, then (3k)3 = 27k3 ≡ 0 mod 9. If n = 3k ± 1,
then n3 = 27k3 ± 27k2 + 9k ± 1 ≡ ±1 mod 9. Hence for all n, n3 ≡ 0,±1 mod 9.

5. If n = 2k, then n4 = 16k4 ≡ 0 mod 16. If n = 2k + 1, then n2 = 1 + 4k + 4k2 =
1 + 4k(k + 1). Since k(k + 1) is even for all k, we may write k(k + 1) = 2s. Hence
n2 = 1 + 8s. Thus n4 = 64s2 + 16s+ 1 ≡ 1 mod 16.

Problem 1.9: Prove that if p | x2 + y2, where p = 3 or p = 7, then p | x and p | y.

Proof. We first deal with the case p = 3. If 3 | x, then 3 | y, and vice versa. Suppose that
3 | x2 + y2 and 3 - x, y. Then x2 + y2 ≡ 0 mod 3, and x2, y2 6= 0 mod 3. Hence x2 ≡ y2 ≡ 1
mod 3, so x2 + y2 ≡ 2 mod 3. Contradiction; hence 3 | x, y. Now we take the case p = 7.
If 7 | x, then 7 | y, and vice versa. If 7 | x2 + y2, but 7 - x, y, then we have x2 + y2 ≡ 0
mod 7 and x2, y2 = 1, 2, 4 mod 7. We may check that no two of {1, 2, 4} add to 0 modulo
7. Contradiction; hence 7 | x, y.

8
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Problem 1.10: Let a and m be positive integers. Then S = {1 · a, 2 · a, · · · ,m · a} is a
complete set of residue classes modulo m iff gcd (a,m) = 1.

Proof. Suppose that gcd (a,m) = 1. If S is not a complete set of residue classes modulo
m, then we have ia ≡ ja mod m for i 6= j. Hence m | a(i − j). As gcd (a,m) = 1, we
have m | i − j. But as i > 1 and j < m, we have −(m − 1) < i − j < m − 1. Hence
i − j = 0, so i = j. Contradiction; hence S is a complete set of residue classes modulo
m. Now assume that S is a complete set of residue classes modulo m, and suppose that
d = gcd (a,m) > 1. Set a = da1,m = dm1, where gcd (a1,m1) = 1 and m1 < m. Then
we have m1a = m1a1d = a1(m1d) = a1m ≡ ma ≡ 0 mod m. Hence S cannot contain m
distinct elements modulo m, so S cannot be a complete set of residue classes modulo m.
Contradiction; hence gcd (a,m) = 1.

Problem 1.11: For any positive integer m, any integer a with gcd (a,m) = 1, and any
integer b, there is some integer x with ax ≡ b mod m. The set of all such x form a residue
class modulo m.

Proof. By the previous result, the set S = {a · 1, a · 2, · · · , a ·m} is a complete set of residue
classes modulo m. Hence there is exactly one element x1 ∈ S with a · x1 ≡ b mod m. Now
we must only show that the solution set to this congruence is a residue class modulo m.

If we have some x2 ∈ Z with ax2 ≡ b mod m, then we have ax1 ≡ ax2 mod m. Hence
as gcd (a,m) = 1, we have x1 ≡ x2 mod m. Thus x1, x2 are in the same residue class
modulo m. Conversely, if x1 and x2 are in the same residue class modulo m, then we have
x1 ≡ x2 mod m. Hence b ≡ ax1 ≡ ax2 mod m, so ax2 ≡ b mod m. It follows that the set
of solutions to ax ≡ b mod m forms a residue class modulo m.

Problem 1.12: Find all solutions to the congruence:

1. 2x ≡ 3 mod 5;

2. 3x ≡ 1 mod 10;

3. 15x ≡ 5 mod 20.

Proof. We give the following solutions:

1. As x = 4 satisfies the congruence, and as gcd (2, 5) = 1, the solution set is the residue
class 4 + 5Z.

2. As x = 7 satisfies the congruence, and as gcd (3, 10) = 1, the solution set is the residue
class 7 + 10Z.

3. As gcd (15, 20) 6= 1, we must reduce the congruence to a different modulus. We may
reduce the congruence to 3x ≡ 1 mod 4, as 4 = 20

gcd (5,20)
. Then x = 3 satisfies this

congruence; hence the solution set is the residue class 3 + 4Z.

9
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Problems

1. Prove the congruences:

(a) 225 + 326 ≡ 2 mod 11;

(b) 13682 ≡ 1 mod 7;

(c) (21103 − 1336)2 ≡ 4 mod 11;

(d) 211·31 ≡ 2 mod 11 · 31

2. Determine the last two digits of:

(a) 7129;

(b) 22910 + 3710.

3. Determine all natural numbers n such that:

(a) 5 | 2n + 3n;

(b) 7 | 3n − 2.

4. Prove that the sequence an = 2n − 3 for n ≥ 0 has infinitely many terms divisible by
5 and infinitely many terms divisible by 13 but no terms divisible by 5 · 13.

5. Determine all integers x, y, z with:

(a) x2 + y2 = 32008;

(b) x4 + y4 + z4 = 2100.

6. Let p1 < p2 < · · · < p31 be prime numbers such that 30 evenly divides p4
1 +p4

2 +· · ·+p4
31.

Determine p1, p2, and p3.

7. Determine all solutions of the congruence:

(a) 5x+ 2 ≡ 0 mod 11;

(b) 10x+ 25 ≡ 0 mod 215;

8. Determine all primes p and q such that p+ q = (p− q)3.

9. Let a be an odd integer. Prove that a2m + 22m and a2n + 22n are relatively prime for
all distinct positive integers n and m.

10. Determine all positive integers for which n! + 5 is a perfect cube.

11. Prove that if a ≡ b mod n then an ≡ bn mod n2. Is the converse true?

12. Determine all n such that 1! + 2! + · · ·+ n! is a perfect power.

§2 Chinese remainder theorem

10



Chapter 3

Arithmetical Functions

§1 Arithmetical functions

Definition 1.1: An arithmetical function is a function f defined on N.

1. If
f(mn) = f(m)f(n) (3.1)

for every m and n relatively prime, then f is multiplicative.

2. If (3.1) holds for every m,n ∈ N, then f is completely multiplicative.

Note that if n = pa1
1 · · · pamm is the prime factorization of n, then

f(n) =

{
f(pa1

1 ) · · · f(pamm ) if f is multiplicative,

f(p1)a1 · · · f(pm)am if f is completely multiplicative.

§2 Number of divisors

§3 Totient

§4 Sum of divisors

§5 Möbius function

§6 Sums of digits

§7 Finite calculus

Theorem 7.1 (Summation by parts, Abel summation): Suppose that u is an arithmetic
function, and let

U(x) =
∑
n≤x

u(x).

11
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Then for m,n ∈ N
n∑

x=m

u(x)v(x) = U(n)v(n)− U(m− 1)v(m− 1)−
n∑

x=m

U(x− 1)(v(x)− v(x− 1)).

If 0 ≤ a < b and v has continuous derivative on a < x < b, then∑
a≤x≤b

u(x)v(x) = U(b)v(b)− U(a)v(a)−
∫ b

a

U(x)v′(x).

Proof. We imitate the proof of integration by parts. For a function f define the function

∆−(f) = f(x)− f(x− 1).

This is the discrete analogue of differentiation. It is the inverse of summation in the sense
that by telescoping,

n∑
x=m

∆−(f) = f(n)− f(m− 1). (3.2)

Note that ∆−(U) = u. We have the “product rule”

∆−(uv) = u(x)v(x)− u(x− 1)v(x− 1)

= (u(x)− u(x− 1))v(x) + u(x− 1)(v(x)− v(x− 1))

= ∆−(u)v + E−u∆−(v)

where E− is the left shift operator (E−f)(x) = f(x− 1). Replacing u by U and rearranging
gives

uv = ∆−(Uv)− E−U∆−(v).

Summing over m ≤ x ≤ n and telescoping using (3.2) gives

n∑
x=m

u(x)v(x) = U(n)v(n)− U(m− 1)v(m− 1)−
n∑

x=m

U(x− 1)(v(x)− v(x− 1)).

When v has continuous derivative, noting U(t) = U(btc), we have

n∑
x=m

U(x− 1)(v(x)− v(x− 1)) =
n∑

x=m

∫ x

x−1

U(t)v′(t) dt

=

∫ n

m−1

U(t)v′(t) dt.

For general a, b, since U is constant on (bbc , b) and (a, bac+ 1),

∑
a<x≤b

u(x)v(x) =

bbc∑
x=bac+1

u(x)v(x)

= U(bbc)v(bbc)− U(bac)v(bac) +

∫ bbc
bac

U(t)v′(t) dt

= U(b)v(b)− U(a)v(a) +

∫ b

a

U(t)v′(t) dt

12
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Interesting: (Putnam ??) Suppose that a is a real number such that all numbers
1a, 2a, 3a, . . . are integers. Prove that a is also an integer.

13
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Chapter 4

Multiplication modulo n

§1 Order of an element

In this chapter we will be concerned with the multiplicative structure of numbers modulo
n. We will be especially interested in the values taken by powers of an element modulo n.
We find that they form a repeating pattern, and under certain relative primality conditions,
start each cycle at 1. For example,

30 ≡ 1 (mod 5)

31 ≡ 3 (mod 5)

32 ≡ 4 (mod 5)

33 ≡ 2 (mod 5)

34 ≡ 1 (mod 5)

35 ≡ 3 (mod 5),

so the powers of 3 cycle 1, 3, 4, 2, . . . modulo 5. In particular, we get back to 1 in 4 steps:
34 ≡ 1 (mod 5). Hence we call 4 the order of 3.

Definition 1.1: Let n > 1 and let a be an integer relatively prime to a. The order of a
modulo n is the smallest positive integer m such that am ≡ 1 (mod n). In symbols,

ordn(a) = min {m ∈ N : am ≡ 1 (mod n)} .

Note that the order is well-defined for all a relatively prime to n: Indeed, there are only a
finite number of residues modulo n, so two powers of a must be equal modulo n. So suppose
0 < m1 < m2 and

am1 ≡ am2 (mod n).

Since a is relatively prime to n, we can take inverses to find am2−m1 ≡ 1 (mod n).

Our first result is that the set of all positive integers k for which ak ≡ 1 (mod m) is
completely determined by its smallest element, i.e. the order. In the case above, the set of
all m such that 3m ≡ 1 (mod 5) is exactly the set of multiples of 4.

Proposition 1.2: Let n > 1 and a ⊥ n.

15
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1. The set of m such that am ≡ 1 (mod n) is exactly the set of multiples of ordn(a). In
other words,

am ≡ 1 (mod n) ⇐⇒ ordn(a) | m.

2. The numbers

1, a, . . . , aordn(a)−1

are all distinct, and every power of a is congruent to one of these.

Proof. Let d = ordn(a).

1. If d | m, then write m = dk. We have

am ≡ (ad)k ≡ 1k ≡ 1 (mod n).

Conversely, suppose that am ≡ 1 (mod n). We use the same technique as [gcd?],
noting that we picked ordn(a) to be the least positive integer with this property. Using
division with remainder, write

m = dk + r, 0 ≤ r < m.

We have

ar = am−dk = ama−dk ≡ am ≡ 1 (mod n).

Since d is the least positive integer for which ad ≡ 1 (mod n), and 0 ≤ r < d, we must
have r = 0. Hence d | m.1

2. For the second part, writing m = dk + r as above we note that

adk+r = (ad)kar ≡ ar (mod n).

If 0 ≤ r1 < r2 < ordn(a), then 0 < r2 − r1 < ordn(a) implies ar2−r1 6≡ 1 (mod n) and
hence ar1 6≡ ar2 (mod n).

Now we have an abstract description of the numbers m such that am ≡ 1 (mod n). We
know there is some positive integer with this property, and that all others are multiples of
that number. But we would like something more concrete: is there some m depending on n,
so that we will always have am ≡ 1 (mod n)? The next section will answer that question.

§2 Euler’s theorem and Fermat’s little theorem

Theorem 2.1 (Euler’s theorem): Let n > 1 be an integer. For any integer a relatively
prime to n, ordn(a) | ϕ(n) and

aϕ(n) ≡ 1 (mod n).

1For another way to phrase this proof, see Problem 7.1.
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Corollary 2.2 (Fermat’s little theorem): Let p be a prime. For any integer a,

ap ≡ a (mod p).

If a 6≡ 0 (mod p), then

ap−1 ≡ 1 (mod p).

Let G be the set of invertible residues modulo n. We present two proofs.

Proof 1. Let ma denote the function G→ G defined by

ma(g) = ag.

Note that this is an invertible function as its inverse is

m−1
a (g) = a−1g.

Hence it is a bijection G→ G. This means that the elements ag, g ∈ G are an reordering of
the elements of G. Hence ∏

g∈G

ag ≡
∏
g∈G

g (mod n).

Dividing both sides by
∏

g∈G g and noting |G| = ϕ(n) gives

aϕ(n) ≡ 1 (mod n).

Proof 2. The main idea is that there are ϕ(n) possible invertible residues modulo n, and
so the number of elements in the set H := {am mod n : m ∈ N} must be a divisor of ϕ(n).
To show this we show that “translates” of this set cover all ϕ(n) nonzero residues without
overlap. The fact that H has nice multiplicative structure will be essential.

First note the following facts.

1. 1 ∈ H. (This is because 1 = a0.)

2. If h ∈ H then h−1 ∈ H. (If h ≡ am (mod n) then h−1 ≡ a−m (mod n).)

3. If h1, h2 ∈ H then h1h2 ∈ H. (If hj ≡ amj (mod n) then h1h2 ≡ am1+m2 (mod n).)

Given two nonzero residues b, c modulo p, we write b ∼ c if b
c
∈ H. We claim that ∼ is an

equivalence relation. We check the following.

1. b ∼ b: This holds by item 1 above, since b
b

= 1.

2. If b ∼ c then c ∼ b: This holds by item 2 above, since b
c

= c
b
.

3. If b ∼ c and c ∼ d then b ∼ d: This holds by item 3 above since b
d

= b
c
· c
d
.

17
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Thus G is split into equivalence classes. If C is an equivalence class and c is any element in
C, then we have

C = {d : d ∼ c} =

{
d :

d

c
∈ H

}
= {ch : h ∈ H} .

Since multiplication by c is invertible, C has |H| elements. (It is the RHS that suggests the
sets C are “translates” of H.)

Thus, letting [G : H] denote the number of equivalence classes, we have

|G| = [G : H]|H|.

Hence |H| divides |G| = ϕ(n). But by Proposition 1.2(2), |H| = ordn(a). Since ordn(a) |
ϕ(n), by Proposition 1.2(1), we get

aϕ(n) ≡ 1 (mod n).

Although the first proof is shorter, the first reveals hints at some important ideas with
broad generalizations, which we will discuss in Section 4.

Proof of Corollary 2.2. Since ϕ(p) = p− 1 and the invertible residues modulo p are exactly
the nonzero residues, we get

ap−1 ≡ 1 (mod p)

for a 6≡ 0 (mod p). Multiplying by a gives the first statement for a 6≡ 0 (mod p). If a ≡ 0
(mod p) the first statement obviously holds.

Remark 2.3: The converse of Fermat’s little theorem is not true: if ap ≡ a (mod p) for all
a, then p is not necessarily prime. For example, 211·31 ≡ 2 mod 11 · 31, but 11 · 31 is not
a prime. Indeed, there are certain numbers n such that for all integers a, we have an ≡ a
mod n with n not a prime. Such numbers are called Carmichael numbers, and the first few
are given by n = 561, 1105, 1729, 2465.

§3 Examples

3.1 Using Euler’s theorem

Without further ado, we give some applications of Fermat’s little theorem and Euler’s theo-
rem. The first, most popular application is in finding large powers modulo a certain number.
While before, we had to evaluate a, a2, a3, . . . until we got back to 1, our work is now shorter.

Example 3.1: Find 31006 (mod 2012).
The prime factorization of 2012 is 22 · 503, so ϕ(2012) = 2 · 502 = 1004. As 3 is relatively

prime to 2012, by Euler’s Theorem

31006 ≡ 32 ≡ 9 (mod 2012).

“Find big power modulo n problem”
“Tower of exponents problem”
Remark about “thinking backwards”

18
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Example 3.2: Show that for all primes p ≥ 7, the number 11 · · · 1︸ ︷︷ ︸
p−1

is divisible by p.

Solution. The key to this problem is writing an algebraic expression for 11 · · · 1︸ ︷︷ ︸
p−1

. By the

geometric series formula,

11 · · · 1︸ ︷︷ ︸
p−1

= 1 + 10 + · · ·+ 10p−2 =
10p−1 − 1

9
.

Because p - 10, by Fermat’s little theorem 2.2 we have

10p−1 ≡ 1 mod p =⇒ p | 10p−1 − 1.

Because gcd (9, p) = 1, we have (10p−1 − 1)/9 ≡ 0 mod p as desired.

3.2 Computing the order

The following proposition gives practical ways to compute the order of an element.

Proposition 3.3: Let n > 1, let a be an integer relatively prime to n, and set d = ordn(a).

1. (Power of the base)

ordn(ak) =
d

gcd (d, k)
.

2. (Multiplying the base) Let d = ordn(a), c = ordn(b). If gcd (d, c) = 1, then ordn(ab) =
dc.

3. (Multiplying the modulus) Let the prime factorization of n be n = pα1
1 p

α2
2 · · · p

αk
k . Let

di = ordpαii (a). Then

d = lcm(d1, d2, . . . , dk).

Warning: It is not necessarily true that ordn(ab) = lcm(ordn(a), ordn(b)).

Proof. 1. Set m = gcd (d, k). Write d = md1, k = mk1, where gcd (d1, k1) = 1. Set
t = ordn(ak). Then we have

(ak)d1 = amk1d1 = (ad)k1 ≡ 1 mod n.

Hence t ≤ d1. On the other hand, akt = (ak)t ≡ 1 mod n. Then we have d | kt, hence
d1 | k1t. As d1, k1 are relatively prime, we have d1 | t, hence d1 ≤ t. It follows that
t = d1 as desired.

2. Set e = ordn(ab). Then we have (ab)e ≡ 1 mod n. Hence (ace)(bce) = ace(bc)e ≡
ace ≡ 1 mod n. Hence d | ce. As gcd (d, c) = 1, we have d | e. Analogously, we have
(ade)(bde) = (ad)ebde ≡ bde ≡ 1 mod n. Hence c | de, so c | e. As gcd (d, c) = 1, we
have dc | e. However, we have (ab)dc = (ad)c(bc)e ≡ 1 · 1 = 1 mod n. Hence dc = e as
desired.
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3. Set e = ordn(ab). Then we have (ab)e ≡ 1 mod n. Hence (ace)(bce) = ace(bc)e ≡
ace ≡ 1 mod n. Hence d | ce. As gcd (d, c) = 1, we have d | e. Analogously, we have
(ade)(bde) = (ad)ebde ≡ bde ≡ 1 mod n. Hence c | de, so c | e. As gcd (d, c) = 1, we
have dc | e. However, we have (ab)dc = (ad)c(bc)e ≡ 1 · 1 = 1 mod n. Hence dc = e as
desired.

Problem 3.4: Let a > 1 and n be positive integers. Show that n divides ϕ(an − 1).

Proof. We have that the order of a modulo an − 1 is n. But we have ordan−1(a) | ϕ(an − 1),
hence n | ϕ(an − 1) as desired.

Note that trying to use the formula for ϕ(m) in terms of the prime factorization of m
doesn’t work for this problem.

Problem 3.5: Determine all positive integers n such that n divides 2n − 1.

Proof. We shall show that n = 1 is the only solution. Suppose that n | 2n − 1 for n > 1.
Then n must be odd. Let p be the least prime divisor of n; then 2n ≡ 1 mod p. Write
d = ordp(2). Then d > 1 and d | n. Hence p ≤ d since p is the least prime divisor (and hence
least divisor greater than 1) of n. But by Fermat’s little theorem, 2p−1 ≡ 1 mod p. Hence
d | p− 1 - that is, d ≤ p− 1. Hence p ≤ p− 1. Contradiction; hence no such n exist.

Problem 3.6: Let a be a positive integer, and let p, q > 2 be primes with ap ≡ 1 mod q.
Prove that either q | a− 1 or q = 1 + 2kp for some positive integer k.

Proof. Obviously we have gcd (a, q) = 1. Write d = ordq(a). Then we have d | p, so d = 1
or d = p. If d = 1, then a ≡ 1 mod q, so q | a− 1. If d = p, then we have p | ϕ(q) = q − 1,
so q = 1 + np for some integer n. But as q > 2 is a prime, q must be odd. As p is odd, we
must have n even for q to be odd. Writing n = 2k, we find q = 1 + 2kp as desired.

Problem 3.7: Let p, q be primes with ap−1 + ap−2 + · · · + a + 1 ≡ 0 mod q. Prove that
either q = p or q ≡ 1 mod p.

Proof. If p = 2 then either q = 2 = p or q is odd and q ≡ 1 mod p. The case p > 2, q = 2
is impossible since the left-hand expression is odd. Now we have the case where p and q
are odd. Then we have ap − 1 = (a − 1)(ap−1 + ap−2 + · · · + a + 1), hence ap ≡ 1 mod q.
Thus either q ≡ 1 mod p or q | a − 1. If q | a − 1, then we have a ≡ 1 mod q, hence
1p−1 + 1p−2 + · · ·+ 1 + 1 = p ≡ 0 mod q, from which it follows that p = q.

Problem 3.8: Let n be an odd positive integer. Prove that if n | 3n + 1 then n = 1.

Proof. Obviously n is not divisible by 3. Suppose that n > 1 and let p be the least prime
divisor of n; then p ≥ 5. Write d = ordp(3). As 3n ≡ −1 mod n, we have 32n ≡ 1 mod p,
so d | 2n. As 3p−1 ≡ 1 mod p, we have also d | p − 1. If d is odd, then we have d | n. As
p is the least divisor of n greater than 1, we must have thus d = 1. Hence 3 ≡ 1 mod p,
implying p = 2. But p ≥ 5; contradiction. Hence d must be even. Write d = 2k; then k | n,
and if k > 1 then we have 1 < k < d < p, contradicting the fact that p is the minimal

20



Number Theory, §4.3.

divisor of n greater than 1. Hence d = 2 and 32 ≡ 1 mod p, so p = 2. Contradiction; hence
n = 1.

Problem 3.9: Let gcd (a, b) = 1 with b odd. Show that gcd (na + 1, nb − 1) ≤ 2 for any
natural number n.

Proof. Write l = gcd (na + 1, nb − 1), and suppose that l > 1. Write d = ordl(n). Then we
have nb ≡ 1 mod l, so d | b. Hence d is odd. But then as na ≡ −1 mod l, we have d | 2a.
Hence d | a. If d > 1 then we have d | a, b, so gcd (a, b) > 1. Contradiction; hence d = 1.
Thus na ≡ 1 mod l, hence 1 ≡ 1 mod l. Hence l = 1 or l = 2 as desired.

Problem 3.10 (IMO 1990/3): Determine all positive integers n such that n2 divides 2n+1.

Proof. Clearly n = 1 is a solution. Suppose that n > 1; then n is odd. Let p be the least
prime divisor of n, and write d = ordp(2). As 22n ≡ 1 mod p we have d | 2n. As 2p−1 ≡ 1
mod p we have d | p − 1. If d > 2, then let q be a prime greater than 2 dividing d. Then
q | 2n and q | p − 1, contradicting the fact that p is the minimal prime dividing n. But we
have d > 1, hence d = 2 so p = 3.

Write n = 3sm, with s,m ≥ 1 and 3 - m. Suppose that s > 1. Then we have

32s |
(
23s + 1

) (
23s(m−1) − 23s(m−2) + · − 23s + 1

)
.

But since 23s ≡ −1 mod 3, we have 23s(m−1)−23s(m−2) + ·−23s +1 ≡ 1+1+ · · ·+1 = m 6≡ 0
mod 3. Hence 32s | 23s + 1.

We claim that for all s, we have 3s+2 - 23s + 1. We may write

23s + 1 =

(
33s −

(
3s

1

)
33s−1 +

(
3s

2

)
33s−2 − · · · −

(
3s

3s − 2

)
32 +

(
3s

3s − 1

)
31 − 1

)
+ 1.

But then we have 3s+2 divides all terms in this expansion except
(

3s

3s−1

)
31; hence 3s+2 - 23s+1.

As we have 32s | 23s + 1, we have thus 2s < s+ 2. Hence s = 1, so n = 3m. Suppose that
m > 1. Let q be the least prime divisor of m; then q ≥ 5. Write e = ordq(2); then as we
have 22n ≡ 1 mod q, we have e | 2n = 6m. As 2q−1 ≡ 1 mod q, we have also that l | q − 1.
Hence we cannot have l | n, as this would contradict the fact that q is the smallest prime
divisor of n. Thus as q ≥ 5 we have l = 3 or l = 6, meaning that q = 7. But in this case
we have 7 | 2n + 1; however, as n = 3m, we have 2n + 1 = (23)m + 1 ≡ 1m + 1 = 2 mod 7.
Contradiction; hence m = 1, so n = 3. Thus n = 1, 3 are our only solutions.

Example 3.11: Let p, q, r be distinct primes such that

pq | rp + rq.

Prove that either p or q equals 2.
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Solution Suppose the relation holds but p 6= 2, q 6= 2. By Fermat’s Little Theorem,
rp ≡ r (mod p) and rq ≡ r (mod q). Then since r is relatively prime to p, q,

rp + rq ≡ 0 (mod p) =⇒
rq−1 ≡ −1 (mod p)

rp + rq ≡ 0 (mod q) =⇒
rp−1 ≡ −1 (mod q)

Since −1 6≡ 1 (mod p, q), we get

ordp(r) - q − 1, ordq(r) - p− 1. (4.1)

Since

r2(q−1) ≡ 1 (mod p)

r2(p−1) ≡ 1 (mod q),

we get
ordp(r) | 2(q − 1), ordq(r) | 2(p− 1). (4.2)

For an integer n let v2(n) denote the highest power of 2 dividing n. Let x = v2(ordp(r)) and
y = v2(ordq(r)). From relations in (4.1) and (4.2),

x = v2(2(q − 1)) = v2(q − 1) + 1

y = v2(p− 1) + 1. (4.3)

By Fermat’s Little Theorem, ordp(r) | p− 1 and ordq(r) | q − 1. Hence

x ≤ v2(p− 1)

y ≤ v2(q − 1) (4.4)

Putting (4.3) and (4.4) together, we get x ≤ y − 1, y ≤ x− 1, contradiction.

§4 Groups

For the moment, it is helpful to “forget” where our set comes from and just work from the
basic axioms that it satisfies.

Definition 4.1: A group is a set G together with a binary operation ◦, satisfying the
following properties:

1. (Associative law) For any a, b, c ∈ G,

(a ◦ b) ◦ c = a ◦ (b ◦ c).

2. (Identity) There exists an element id, called the identity, such that for all a,

id ◦ a = a ◦ id = a.
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3. (Inverses) For any a there exists an element a′, called the inverse of a, such that

a ◦ a′ = a′ ◦ a = id.

G is called an abelian group if additionally it satisfies the following.

4. (Commutativity) For all a, b ∈ G, a ◦ b = b ◦ a.

We will be dealing exclusively with abelian groups.
Define order, exponent. Largest order IS the exponent (for abelian groups)

§5 Primitive roots

We now know that aϕ(n) ≡ 1 (mod n) for all a relatively prime to n, and that ordn(a) | ϕ(n).
We can ask, does there exist a for which ordn(a) is exactly n?

Equivalently, by the second part of Proposition 1.2, since there are ϕ(n) possible invertible
residues modulo n, this says that the powers of a achieve every possible invertible residue
modulo n.

Definition 5.1: A primitive root modulo n is an integer a such that

ordn(a) = ϕ(n).

For example, 3 is a primitive root modulo 5, as ord5(3) = 4.

Theorem 5.2: Primitive roots exist modulo n if and only if n = 2, 4, pk, or 2pk for p an
odd prime.

Moreover, if g is a primitive root modulo p2, then it is a primitive root modulo pk and
2pk for any k.

Proof. We will prove the “if” part of the theorem. The “only if” part will fall out from
Theorem 6.1 in the next section.

For n = 2 or 4, we see that 1 and 3 are primitive roots, respectively.

Part 1: Now suppose n = p is prime. We note that by Fermat’s little theorem 2.2 that

xp−1 − 1 ≡ 0 (mod p)

for all nonzero residues x modulo p.
Note that if there is are elements of order d1, . . . , dk then there is an element of order

lcm(d1, . . . , dk) (Proposition ??). Hence if d is the maximal order of an element in (Z/nZ)×,
then all orders must divide d. Hence

xd − 1 ≡ 0 (mod p).

Now we need the following lemma.
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Lemma 5.3: A nonzero polynomial f(X) ∈ Z/pZ[X] of degree d has at most d roots.

Proof. We induct on the degree. If d = 0 the assertion is clear. If f(X) has a root, then

f(X) ≡ (X − a)g(X) (mod p)

for some g(X) ∈ Z/pZ[X] of degree d − 1. Now f(X) ≡ 0 (mod p) implies that one of the
factors X − a or g(X) is 0 modulo p: this is because there are no zerodivisors modulo p.
Hence the roots are a and the roots of g(X); the latter total at most d− 1 by the induction
hypothesis.

Now xd − 1 = 0 can have at most d roots modulo p, but we know all p − 1 invertible
residues are roots. Hence d ≥ p − 1. But we know that the order of any element divides
p− 1, so d | p− 1 and we get d = p− 1.

Part 2: Now we prove the theorem for pk.
We first show that there is a primitive root modulo p2. Take a primitive root x modulo

p; suppose it is not primitive modulo p2. Now

p− 1 = ordp(x) | ordp2(x) | p(p− 1)

where the right-hand divisibility is strict. Hence ordp(x) = p− 1. Now note

ordp2(p+ 1) = p,

since (1 + p)k ≡ 1 + kp (mod p2) and this is 1 modulo p2 for the first time when k = p. By
Proposition ??(2),

ordp2(x(p+ 1)) = p(p− 1) = ϕ(p2)

so x(p+ 1) is a primitive root modulo p2.
Now suppose x ∈ Z is a primitive root modulo p2. It attains every residue modulo p2 so a

fortiori it attains every residue modulo p, i.e. is primitive modulo p. We show by induction
that

xp
k−1(p−1) = pkj + 1 (4.5)

for some j not a multiple of p. For the case k = 1, this is since x is a primitive root modulo
p, but xp−1 6≡ 1 (mod p2). Suppose it proved for k; then

xp
k(p−1) = (pkj + 1)p = 1 +

(
p

1

)
pkj +

(
p

2

)
p2kj + · · · = 1 + pk+1(j + pj′)

for some j′. This shows the claim for k + 1. Since

p− 1 = ordp(x) | ordpk(x) | pk−1(p− 1)

we know ordpk(x) must be in the form pj−1(p−1) for some j. Equation (4.5) shows that j = k.

Part 3: Note that ϕ(2pk) = ϕ(pk). Thus any primitive root modulo pk is automatically a
primitive root modulo 2pk.
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Remark 5.4: Note the existence of a primitive root modulo n is equivalent to the fact that
(Z/nZ)× is generated by one element, i.e. is the cyclic group Cϕ(n). Hence if there are
primitive roots modulo pk for all k, then the quotient maps

· · ·� (Z/p3Z)× � (Z/p2Z)× � (Z/pZ)×

correspond to maps
· · ·� Cp2(p−1) � Cp(p−1) � Cp−1.

Let gk be a generator for Cpk−1(p−1); the kernel of the map Cpk−1(p−1) � Cpk−2(p−1) must be

the cyclic group of order p generated by gp
k−2(p−1). Writing x ≡ gjk (mod pk), the conditions

that x mod p2 generates (Z/p2Z)× translates into the fact that j is relatively prime to both
p(p− 1), and hence that x is a primitive root modulo pk.

This rationalizes the last statement of the theorem, and suggests that it should be used
to prove the existence of primitive roots.

Remark 5.5: The proof of the first part can be generalized to the fact that all finite fields
have a primitive root. See Proposition ??.1.1(2).

§6 Multiplicative structure of Z/nZ
Theorem 6.1:

1. Suppose p 6= 2 is prime. Then

(Z/pnZ)× ∼= Cpn−1(p−1).

2. For the case p = 2, for n ≥ 2 we have

(Z/2nZ)× ∼= C2 × C2n−2 .

Moreover, (Z/2nZ)× is generated by −1, which has order 2, and 3, which has order
2n−2. The isomorphism is given by (−1)a3b ← [ (a, b).

3. In general,

(Z/pα1
1 · · · pαnn Z)× ∼=

∏
(Z/pαkk Z)×.

Proof. The first follows from existence of primitive roots modulo pn.
For the second, we show by induction that for every k ≥ 1,

32k = 2k+2j + 1

for some odd j. This is true for k = 1 as 32 = 8 + 1. Suppose the above holds; then

32k+1

= (2k+2j + 1)2 + 1 = 2k+3(j + 2k+1j2) + 1,

showing the induction step.

25



Number Theory, §4.7.

Note ord2n(3) must divide |(Z/2nZ)×| = 2n−1. The above then shows that ord2n(3) =
2n−2. Finally, note that for n ≥ 3, no power of 3 is equal to −1 modulo 2n: if so, then
by Theorem ??, 32n−3

= 3
1
2

ord2n (3) ≡ −1 (mod 2n). However, 32n−3 ≡ 1 (mod 2n−1) by the
above, so it is not congruent to −1 modulo 2n.

The last follows from the Chinese Remainder Theorem.

§7 Wilson’s theorem

Wilson’s theorem is a multiplicative congruence of a slightly different kind.

Theorem 7.1 (Wilson’s theorem): A positive integer p is prime if and only if

(p− 1)! ≡ −1 (mod p).

Proof. We may easily verify that the theorem is true for p = 2, 3, 4. Suppose that p ≥ 5 is a
prime; consider the set S = {2, 3, · · · , p − 2}. We will show that for any s ∈ S there exists
some s′ ∈ S with ss′ ≡ 1 mod p. Indeed, given such s we set s′ = sp−2. Then we have that
ss′ = sp−1 ≡ 1 mod p. Now if s′ /∈ S, then we have either s′ ≡ 1 mod p or s′ ≡ −1 mod p.
If s′ ≡ 1 mod p, then s ≡ 1 mod p. This is obviously impossible. Similarly, if s′ ≡ −1
mod p, then s ≡ −1 mod p. This is similarly impossible; hence we have s′ ∈ S. Similarly,
if we have s, t ∈ S with s′ = t′, then s = t. We may see that ss′− tt′ = (s− t)s′ ≡ 0 mod p.
As s′ 6≡ 0 mod p, we must have p | s− t. As |s− t| < p, we thus have |s− t| = 0 as desired.
Finally, s 6= s′; if s = s′, then we have ss′ = s2 ≡ 1 mod p, implying that p | s − 1 or
p | s+ 1. This cannot be true, as s 6≡ ±1 mod p; it follows that s 6= s′.

Now we are ready to prove Wilson’s theorem. As p is odd, and as |S| = p− 3, there are
an even number of elements in S. We pair these elements up into disjoint 2-element sets
{s1, s

′
1}, {s2, s

′
2}, · · · , {s(p−3)/2, s

′
(p−3)/2}. These sets must contain all elements of S exactly

once. Furthermore, when we take the product s1s
′
1s2s

′
2 · · · s(p−3)/2s

′
(p−3)/2 we will obtain 1,

as the product of each pair is congruent to 1 modulo p. Hence we have

(p− 1)! = 1 · 2 · · · p− 1 ≡ 1 · s1s
′
1s2s

′
2 · · · s(p−3)/2s

′
(p−3)/2 · p− 1 ≡ 1 · 1 · −1 = −1 mod p

exactly as desired.

Problem 7.2: Let p be a prime of the form 4k + 3, and let a1, a2, · · · , ap−1 be consecutive
positive integers. Prove that these numbers cannot be partitioned into two sets such that
the products of the elements of the two sets are equal.

Proof. Suppose for a contradiction that there do exist sets X = {x1, x2, · · · , xm}, Y =
{y1, y2, · · · , yn} such that the product of the elements of X (denoted P (X)) and the product
of the elements of Y (denoted P (Y )) are equal. If any of the ai are divisible by p, then
exactly one of the ai may be divisible by p. In this case we have p dividing exactly one of
P (X), P (Y ), so these products cannot be equal.
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Now if p - ai for i = 1, 2, · · · , p− 1, then ai ≡ i mod p. Hence

[P (X)]2 = P (X)P (Y ) = x1x2 · · ·xmy1y2 · · · yn = a1a2 · · · ap−1 ≡ 1 · 2 · · · p− 1 mod p.

But from this we immediately have [P (X)]2 ≡ (p−1)! ≡ −1 mod p; hence we have [P (X)]2+
1 ≡ 0 mod p, so p | [P (X)]2 + 12. As p is of the form 4k + 3, we have thus p | P (X) and
p | 1. Contradiction; hence these numbers cannot be so partitioned.

Problem 7.3: Let p be a prime. Prove that the congruence x2 ≡ −1 mod p has a solution
if and only if p = 2 or p is of the form 4k + 1.

Proof. If p = 2, the conclusion is clear. If p is of the form 4k + 3 and there does exist such
an x, then we have p | x2 + 1, so p | x, p | 1. Contradiction; hence there are no solutions for
p = 4k + 3. Now if p = 4k + 1, then set U = (2k)!. We claim that U2 ≡ −1 mod p. We
write

U2 = 1 · 2 · · · (2k) · (2k) · (2k − 1) · · · 1
≡ 1 · 2 · · · (2k) · (p− 2k)(−1)(p− (2k − 1))(−1) · · · (p− 1)(−1) mod p

≡ 1 · 2 · · · (2k) · (2k + 1) · (2k + 2) · · · (4k) · (−1)2k

≡ (p− 1)! ≡ −1 mod p

Hence there does exist some x = U with x2 ≡ −1 mod p.

Problem 7.4: Determine all positive integers p,m such that

(p− 1)! + 1 = pm.

Proof. Note that if p ≤ 5, then we have the solutions (p,m) = (2, 1), (3, 1), (5, 2). Now
suppose that p > 5. Then Wilson’s theorem gives the result that p must be a prime. We
have 2 < (p − 1)/2 < p − 1, hence (p − 1)2 | (p − 1)!. Hence (p − 1)2 | pm − 1, so
p− 1 | pm−1 + pm−2 + · · · + p + 1. It follows from work in previous lectures that p− 1 | m,
hence m ≥ p− 1. Hence

pm ≥ pp−1 > 2 · 2 · 3 · 4 · · · (p− 2) · (p− 1) = 2(p− 1)! > (p− 1)! + 1,

hence there are no solutions for p > 5. Thus the solutions given above are the only such
p,m.

Problem 7.5: Let p be an odd prime, and let A = {a1, a2, · · · , ap−1}, B = {b1, b2, · · · , bp−1}
be complete sets of nonzero residue classes modulo p - that is, if for some n we have p - n,
then there exist i, j with n ≡ ai ≡ bj. Show that the set {a1b1, · · · , ap−1bp−1} is not a
complete set of nonzero residue classes.

Proof. We have

a1a2 · · · ap−1 ≡ 1 · 2 · · · p− 1 = (p− 1)! ≡ −1 mod p.
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Similarly, b1b2 · · · bp−1 ≡ −1 mod p. Wilson’s theorem implies that if any set S is a complete
set of nonzero residue classes, then the product of all of its elements must be congruent to
−1 modulo p. But we have

(a1b1)(a2b2) · · · (ap−1bp−1) = (a1a2 · · · ap−1)(b1b2 · · · bp−1) ≡ (−1) · (−1) = 1 mod p.

As p > 2, we have 1 6≡ −1 mod p. Hence {a1b1, · · · , ap−1bp−1} cannot be a complete set of
nonzero residue classes modulo p.

§8 Problems

Some challenging problems on order.
(ISL 2000/N4) Find all solutions to am + 1 | (a+ 1)n.
(IMO 2000/5) Does there exist an integer n with 2000 prime divisors such that n | 2n+1?

+variant with squarefree
(IMO 1999/4) Solve: p prime, x ≤ 2p, xp−1 | (p− 1)x + 1.
(ISL 1997) Let b > 1,m 6= n. If bm − 1 and bn − 1 have the same prime divisors then

b+ 1 is a power of 2. (In fact, stronger thing.)
(TST 2003/3) Find all ordered triples of primes (p, q, r) such that p | qr + 1, q | rp + 1,

and r | pq + 1.
(IMO 2003/6) Prove that for any prime p there is a prime number q that does not divide

any of the numbers np − p with n ≥ 1.
(MOSP 2007/5.4) Given positive integers a and c and integer b, prove that there exists

a positive integer x such that ax + x ≡ b (mod c).
Let p be a prime number. Find all natural numbers n such that p divides ϕ(n) and such

that n divides a
ϕ(n)
p − 1 for all positive integers a relatively prime to n.

1.
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Chapter 5

Diophantine equations

Stuff I want to include in this chapter

1. linear Diophantine equations

2. quadratic Diophantine equations

(a) Pell

(b) root flipping IMO 89/6. TST 02/6. Find in explicit form all ordered pairs of
positive integers (m,n) such that mn− 1 | m2 + n2.

(c) sum of squares

(d) sum of 4 squares

3. techniques:

(a) size comparison, analytical methods

(b) taking modulo. enumerating solutions

(c) factoring (SFFT)

(d) infinite descent

(e) Iurie’s “parameterization” trick. (IMO ??/6: Let a > b > c > d be positive
integers and suppose

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime.

(f) Constructing solutions

(g) geometric methods (Minkowski)

§1 Linear Diophantine Equations

An equation of the form
a1x1 + · · ·+ anxn = b, (5.1)

where a1, . . . , an, b ∈ Z is called linear diophantine equation.
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Theorem 1.1: The equation (12.11) is solvable if and only if gcd(a1, . . . , an) | b.

Proof. Let d = gcd(a1, . . . , an). If d - b the equation is not solvable. If d | b we denote

a′i =
ai

d
, b′ =

b

d
. Then gcd(a′1, . . . , a

′
n) = 1 and the generalized Bézout Lemma says that

there exist x′i such that a′1x
′
1 + · · · + a′nx

′
n = 1, which implies a1x

′
1 + · · · + anx

′
n = d. We

obtain a1(b′x′1) + · · ·+ an(b′x′n) = b′d = b.

Corollary 1.2: Let a1, a2 be relatively prime integers. If (x0
1, x

0
2) is a solution to the equation

a1x1 + a2x2 = b,

then all its solutions are given by{
x1 = x0

1 + a2t

x2 = x0
2 − a1t

, t ∈ Z.

Problem 1.3: Solve the equation

15x+ 84y = 39.

Proof. The equation is equivalent to 5x + 28y = 13. A solution is y = 1, x = −3. All
solutions are of the form x = −3 + 28t, y = 1− 5t, t ∈ Z.

Problem 1.4: Solve the equation

3x+ 4y + 5z = 6.

Proof. The equation can be written as 3x + 4y = 6− 5z, s ∈ Z. A solution of 3x + 4y = 1
is x = −1, y = 1. So a solution of 3x + 4y = 6 − 5s is x0 = 5s − 6, y0 = 6 − 5s. Hence all
solutions are {

x = 5s− 6 + 4t

y = 6− 5s− 3t

For any positive integer a1, . . . , an with gcd(a1, . . . , an) = 1 denote g(a1, . . . , an) to be
the greatest positive integer N for which the equation

a1x1 + · · ·+ anxn = N

is not solvable in nonnegative integers. The problem of determining g(a1, . . . , an) is known
as the Frobenius coin problem.

Problem 1.5 (Sylvester, 1884): Let a, b ∈ N and gcd(a, b) = 1. Then g(a, b) = ab− a− b.
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Proof. Suppose N > ab− a− b. The solutions to the equation ax+ by = N are of the form
(x, y) = (x0 + bt, y0 − at), t ∈ Z. Let t be an integer such that 0 ≤ y0 − at ≤ a − 1. Then
(x0 + bt)a = N − (y0−at)b > ab−a− b− (a−1)b = −a. Hence x0 + bt > −1, i.e. x0 + bt ≥ 0
and the equation has a nonnegative solution. Thus g(a, b) ≤ ab− a− b.

Now we shall show that the equation

ax+ by = ab− a− b

is not solvable in nonnegative integers. Otherwise we have

ab = a(x+ 1) + b(y + 1).

Since gcd(a, b) = 1, we get a | y + 1, b | x + 1, thus y + 1 ≥ a, x + 1 ≥ b. We obtain
ab = a(x+ 1) + b(y + 1) ≥ 2ab, a contradiction.

§2 Pythagorean Triples

A triple (x, y, z) of integers is called Pythagorean if

x2 + y2 = z2. (5.2)

Theorem 2.1: Any solution in positive integers of (12.12) has the form

x = (m2 − n2)k, y = 2mnk, z = (m2 + n2)k

x = 2mnk, y = (m2 − n2)k, z = (m2 + n2)k,

where

1. gcd(m,n) = 1, gcd(x, y) = k.

2. m,n are of different parity.

3. m > n > 0, k > 0.

Proof. Let gcd(x, y) = k. Then x = ka, y = kb, gcd(a, b) = 1. Then k2(a2 + b2) = z2. We
get k | z and set z = kc. We obtain

a2 + b2 = c2.

Suppose that a is an odd number. Then b is even since otherwise c2 = a2 + b2 ≡ 2
(mod 4), a contradiction.

Thus c is odd. We have
b2 = (c− a)(c+ a),

which is equivalent to (
b

2

)2

=
c− a

2

c+ a

2
.

31



Number Theory, §5.5.

Note that gcd

(
c− a

2
,
c+ a

2

)
= 1. Otherwise there exists prime p such that p |

c− a
2

,

p |
c+ a

2
. We get p |

c− a
2
±
c+ a

2
= c, a which implies p | b, a contradiction. Hence

c− a
2

= n2,
c+ a

2
= m2,

b

2
= mn

and we obtain
c = m2 + n2, a = m2 − n2, b = 2mn.

Problem 2.2: Solve in positive integers the equation

1

x2
+

1

y2
=

1

z2
.

Proof. The equation is equivalent to

x2 + y2 =
(xy

2

)2

.

We obtain that z | xy. Hence x2 + y2 = t2, t =
xy

2
.

Let d = gcd(x, y, t). Therefore x = ad, y = bd, t = cd, gcd(a, b, c) = 1. We get

a2 + b2 = c2, z =
abd

c
.

Hence a, b, c are pairwise relatively prime and we obtain that c | d, which implies d = kc.
Thus

x = kac, y = kbc, t = kc2, z = kab.

We may assume that
a = m2 − n2, b = 2mn, c = m2 + n2

and we obtain

x = k(m4 − n4), y = k2mn(m2 + n2), z = k2mn(m2 − n2).

§3 Size comparison and analytical methods

§4 Reducing modulo n

§5 Factoring

Proposition 5.1 (Simon’s favorite factoring trick, SFFT):

xy + bx+ ay + ab = (x+ a)(y + b).
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Example.

Example 5.2: Which numbers n can be expressed as the difference of two squares?

Solution. We wish to solve
x2 − y2 = n.

Factor this equation as
(x+ y)(x− y) = n.

Note that x+ y and x− y = (x+ y)− 2y are of the same parity. If they are both odd, then
n is odd; if they are both even, then n is divisible by 4.

Conversly, if n is odd or n is divisible by 4, then we can write n = ab where a, b are
factors of n having the same parity. We wish to have a = x+ y and b = x− y so set

x =
a+ b

2

y =
a− b

2
.

Note these are integers by the assumption on a and b.

§6 Problems

(Analysis) (ISL 2004) Let b ≥ 5 be an integer and define

xn = (11 . . . 1︸ ︷︷ ︸
n−1

22 . . . 2︸ ︷︷ ︸
n

5)b.

Prove that xn is a perfect square for all sufficiently large n if and only if b = 10.
Looking at prime divisors modulo stuff: (ISL 2006/N5) Find all pairs (x, y) of integers

satisfying the equation
x7 − 1

x− 1
= y5 − 1.

(TST ??) Prove that for no integer n is n7 + 7 a perfect square.
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Chapter 6

Quadratic residues

§1 Quadratic residues

Definition 1.1: Let p > 2 be a prime and a an integer. The Legendre symbol
(
a
p

)
is

defined as follows.

(
a

p

)
=


1, if a is a square modulo p and p - a
−1, if a is not a square modulo p

0, if p|a.

(6.1)

Note
(
a
p

)
is pronounced “a on p.” If a is a square modulo p we also say a is a quadratic

residue modulo p.

Note that
(
a
p

)
depends only on the residue of a modulo p, so we may think of

(
•
p

)
as a

map (
•
p

)
: Z/pZ→ {±1}.

The following offers a theoretical, although impractical, way to calculate
(
a
p

)
.

Lemma 1.2: For p > 2, (
a

p

)
≡ a

p−1
2 (mod p).

Note this gives the actual value of
(
a
p

)
since −1 6≡ 1 (mod p).

Proof. The lemma clearly holds for a ≡ 0 (mod p). Now suppose a 6≡ 0 (mod p). Note that

a
p−1

2 ≡ ±1, since (a
p−1

2 )2 ≡ 1 (mod p) by Fermat’s Little Theorem.
First suppose a is a square modulo p. Write a ≡ b2 (mod p). Then

a
p−1

2 ≡ bp−1 ≡ 1 (mod p)

by Fermat’s Little Theorem.
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Now suppose a
p−1

2 = 1. Let g be a primitive root modulo p. Then we can write a ≡ gk

(mod p) for some integer k. The hypothesis gives

g
k(p−1)

2 ≡ a
p−1

2 ≡ 1 (mod p).

Since g is a primitive root, this implies p−1|k(p−1)
2

, i.e. k is even. Then a ≡ (b
k
2 )2 is a square

modulo p. 1

As a corollary of the preceding lemma, we obtain the following multiplicative property.

Proposition 1.3: For any integers a and b and any prime p > 2,(
ab

p

)
=

(
a

p

)(
b

p

)
.

In other words, (
•
p

)
: (Z/pZ)× → {±1}

is a group homomorphism.

Proof. By Lemma 1.2, (
ab

p

)
= (ab)

p−1
2 = a

p−1
2 b

p−1
2 =

(
a

p

)(
b

p

)
.

The second statement follows from the first and the fact that
(

1
p

)
= 1.

This means that to calculate
(
a
p

)
, we can factor a into primes

a = qα1
1 · · · qαnn

and find that (
a

p

)
=

(
q1

p

)α1

· · ·
(
qn
p

)αn
,

so it remains to find an easy way to evaluate q
p

where both p and q are prime. We do this in
the next section.

1 Alternatively, we can avoid the use of primitive roots as follows. In the first part we’ve shown that{
a : a

p−1
2 ≡ 1 (mod p)

}
⊆ (Z/pZ)×2.

The set on the LHS has p−1
2 elements. Indeed, xp−1 − 1 = 0 splits completely modulo p and has distinct

roots, namely 1, . . . , p− 1 by Fermat’s little theorem. Then x
p−1
2 − 1, as a factor of xp−1− 1, must have p−1

2
distinct roots.

It suffices to show the set on the RHS has at most p−1
2 elements. This is true since for every a, a2 and

(−a)2 are equal. Hence there are at most p−1
2 nonzero squares modulo p, namely 12, . . . ,

(
p−1

2

)2
.
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§2 Quadratic reciprocity

Quadratic reciprocity relates
(
p
q

)
with

(
q
p

)
, i.e., it gives a relationship between whether p

is a square modulo q and whether q is a square modulo p. (See example. ADD.)

Theorem 2.1 (Quadratic reciprocity): Let p 6= q be odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
4

q−1
4 .

In other words, (
q

p

)
=

−
(
p
q

)
, p ≡ q ≡ 3 (mod 4)(

p
q

)
, otherwise.

For the prime 2, or when p = −1, we use the following instead.

Theorem 2.2 (Complement to quadratic reciprocity): Let p be an odd prime. Then(
−1

p

)
= (−1)

p−1
2(

2

p

)
= (−1)

p2−1
8 .

In other words, (
−1

p

)
=

{
1, p ≡ 1 (mod 4)

−1, p ≡ 3 (mod 4).(
2

p

)
=

{
1, p ≡ ±1 (mod 8)

−1, p ≡ ±3 (mod 8).

We know
(
q
p

)
≡ q

q−1
2 (mod p) by Lemma 1.2. To prove quadratic reciprocity, we first

find an alternate way to express q
p−1

2 .

Lemma 2.3 (Gauss’s lemma): For an integer a and an odd prime p, define the least residue
of a modulo p, denoted LRp(a), to be the element b ∈

(
−p

2
, p

2

)
such that

a ≡ b (mod p).

(In other words, LRp(a) is the integer of smallest absolute value congruent to a modulo p.)
Let µ be the number of elements of

{
ka : 1 ≤ k ≤ q−1

2

}
such that LRp(a) < 0. Then

a
p−1

2 ≡ (−1)µ (mod p)

Hence, (
a

p

)
= (−1)µ.
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Proof. We calculate the product

a · 2a · · ·
(
p− 1

2
· a
)

modulo p in two ways.

First, combining powers of a we get

a · 2a · · ·
(
p− 1

2
· a
)
≡ a

p−1
2

(
p− 1

2

)
! (mod a). (6.2)

Secondly, reducing each factor to the least residue first gives

a · 2a · · · p− 1

2
· a ≡ LRp(a) · LRp(2a) · · ·LRp

(
p− 1

2

)
≡ (−1)µ|LRp(a)| · · ·

∣∣∣∣LRp

(
p− 1

2

)∣∣∣∣
≡ (−1)µ

(
p− 1

2

)
! (mod p). (6.3)

In the last step we used the fact that |LRp(a)|, . . . ,
∣∣LRp

(
p−1

2

)∣∣ is a permutation of 1, . . . , p−1
2

.
To see this, note −LRp(m) = LRp(−m), so{

±LRp(ka) : 1 ≤ k ≤ p− 1

2

}
= {±LRp(ka) : 1 ≤ k ≤ p− 1}

=

{
−p− 1

2
, . . . ,−1, 1, . . . ,

p− 1

2

}
.

Hence
{
±LRp(ka) : 1 ≤ k ≤ p−1

2

}
must contain one element from each pair ±1, . . . ,±p−1

2
,

as needed.

Equating (6.2) and (6.3) and cancelling
(
p−1

2

)
! gives the desired result.

The second statement follows because 1 6≡ −1 (mod p).

Now we prove quadratic reciprocity.

Proof of Theorem 2.1. The strategy is as follows.

1. Establish a correspondence between x ∈
(
0, q

2

)
such that LRp(xq) < 0, with lattice

points in a certain region (6.10). Similarly establish such a correspondence with y ∈(
0, p

2

)
such that LRq(yp) < 0. By Lemma 2.3,

(
q
p

)(
p
q

)
is the total number of lattice

points in this region.

2. Pair up the points in the region. We will find that there is an odd point out exactly
when p ≡ q ≡ 3 (mod 4).
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Let

µ1 =
∣∣∣{x ∈ (0,

q

2

)
: LRq(xp)

}∣∣∣
µ2 =

∣∣∣{y ∈ (0,
p

2

)
: LRp(yq)

}∣∣∣
By Lemma 2.3, (

p

q

)(
q

p

)
= (−1)µ1(−1)µ2 = (−1)µ1+µ2 . (6.4)

We would like to know the parity of µ1 + µ2.

Claim 2.4: There is a bijection between integers x ∈
(
0, q

2

)
satisfying LRq(xp) < 0 and

lattice points (x, y) satisfying

0 < x <
q + 1

2
(6.5)

0 < y <
p+ 1

2
(6.6)

−q
2
< xp− yq < 0. (6.7)

Proof. If (x, y) satisfies the above inequalities, then inequality (6.7) gives that the the least
residue of xp is in

(
− q

2
, 0
)
.

Conversely, given such a x, choose y so that yq is the closest multiple of q to xp. Then
LRq(xp) = xp− yq, so inequality (6.7) follows. Moreover, this is the only value of y that will
satisfy (6.7). Then (6.6) follows since (6.7) gives

0 <
p

q
x < y <

p

q
x+

1

2
<
p

q
· q

2
+

1

2
=
p+ 1

2
.

Note (6.7) is equivalent to
p

q
x < y <

p

q
x+

1

2
. (6.8)

Applying the claim with p and q switched, and x and y switched, inequality (6.7) becomes
−p

2
< yq − xp < 0, which rearranges to

p

q
x− p

2q
< y <

p

q
x. (6.9)

Noting that there are no points on the line y = p
q
x in the following region, we see that µ1 +µ2

equals the number of lattice points in the region R defined by

0 < x <
q + 1

2

0 < y <
p+ 1

2
(6.10)

p

q
x− p

2q
< y <

p

q
x+

1

2
.
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This region is symmetric around the point
(
q+1

4
, p+1

4

)
. Indeed, making the change of variables

x′ = x− q+1
4

and y′ = y − p+1
4

, we get

−q + 1

4
< x′ <

q + 1

4

−p+ 1

4
< y′ <

p+ 1

4
p

q
x′ −

(
p

4q
+

1

4

)
< y′ <

p

q
x′ +

(
p

4q
+

1

4

)
.

Hence we can pair up the lattice points in R by matching (x, y) with
(
q+1

2
− x, p+1

2
− y
)

(this corresponds to (x′, y′)↔ (−x′,−y′)). The only point which would not be paired up is(
q+1

4
, p+1

4

)
, but this is an integer if and only if p ≡ q ≡ 3 (mod 4). Thus µ1 + µ2 is odd iff

p ≡ q ≡ 3 (mod 4). In light of (6.4), this proves the theorem.

Proof of Theorem 2.2. The fact that
(
−1
p

)
= (−1)

p−1
2 comes directly from Proposition 1.2.

To calculate
(

2
p

)
, we can use Lemma 2.3 directly. In this case µ is the number of elements

in the set {2, 4, . . . , p − 1} in the interval
(
p
2
, p
)
. By casework, this is even when p ≡ ±1

(mod 8) and odd when p ≡ ±3 (mod 8).

Problems

1. (IMO 1996/4) The positive integers a, b are such that 15a+16b and 16a−15b are both
squares of positive integers. What is the least possible value that can be taken by the
smaller of these two squares?

§3 Jacobi symbol
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Chapter 7

Unique factorization

§1 Unique factorization domains

MOTIVATION

First, we define what exactly unique factorization means. Let R be an integral domain.

Definition 1.1: An element a ∈ R is irreducible if it is not a unit, and its only factors are
units and associates. A unit is an invertible element in R, while an associate of a is a unit
times a.

For the positive integers we often just say a is irreducible if a 6= 1, and its only factors
are 1 and itself. However, if we work with the integers, then there will also be the factors
−1 and −a, and we don’t want to view these as different. For example, 5 is irreducible over
the integers because its only factors are units, ±1, and associates, ±5.

Definition 1.2: A unique factorization domain (UFD) is a integral domain where
factoring terminates and every nonzero, nonunit element factors uniquely into irreducible
elements. That is, if

a = p1 . . . pm = q1 . . . qn,

and p1, . . . , pm, q1, . . . , qn are irreducible elements, then m = n and we can reorder the qi’s
so that pi is an associate of qi, for each i.

For example, we regard 6 = 2 · 3 = −2 · −3 as the same factorization.

Unique factorization doesn’t hold for all domains—for example, consider Z[
√
−5], that

is, numbers of the form a+ b
√
−5. Then

(1 +
√
−5)(1−

√
−5) = 6 = 2 · 3

are two factorizations of 6 into irreducible elements.

The notion of a prime is related to that of an irreducible element. People use them as
synonyms in elementary math—because they coincide for the integers—but the distinction
between them will be quite important for us.

Definition 1.3: A prime in R is an element p, not a unit, such that if p|ab then p|a or p|b.
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This tells us that if a prime p divides a, then no matter how we factor a, we can’t
avoid p dividing one element of a. The connection between primes, irreducibles, and unique
factorization is given by the following.

Lemma 1.4: If R is a ring where factoring terminates, and every irreducible element is
prime, then R is a UFD. Conversely, in a UFD, every irreducible element is prime.

Proof. Suppose a = p1 . . . pm = q1 . . . qn are two factorizations into irreducible elements.
Since p1 is irreducible, it is prime, and hence must divide one of the qi. Since qi is irreducible,
its only factors are units and associates, so p1 must be associated with qi. Then we can cancel
them, leaving a unit. Repeating this process, every factor in the left factorization is paired
with one in the right factorization.

For the converse, suppose p is irreducible and p|ab. Then pd = ab for some d. Factoring
a, b, and d shows that p must divide one of the factors of a or b by unique factorizaton.

(Note that primes are always irreducible, because if p = ab were a proper factorization,
then p - a and p - b.)

The main strategy for proving unique factorization is the following.

1. Show that the ring R in question (here, K[x]) admits division with remainder, with
some measure of size so that the remainder is smaller than the quotient.

2. Show that if we have division of remainder, then greatest common divisors exist,
and moreover that they have the nice property given by Bézout’s Theorem.

3. Show that this implies that all irreducible elements are prime, and hence R is a UFD.

The advantage of such an abstract approach lies in the fact that it works for a variety of
different number systems. In particular, once we’ve shown items 2 and 3, then given any
ring, we only have to show that we can have division with remainder, and it will follow
that it is a UFD. This simultaneously shows unique factorization for Z, K[x], and even
Z[i] = {a+ bi|a, b ∈ Z}.1

In the language of abstract algebra, the above steps are phrased as follows:

1. R is an Euclidean domain.

2. An Euclidean domain is a principal ideal domain.

3. A principal ideal domain is a unique factorization domain.

We now carry out this program.

1The converse is not true; a UFD is not necessarily a PID or Euclidean domain. For example Z[ 1+
√
−163
2 ]

is a UFD but not an Euclidean domain.
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1.1 Step 1: Euclidean domains

Definition 1.5: An integral domain R is an Euclidean domain if there is a function
| · | : R→ N0 (called the norm) such that the following hold.

1. |a| = 0 iff a = 0.

2. For any nonzero a, b ∈ R there exist q, r ∈ R such that b = aq + r and |r| < |a|.

Note that both the integers Z and K[x] are Euclidean domains. The norm on Z is simply
the absolute value, while the norm on K[x] is the degree of the polynomial. Theorem 2.1
shows that K[x] is an Euclidean domain.

1.2 Step 2: Euclidean domain =⇒ PID

We’d like to prove Bézout’s Theorem for an Euclidean domain, that given a, b in R there
exists a greatest common divisor g and s, t so that as+ bt = g. Rather than thinking of this
as an equation in variables s, t, we can think of it as an equation in sets (a) and (b), where
(x) denotes the set of multiples of x. For two sets S, T we define S+T = {s+t|s ∈ S, t ∈ T};
then it turns out what we want is

(a) + (b) = (g).

(See Lemma 1.8 below.)

Definition 1.6: An ideal in a ring R is a subset I such that if a, b ∈ I then ra, a + b ∈ I
for any r ∈ R. A principal ideal is an ideal generated by one element, that is, there is a a
such that I = {ra|r ∈ R}. We write I = (a).

A principal ideal domain (PID) is a integral domain where every ideal is principal.

Theorem 1.7: An Euclidean domain is a PID.

Proof. Let R be an Euclidean domain, I ⊆ R and ideal, and b be the nonzero element of
smallest norm in I. Suppose a ∈ I. Then we can write a = qb+ r with 0 ≤ r < |b|, but since
b has minimal nonzero norm, r = 0 and b|a. Thus I = (b) is principal.

Lemma 1.8: A PID satisfies Bézout’s Theorem.

Proof. Let R be a PID. Since every ideal in R is principal, for every a, b (not both 0) we
have (a) + (b) = (d) for some d ∈ R. (Note the sum of two ideals is an ideal—check this for
yourself.) This says there exist s, t ∈ R such that

as+ bt = d.

From this, any divisor of a, b must divide d. Furthermore, d must divide both a and b since
a = a+ 0 and b = 0 + b are both in (a) + (b) = (d). In other words, d is the greatest common
divisor of a, b.
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1.3 Step 3: PID =⇒ UFD

Theorem 1.9: A PID is a UFD.

Proof. Suppose p is irreducible; we show p is prime. Suppose p|ab but p does not divide
a. Then using Bezout’s Theorem and the fact that a and p are relatively prime, we get
as+ pt = 1 for some s, t. Multiply by b to get

abs+ ptb = b.

Since p|ab|abs, p|ptb, we have p|b. This shows that irreducible elements are prime in Z.
It remains to show factoring terminates.2 Otherwise, there would be an infinite sequence

of nonassociated elements a1, a2, . . . ∈ R such that ai+1|ai. Then (a1) ⊂ (a2) ⊂ · · · . However,⋃
i≥1(ai) is an ideal, so it is principal, say generated by b. Then b ∈ (ai) for some i; this

implies that (b) = (ai). Hence (ai) = (ai+1) = · · · , a contradiction.
Since irreducible elements are prime and every nonzero element of R factors into irre-

ducibles, R is a UFD.

Corollary 1.10: Z and K[x] are UFDs.

§2 Example: x2 + y2 = n

Theorem 2.1: Let n be a positive integer. Then the equation

x2 + y2 = n

has a solution in integers iff every prime p ≡ 3 (mod 4) appears in n with even exponent.
If n = 2apb11 · · · p

bk
k q

c1
1 · · · qcmm where pj and qj are primes congruent to 1, 3 modulo 4, then

the equation x2 + y2 = n has
4(b1 + 1) · · · (bk + 1)

solutions in integers.

Proof. Each solution to x2 + y2 = n corresponds to a factoring (x+ yi)(x− yi) = n over the
Gaussian integers Z[i]. Thus the number of solutions is the number of z such that zz̄ = n,
or 4 times the number of nonassociated z ∈ Z[i] such that zz̄ = n. (Two Gaussian numbers
are associated if they differ by a unit ±1,±i, so x+yi,−y+xi,−x−yi, y−xi are considered
the same.)

Now factor n = 2apb11 · · · p
bk
k q

c1
1 · · · qcmm where pj and qj are primes congruent to 1, 3 modulo

4, respectively. From knowledge of factoring in Z[i] we know that

1. 2 ramifies in Z[i], that is, it is the product of two associated primes 1 + i, 1− i.

2. The pj ≡ 1 (mod 4) split, that is, pj = zj z̄j where z is prime in Z[i] and not associated
to z̄.

2 This argument is not needed for our purposes: Both Z and K[x] are Euclidean domains, and factoring
must terminate for them because factors always have smaller norm (absolute value and degree, respectively).
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3. The qj ≡ 3 (mod 4) remain prime.

Now if zz̄ = n and a Gaussian prime divides z, then its conjugate must divide z̄. Thus,
since we have unique factorization in Z[i], each such z, up to multiplication by associates,
corresponds to a way of splitting the prime factors of n into complex conjugate pairs. We
note the following:

1. The factors qj are their own conjugates, so z and z̄ must each get q
cj/2
j . If one of the

cj is odd there is no solution. So we suppose they are all even.

2. It doesn’t matter how the prime factors of 2a are split since they are all associates.

3. There are bj+1 ways to split the factors of q
bj
j , since we can have either z

bj
j , or z

bj−1
j z̄j,...

or z̄
bj
j divide z. Thus there are (b1 + 1) · · · (bk + 1) solutions to zz̄ = n up to associates.

A similar argument works for the equations x2 + 2y2 = n and x2 + xy + y2 = n.

§3 Problems

1. (The power of ideals) We rephrase some earlier results that used the “division with
remainder arguement” in terms of ideals.

(a) Let n > 1 and a be relatively prime to n. Show that

{m : am ≡ 1 (mod n)}

is an ideal.

(b) Conclude Proposition 4.1.2.

2. For which n does x2 + 2y2 = n have a solution? How many solutions are there? How
about x2 + xy + y2 = n?
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Chapter 8

Polynomials

§1 Gauss’s argument

We’ve shown that K[x] is a UFD, but the argument above does not show that Z[x] is a
UFD, because division with remainder fails for Z[x]. We will need a further argument. The
basic idea is that a polynomial factors in Z[x] the same way it does in Q[x], except with its
factors adjusted by constants so the coefficients are in Z.

Let R be a UFD and let K be the field of fractions of R. That is, K consists of the
numbers a

b
where a, b ∈ R and b 6= 0, and we say a

b
= c

d
iff ad = bc. For example, Q is the

field of fractions for Z.

Definition 1.1: A nonzero polynomial f ∈ R[x] is said to be primitive if all its coefficients
do not have a common proper divisor; equivalently, there does not exist a prime p ∈ R such
that p|f .

Lemma 1.2: If R is an integral domain, then so is R[x].

Proof. Take any p, q ∈ R[x] not equal to 0. We can write

p =
m∑
i=0

aix
i, am 6= 0

q =
n∑
i=0

bix
i, bn 6= 0

Then the leading coefficient of pq is ambnx
m+n. It is nonzero because since R is an integral

domain, am, bn 6= 0 imply that ambn 6= 0. Hence pq 6= 0. This shows that R[x] is an integral
domain.

Lemma 1.3 (Gauss’s lemma): (A) An element of R is prime in R[x] iff it is a prime in R.
Hence if a prime p of R divides a product fg of polynomials in R[x], then p|f or p|g.
(B) The product of primitive polynomials in R[x] is primitive.

Proof. If p ∈ R is nonzero, and a prime in R[x], then it is a prime in the subring R.
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Conversely, let p be any prime element in R. Then R/(p) is an integral domain1 so by
lemma 1.2, R/(p)[x] is an integral domain.

Suppose p|fg for f, g ∈ R[x]. Then in R/(p)[x], fg = fg = 0. Since R/(p)[x] is an
integral domain, either f = 0 or g = 0. In other words, either p|f or p|g in R[x]. Thus p is
a prime in R[x].

If f, g are primitive, then p - f and p - g for all primes p ∈ R. Since p is also prime in
R[x], p - fg. Hence fg is not divisible by any prime in R, and it is primitive.

Lemma 1.4: Every nonconstant polynomial f ∈ K[x] can be written uniquely (up to
multiplication by units) in the form f = cf0, where c ∈ K and f0 is a primitive polynomial
in R[x].

Proof. Each coefficient ai of f is in the form pi
qi

, where pi, qi ∈ R. We can find a nonzero

t ∈ R such that t is divisible by each denominator (for, example, take t to be the product of
the denominators). Then we can write

tf = f1,

where f1 ∈ R[x]. Let s ∈ R be a greatest common divisor of the coefficients of f1. Then we
have

f =
s

t
f0

in K[x] where f0 ∈ R[x] and the coefficients of f0 have no common divisor. This gives the
desired representation.

Next we check uniqueness. Suppose

f = cf0 = c′f ′0,

where c, c′ ∈ K and f0, f
′
0 ∈ R[x] are primitive. Multiply by an element of R to “clear

denominators,” to reduce to the case where c, c′ ∈ R. Now take any prime p|c. Since p is
prime in R[x], p|c′ or p|f ′0. The second is impossible since f ′0 is primitive. Hence p|c′, and
we can cancel p. Continuing in this way, we get that c and c′ share the same prime factors
with the same multiplicities. Hence c, c′ are associates.

Lemma 1.5: Let f0 be a primitive polynomial and let g ∈ R[x]. If f0|g in K[x] then f0|g
in R[x].

Proof. If f0|g in K[x], then we can write g = f0h where h ∈ K[x]. We need to show h ∈ R[x].
By lemma 1.4, we can write h = ch0, where c ∈ K and h0 is primitive. Then g = cf0h0.
By lemma 1.3, the product f0h0 of primitive polynomials is primitive. We can write c = s

t
,

where s, t ∈ R have no common factors. If a prime p in R divides the denominator t then

1 If I is an ideal, then R/I is the quotient ring: Two elements a, b in R are considered to be the same in
R/I if they differ by an element in I. Keep in mind the example R = Z; then R/(p) is simply the integers
modulo p.

Now R/(p) is an integral domain, because if ab = 0 in R/(p), then ab ∈ (p), i.e. p divides one of a, b. But
since p is prime either p|a or p|b, which translates back into a = 0 or b = 0 in R/(p).
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p - s so p|f0h0, contradicting the fact that f0h0 is primitive. Hence t is a unit, and c ∈ R.
Then h = ch0 ∈ R[x], so f0|g in R[x].

Lemma 1.6: Let f be a nonzero element of R[x]. Then f is an irreducible element of R[x]
iff it is an irreducible element of R or a primitive irreducible polynomial in K[x].

Proof. If f ∈ R, then the only factors of f in R[x] are in R, so f is irreducible in R iff it is
irreducible in R[x]. This proves the lemma for f ∈ R. Now suppose f 6∈ R.

If f ∈ R[x] is a primitive polynomial irreducible in K[x], then it is irreducible in R[x].

If f ∈ R[x] is not primitive, then it is reducible in R[x]. Thus it suffices to show if
f ∈ R[x] is reducible in K[x], then it is reducible in R[x]. Suppose f ∈ R[x], and f = gh
is a proper factorization of f in K[x]. We can write g = cg0, h = c′h0 where c, c′ ∈ K and
g0, h0 are primitive. Since g0 and h0 are both primitive, so is g0h0. Then f = cc′(g0h0), so
by uniqueness in lemma 1.4, cc′ must be in R (and is the gcd of the coefficients of f). Thus
f = (cc′)g0h0 is a proper factorization of f in R[x] as well, as needed.

Theorem 1.7: The ring R[x] is a unique factorization domain.

Proof. It suffices to show that every irreducible element f of R[x] is a prime element, and that
factoring terminates. By Lemma 1.6, f is either irreducible in R or a primitive irreducible
polynomial in K[x]. In the first case f is prime in R (R is a UFD) and hence prime in R[x]
by Lemma 1.3.

In the second case, f is primitive irreducible in K[x], thus a prime in K[x], since K[x] is
a UFD. Hence f |g or f |h in K[x]. By Lemma 1.5, f |g or f |h in R[x]. This shows f is prime.

A polynomial f ∈ R[x] can only be the product of at most deg(f) many polynomials pi
of positive degree in R[x] because the sum of the degrees of the pi must equal deg(f). Factor
terminates for the factors of f in R because factoring terminates in the UFD R, and the
primes in R dividing f are the primes dividing every coefficient of f .

Hence R[x] is a UFD.

Corollary 1.8: Z[x] is a UFD.

If R is a UFD then R[x1, . . . , xn] is a UFD.

Proof. Since Z is a UFD, so is Z[x]. The second statement follows from Theorem 1.7 by
induction.

1.1 More Proofs

Theorem 1.9 (Chinese Remainder Theorem): If polynomials Q1, . . . , Qn ∈ K[x] are pair-
wise relatively prime, then the system P ≡ Ri (mod Qi), 1 ≤ i ≤ n has a unique solution
modulo Q1 · · ·Qn.

Proof. Let Q = Q1 · · ·Qn. Note Qi and Q
Qi

are relatively prime. Hence by Bézout’s Theorem
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there exist fi and gi so that

fiQi + gi
Q

Qi

= 1.

Now

(1− qifi)Ri = Rigi
Q

Qi

is congruent to Ri modulo Qi, and zero modulo Qj for j 6= i. Hence

P =
n∑
i=1

(1− qifi)Ri

is the desired polynomial.
For uniqueness, suppose P1 and P2 satisfy the conditions of the problem. Then P1−P2 is

zero modulo Qi. Since the Qi are pairwise relatively prime, P1−P2 ≡ 0 (mod Q1 · · ·Qn).

Theorem 1.10 (Rational Roots Theorem): Suppose that R is a UFD and K its fraction
field. (For instance, take R = Z and K = Q.) Suppose f(x) = anx

n + · · · + a0 ∈ R[x] and
an 6= 0. Then all roots of f in K are in the form

factor of a0

factor of an
.

In particular, if an = ±1, then all roots of f in K are actually in R.

Proof. Write x = r
s

in simplest terms. Then multiplying through by sn gives

an

(r
s

)n
+ · · ·+ a1

(r
s

)
+ a0 = 0

anr
n = −s(an−1r

n−1 + · · ·+ a1rs
n−2 + a0s

n−1).

Since s and r have no common factor, s must divide an. (This uses the fact that R is a
UFD—how?). Rewriting as

a0s
n = −r(anrn−1 + · · ·+ a1s

n−1)

makes it clear r divides a0.

Remark 1.11: In particular, if an = 1, then all roots of f in K are in R. A ring is said to
be normal if whenever t ∈ K is a root of a monic polynomial in R[x], then t ∈ R. Thus the
above shows that UFDs are normal.

1.2 Problems

1. (Bézout bound) Let f(x, y), g(x, y) ∈ C[x, y]. Prove that either f, g have a constant
nonzero factor, or they have finitely many zeros (x, y) in common. (Hard: They have
at most deg(f) deg(g) common zeros.)
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2. For a field K, let K(x) be the field of rational functions, that is,

K(x) =

{
p

q
| p, q ∈ K[x]

}
.

Let f and g be rational functions such that f(g(x)) = x. Prove that f and g are both
in the form ax+b

cx+d
with ad 6= bc.

In many ways, polynomials are similar to integers. Like integers, polynomials admit
division with remainder, existence of greatest common divisors, and unique factorization.

§2 Main Theorems

In this section K will stand for C (the complex numbers), R (the real numbers), Q (the
rational numbers), or Z/pZ (the integers modulo p), while R will stand for any one of the
before sets or Z (the integers). Note that the sets we label with K all have multiplicative
inverses, i.e. are fields.

Our first result is that when we divide polynomials, we can be assured to get a remainder
with degree smaller than our divisor.

Theorem 2.1 (Division with remainder): If f, g ∈ K[x], then there exist polynomials q, r ∈
K[x] such that deg r < deg g and

f = qg + r.

If f, g ∈ Z[x] and g is monic, then there exist q, r ∈ Z[x] such that deg r < deg g and

f = gq + r.

Proof. This is the division algorithm familiar from high school algebra class. Namely, if f
has leading term axn and g has leading term bxm with n ≥ m, then f − a

b
xn−m has degree

less than f . Thus we can keep subtracting multiples of g from f until the result has degree
less than deg g.

If g is monic, then b = 1 so at each stage we subtracted an integer polynomial multiple
of g, and both the quotient q and the remainder r will have integer coefficients.

Theorem 2.2 (Bézout): Given f, g ∈ R[x], there exists a polynomial h, called the greatest
common divisor and denoted gcd(f, g), such that the following hold:

1. h divides both f and g.

2. If p divides both f and g then p divides h.

Let f, g ∈ K[x]. There exist polynomials u, v ∈ K[x] so that uf + vg = gcd(f, g).

(Note that h is only determined up to a unit. We’ll “sweep this under the rug” and allow
any choice of h up to that constant.)
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To calculate the gcd, we often use the Euclidean algorithm. Given polynomials f and g,
for any polynomial q we have

gcd(f, g) = gcd(g, f − qg).

Supposing deg f ≥ deg g, take q so that f − qg = r has degree less than g, as in the division
algorithm; this reduces the degree of f . Repeating this process decreases the degrees of the
polynomials; we eventually get to gcd(h, 0) in which case the answer is seen to be h.

Theorem 2.3 (Unique factorization): Every polynomial in R[x] factors uniquely in R[x],
up to constants. In fact, every polynomial in R[x1, . . . , xn] factors uniquely in R[x1, . . . , xn],
up to constants.

We give two more useful results.

Theorem 2.4 (Chinese Remainder Theorem): If polynomials Q1, . . . , Qn ∈ K[x] are pair-
wise relatively prime, then the system P ≡ Ri (mod Qi), 1 ≤ i ≤ n has a unique solution
modulo Q1 · · ·Qn.

Theorem 2.5 (Rational Roots Theorem): Suppose f(x) = anx
n + · · ·+ a0 is a polynomial

with integer coefficients and with an 6= 0. Then all rational roots of f are in the form

factor of a0

factor of an
.

In particular, if an = ±1, then all rational roots of f are integers.

Here’s a cute application of Bézout’s Theorem:

Example 2.6: Let f, g be polynomials with integer coefficients and with no common factor.
Prove that gcd(f(n), g(n)), n ∈ Z can only attain a finite number of values.

Solution. By Bézout’s Theorem, we have u(x)f(x) + v(x)g(x) = 1 for some u, v ∈ Q[x]
and nonzero. Clearing denominators of u and v, we get u′(x)f(x) + v′(x)g(x) = k for some
u′, v′ ∈ Z[x] and nonzero k ∈ Z. Hence gcd(f(n), g(n)) | k.

2.1 Problems

1. [1] Show by example we cannot always carry out division with remainder in Z[x] and
that Bézout’s Theorem does not hold for Z[x].

2. [1] Compute the greatest common divisors in Z[x]:

(a) gcd(x6 − x5 − x2 + 1, x3 − 2x2 + 2x− 1).

(b) gcd(x12 − 1, x8 + 1).

3. Find the greatest common divisor in Z[x]:
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(a) [2] gcd(xn − 1, xm − 1).

(b) [2.5] gcd(xn + 1, xm + 1).

Are your answers the same if we work in (Z/pZ)[x]?

4. [1.5] Let n > 0 be an integer. Find the remainder upon division of xn + xn−1 + · · ·+ 1
by:

(a) x2 + 1.

(b) x2 + x+ 1.

(c) x2 − x+ 1.

5. [2.5] Let f, g be relatively prime polynomials with integer coefficients. Prove that there
exist nonzero polynomials u, v with integer coefficients such that uf + vg = k where k
is a nonzero integer.

Suppose that u1f+v1g = k0 and u1, v1 are integer polynomials with u1 =
∑m

i=0 aix
i, v =∑n

i=0 bix
i, deg(u1) < deg(g), gcd(a0, . . . , am, b0, . . . , bn) = 1. Prove that k0 | k.

6. [3] Let f : Q→ Q satisfy f(f(f(x))) + 2f(f(x)) + f(x) = 4x. and f(f(· · · f(x))) = x
where f is taken 2009 times. Prove that f(x) = x.

7. [3] (BAMO 2004) Find all polynomials f with integer coefficients taking irrationals to
irrationals.

8. [5] (USAMO 1997/3) Prove that for any integer n, there exists a unique polynomial Q
with coefficients in {0, 1, . . . , 9} such that Q(−2) = Q(−5) = n.

9. [2] For how many integers n is n3+1000
n−10

an integer?

10. [2] Suppose that f and g are integer polynomials such that f(n)/g(n) is an integer for
infinitely many n ∈ Z. Show that as polynomials, g(x) divides f(x).

11. [5] (IMO 2002/3) Find all pairs of integers m > 2, n > 2 such that there are infinitely
many positive integers a for which an + a2 − 1 divides am + a− 1.

§3 Arithmetic Properties

In this section we concentrate on polynomials with integer coefficients. The following is a
simple but very useful idea.

Theorem 3.1: If P has integer coefficients, then a− b | P (a)− P (b) for all integers a, b.

Proof. Let m = a− b. Then a ≡ b (mod m). Let P = cnx
n + · · ·+ c1x+ c0. Then

cna
n + · · ·+ c1a+ c0 ≡ cnb

n + · · ·+ c1b+ c0 (mod m)

giving P (a) ≡ P (b) (mod m), as needed.
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Here is a typical application. Note the use of the extremal principle.

Example 3.2 (USAMO 1974/1): P (x) is a polynomial with integral coefficients. If a, b, c
are integers so that P (a) = b, P (b) = c, P (c) = a, prove that a = b = c.

Proof. If not, then no two are equal. Without loss of generality, assume that c is between a
and b. Then

|P (a)− P (b)| = |c− b| < |b− a|.

However, b− a | P (b)− P (a), a contradiction.

Example 3.3: Let P be a nonconstant polynomial with integer coefficients. Prove that
there is an integer x so that P (x) is composite.

Proof. Take n so that P (n) is nonzero. Suppose it is prime. For all k ∈ Z, we have
P (n) | P (n+ kP (n))− P (n), and hence P (n) | P (n+ kP (n)) . If P (x) is not composite for
any integer x, then P (n+ kP (n)) is ±P (n) or 0 for all k ∈ Z. P attains one of these values
infinitely many times, so must be constant, a contradiction.

One question we could ask is what values a polynomial can take modulo a given integer
m as x ranges over the residues modulo m. (From Theorem 3.1 we know that the value
modulo m depends only on x modulo m.) We know by the Lagrange Interpolation formula
that we can manufacture a polynomial taking arbitrary values at a given set of points if we’re
allowed to divide—so it works for R,Q, and even Z/pZ. However Lagrange Interpolation
will not work modulo m for m composite because in general we cannot divide modulo m
(for example, 2 has no inverse modulo 4). For instance, Theorem 3.1 already tells us that
given P (x), P (x + p) cannot be any residue modulo p2; it can only be those residues that
are congruent to x modulo p.

Example 3.4 (TST 2007/6): For a polynomial P (x) with integer coefficients, r(2i − 1)
(for i = 1, 2, 3, . . . , 512) is the remainder obtained when P (2i − 1) is divided by 1024. The
sequence

(r(1), r(3), . . . , r(1023))

is called the remainder sequence of P (x). A remainder sequence is called complete if it is a
permutation of (1, 3, 5, . . . , 1023). Prove that there are no more than 235 different complete
remainder sequences.

Solution. Step 1
For i ∈ N, let

Pi(x) =
i∏

k=1

(x− (2k − 1)).

(Define P0(x) = 1.) By Problem 7, any polynomial with integer coefficients can be written
in the form

∑
0≤i≤n ciPi(x).

Step 2
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Let ai =
∑∞

k=0

⌊
i

2k

⌋
. We claim that 2ai | Pi(x) for all i ∈ N and all odd x. For a prime p

and n ∈ Z, denote by vp(n) the exponent of the highest power of p dividing n (by convention
vp(0) = ∞). For given odd x let f(α) be the number of values of k (0 ≤ k ≤ i − 1) where
2α | x− 1− 2k. Then

v2(Pi(x)) =
i−1∑
k=0

v2(x− 1− 2k) =
∞∑
α=1

f(α)

since each k with 2α || x− 1− 2k is counted α times in either sum.

Since any set of 2α−1 consecutive even integers has one divisible by 2α, any set of i
consecutive even integers has at least

⌊
i

2α−1

⌋
integers divisible by 2α. Hence f(α) ≥

⌊
i

2α−1

⌋
,

and v2(Pi(x)) ≥
∑∞

α=0

⌊
i

2α

⌋
as desired.

Note a0 = 0, a1 = 1, a2 = 3, a3 = 4, a4 = 7, a5 = 8, and ai ≥ 10 for i ≥ 6.

Step 3

Next, we claim that if P (x) =
∑

0≤i≤n ciPi(x) has a complete remainder sequence then
c1 is odd. (c0 obviously needs to be odd.) We have 4 | P (4k + i) − P (i) for any integer i;
hence r(4k + 1) ≡ r(1) (mod 4) and r(4k + 3) ≡ r(3) (mod 4) for each k. In order for the
remainder sequence to be complete, we need r(1) 6≡ r(3) (mod 4). But noting that ai ≥ 2
and Pi(x) ≡ 0 (mod 4) for odd x and i ≥ 2, we have P (3)−P (1) ≡ c1(P1(3)−P1(1)) ≡ 2c1

(mod 4). Hence c1 is odd.

Step 4

Since for any odd x, Pi(x) is divisible by 2ai , if we mod out ci by 210−ai , and delete the
terms with Pi for i ≥ 6 (where ai ≥ 10), we get a polynomial with the same remainder
sequence as Pi. If P (x) gives a complete remainder sequence, then c0 is odd, so there are 29

choices for it; c1 is odd, so there are at most 28 choices for c1 (mod 29) (a1 = 1); for 2 ≤ i ≤ 5
there are at most 210−ai choices for ci (mod 210−ai). Hence the number of complete remainder
sequences is at most

29 · 28 ·
5∏
i=2

210−αi = 29 · 28 · 27 · 26 · 23 · 22 = 235.

�
Rather than ask about polynomials with integer coefficients, we could ask about polyno-

mials with integer values, that is P such that P (n) is an integer whenever n is an integer.
It turns out that there is a nice description of such polynomials, as the following example
shows.

Theorem 3.5: Let f(x) ∈ C[x]. Then the following are equivalent:

a. For every x ∈ Z, f(x) ∈ Z.

b. For n+ 1 consecutive integers x, where n is the degree of f , f(x) ∈ Z.
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c. There are a0, a1, . . . , an ∈ Z with

f(x) = an

(
x

n

)
+ an−1

(
x

n− 1

)
+ · · ·+ a0

(
x

0

)
.

Here
(
x
n

)
is defined as

xn

n!
=
x(x− 1) . . . (x− (n− 1))

n!

Proof. The assertions (a) ⇒ (b) and (c) ⇒ (a) are clear (
(
x
i

)
are integers for all integers x

and nonnegative integers i, by combinatorial argument).
Suppose (b) holds. First assume that f(x) takes on integer values at 0, 1, . . . , n. We

inductively build the sequence a0, a1, . . . so that the polynomial

Pm(x) = am

(
x

m

)
+ am−1

(
x

m− 1

)
+ · · ·+ a0

(
x

0

)
matches the value of f(x) at x = 0, . . . ,m. Define a0 = f(0); once a0, . . . , am have been
defined, let

am+1 = f(m+ 1)− Pm(m+ 1).

Noting that
(

x
m+1

)
equals 1 at x = m + 1 and 0 for 0 ≤ x ≤ m, this gives Pm+1(x) = f(x)

for x = 0, 1, . . . ,m + 1. Now Pn(x) is a degree n polynomial that agrees with f(x) at
x = 0, 1, . . . , n, so they must be the same polynomial.

Now if f takes on integer values for any n+ 1 consecutive values m, . . . ,m+ n, then by
the argument above on f(x − m), f(x) takes on integer values for all x; in particular, for
x = 0, 1, . . . , n. Use the above argument to get the desired representation in (c).

The key idea here in both examples that once we know that P (x) = R(x) at some points
x1, . . . , xn, then we can write

P (x) = R(x) + (x− x1) · · · (x− xn)Q(x). (8.1)

When we’re working over Q or R, (8.1) doesn’t put a restriction on other values of P , but
when we’re working over Z or Z/mZ, then it does. For instance, if we’re working over Z
and x1, . . . , xn are integers, then we know P (x) and R(x) have to differ by a multiple of
(x− x1) · · · (x− xn).

3.1 Problems

1. [1] Suppose P is a polynomial with integer coefficients such that P (0) and P (1) are
both odd. Show that P has no integer root.

2. [2] (Schur) Let P be a nonconstant polynomial with integer coefficients. Prove that
the set of primes dividing P (n) for some integer n is infinite.

3. [2] Polynomial P (x) has integer coefficients, and satisfies P (2) = 18 and P (3) = 20.
Find all possible integer roots of P (x) = 0.
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4. [3] (Putnam 2008) Let p be prime. Let h(x) be a polynomial with integer coefficients
such that h(0), h(1), . . . , h(p2−1) are distinct modulo p2. Show that h(0), h(1), . . . , h(p3−
1) are distinct modulo p3.

5. [4] (IMO 2006/5) Let P (x) be a polynomial of degree n > 1 with integer coefficients
and let k be a positive integer. Consider the polynomial

Q(x) = P (P (· · ·P (P︸ ︷︷ ︸
k times

(x)))).

Prove that there are at most n integers such that Q(t) = t.

6. [4] (MOSP 2001) Let f be a polynomial with rational coefficients such that f(n) ∈ Z
for all n ∈ Z. Prove that for any integers m,n, the number

lcm[1, 2, . . . , deg(f)] · f(m)− f(n)

m− n

is an integer.

7. [2] (Helpful for the next few problems) Let f(x) ∈ R[x], and let p0, p1, . . . be a sequence
of polynomials whose leading coefficients u0, u1, . . . are units (i.e. invertible), and
deg(pi) = i. Show that f can be uniquely written in the form

f(x) = anpn(x) + . . .+ a1p1(x) + a0p0(x).

In particular, this is true for pi(x) = xi = x(x− 1) · · · (x− i+ 1).

8. [2.5] How many polynomials of degree at most 5 with integer coefficients satisfy 0 ≤
P (x) < 120 for x = 0, 1, 2, 3, 4, 5?

9. [4] (USAMO 1995/4) Suppose q0, q1, q2, . . . is an infinite sequence of integers satisfying
the following two conditions:

(a) m− n divides qm − qn for m > n ≥ 0,

(b) there is a polynomial P such that |qn| < P (n) for all n.

Prove that there is a polynomial Q such that qn = Q(n) for each n.

10. [5] (TST 2008/9) Let n be a positive integer. Given an integer coefficient polynomial
f(x) define its signature modulo n to be the ordered sequence f(1), . . . , f(n) modulo
n. Of the nn such n-term sequences of integers modulo n, how many are the signature
of some polynomial f(x) if n is a positive integer not divisible by the cube of a prime?
(Easier variant: if n is not divisible hy the square of a prime)

11. [5] (variant of TST 2005/3) For a positive integer n, let S denote the set of polynomials
P (x) of degree n with positive integer coefficients not exceeding n!. A polynomial P (x)
in set S is called fine if for any positive integer k, the sequence P (1), P (2), P (3), . . .
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contains infinitely many integers relatively prime to k. Prove that the proportion of
fine polynomials is at most ∏

prime p≤n

(
1− 1

pp

)
.

(Original statement: Prove that between 71% and 75% of the polynomials in the set
S are fine.)

12. [5] Suppose f(x) is a polynomial of degree d taking integer values such that

m− n | f(m)− f(n)

for all pairs of integers (m,n) satisfying 0 ≤ m,n ≤ d. Is it necessarily true that

m− n | f(m)− f(n)

for all pairs of integers (m,n)?

§4 Polynomials in Number Theory

We give an interesting application of polynomials to number theory. Recall the following.

Theorem 4.1 (Vieta’s Theorem): Let r1, . . . , rn be the roots of
∑n

i=0 aix
i, and let

sj =
∑

1≤i1<...<ij≤n

ri1 · · · rij .

Then sj = (−1)j
an−j
an

.

Theorem 4.2 (Wolstenholme): Prove that
(
pa
pb

)
≡
(
a
b

)
(mod p3) for prime p ≥ 5.

Proof. By Fermat’s Little Theorem, xp−1 ≡ 1 (mod p). Thus in Z/pZ,

xp−1 − 1 ≡
p−1∏
i=1

(x− i) (mod p). (8.2)

Write (x− 1)p−1 =
∑p−1

i=0 aix
i. Then matching coefficients on both sides of (8.2) gives

ai ≡ 0 (mod p) for all 1 ≤ i < p− 1. (8.3)

Since p ≥ 5, letting x = p gives

(p− 1)! = (x− 1)p−1 = pp−1 +

(
p−2∑
i=2

aip
i

)
+ a1p+ (p− 1)!
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since (−1)(−2) · · · (−p+ 1) = (−1)p−1(p− 1)! = (p− 1)!. Subtracting (p− 1)! on both sides,

0 = pp−1 +

(
p−2∑
j=2

aip
i

)
+ a1p.

Using (8.3), p3 | aipi for 2 ≤ i < p − 1. Hence, since p ≥ 5, p3 | pp−1 +
∑p−2

i=2 aip
i. Since p3

divides the LHS, p3 | a1p and p2 | a1. Now p3 | (kp)p−1 +
(∑p−2

i=2 ai(kp)
i
)

as well and we get

(kp− 1)p−1 = (x− 1)p−1|x=pk

= (kp)p−1 +

(
p−1∑
j=2

ai(kp)
i

)
+ a1kp+ (p− 1)!

≡ (p− 1)! (mod p3). (8.4)

Now, (
pa

pb

)
=

(pa)pb

(pb)!

=

∏a
i=a−b+1[(pi)(pi− 1)p−1]∏b
i=1[(pi)(pi− 1)p−1]

=
ab

b!

[
b∏
i=1

[p(i+ a− b)− 1]p−1

(pi− 1)p−1

]
(8.5)

By (8.4), [p(i+ a− b)− 1]p−1 ≡ (pi− 1)p−1 (mod p3). Hence (8.5) becomes
(
a
b

)
modulo p3,

as needed.

Theorem 4.3 (Lucas’s Theorem): Suppose that the base p expansions of m and n are

m = (mk . . .m1m0)p,

n = (nk . . . n1n0)p.

Then (
m

n

)
≡
(
mk

nk

)
· · ·
(
m1

n1

)(
m0

n0

)
.

Proof. We have the identity

(1 +X)m = (1 +X)mkp
k · · · (1 +X)m1p(1 +X)m0 .

Now take both sides modulo p and use the fact that (1 +X)p
n ≡ 1 +Xpn (mod p) to obtain

(1 +X)m ≡ (1 +Xpk)mk · · · (1 +Xp)m1(1 +X)m0 (mod p).

Now match the coefficients of Xn on each side. The coefficient on the left hand side is
(
m
n

)
.

For the right hand side, note the only way to get the term Xn is by choosing Xnjp
j

from the
term (1 + Xpj)mj , simply by uniqueness of base p representation; the coefficient of Xnjp

j
is(

nj
mj

)
. Hence the coefficient of Xn on the right hand side is

(
mk
nk

)
· · ·
(
m1

n1

)(
m0

n0

)
. Equating the

coefficients gives the desired result.
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Corollary 4.4: Let n be a positive integer, and let B(n) be the number of 1’s in the binary
expansion of n. Then the number of odd entries in the nth row of Pascal’s triangle is 2B(n).

4.1 Problems

1. [3] Prove that for prime p ≥ 5,

p2|(p− 1)!

(
1 +

1

2
+ · · ·+ 1

p− 1

)
.

2. [3.5] (APMO 2006/3) Prove that for prime p ≥ 5,
(
p2

p

)
≡ p (mod p5).

3. [3.5] (ISL 2005/N3) Let a, b, c, d, e, f be positive integers. Suppose that the sum S =
a + b + c + d + e + f divides both abc + def and ab + bc + ca − de − ef − fd. Prove
that S is composite.

4. [5] (China TST 2009/3) Prove that for any odd prime p, the number of positive integers

n satisfying p | n! + 1 is less than or equal to cp
2
3 , where c is a constant independent

of p.2

5. [4-5] (TST 2002/2) Let p be a prime number greater than 5. For any positive integer
x, define

fp(x) =

p−1∑
k=1

1

(px+ k)2
.

Prove that for all positive integers x and y the numerator of fp(x)−fp(y), when written
in lowest terms, is divisible by p3.

(MOSP 2007/2.2) Let d be a positive integer. Integers t1, t2, . . . , td and real numbers
a1, . . . , ad are given such that

a1t
j
1 + a2t

j
2 + · · ·+ adt

j
d

is an integer for all integers j with 0 ≤ j < d. Prove that

a1t
d
1 + a2t

d
2 + · · ·+ adt

d
d

is also an integer.

2Hint: A polynomial of degree n over a field (such as Z/pZ) can have at most n zeros.
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§5 Resultant

Definition 5.1: Let R be a UFD, and let A(x) = amx
m+ · · ·+a0 and B(x) = bnx

n+ · · ·+b0

be in R[x]. Define

M(A,B) =



a0 · · · · · · · · · am 0 0

0
. . . . . . . . . . . . . . . 0

0 0 a0 · · · · · · · · · am
b0 · · · · · · bn 0 0 0

0
. . . . . . . . . . . . 0 0

0 0
. . . . . . . . . . . . 0

0 0 0 b0 · · · · · · bn


where the first n rows contain the aj and the last m rows contain the bj. The resultant of
A and B is

Res(A,B) = det(M(A,B)).

Note that Res(A,B) is homogeneous of degree n in a0, . . . , am and homogeneous of de-
gree m in b0, . . . , bn. The main use of the resultant is that considering it as a function of
a0, . . . , am, b0, . . . , bn, it tells us when A and B have a common factor.

For homogeneous polynomails, we write A(x, y) = amX
m + · · · + a0Y

m and B(x, y) =
bnX

n + · · ·+ b0Y
n and define the resultant the same way.

Proposition 5.2:

1. Res(A,B) = 0 if and only if A and B have a common factor, i.e. have a common zero
in K.

2. If ambn 6= 0, and A = am
∏m

j=1(X − αj), B = bn
∏n

k=1(X − βk), then

Res(A,B) = anmb
m
n

m∏
j=1

n∏
k=1

(αj − βk).

3. There exist polynomials F,G ∈ R[a0, . . . , bn][X] such that

FA+GB = Res(A,B).

Proof.

1. A and B have a common factor in K[X] if and only if there exist polynomials nonzero
polynomials C(x) = cm−1X

m−1 + · · · + c0 and D(x) = dn−1X
n−1 + · · · + d0 is K[X]

such that AC = BD and degC ≤ m − 1 and deg(D) ≤ n − 1. Multiplying out
AC = BD and treating it as a system of linear equations in the cj and dj, we get
that the determinant of the coefficient matrix is ±Res(A,B). Thus there is a nonzero
solution if and only if Res(A,B) = 0.
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2. First assume am = bn = 1. We considering the coefficients ak, bk and Res(A,B) as
functions of the roots, α1, . . . , αm, β1, . . . , βn. By Vieta’s formulas, am−k is homoge-
neous of degree k in α1, . . . , αm and bn−k is homogeneous of degree k in β1, . . . , bn. The
“big formula” for the determinant says that Res(A,B) is the sum of entries of the form∏m+n

k=1 Mk,σ(k), where M = M(A,B).

• For 1 ≤ k ≤ n, Mk,σ(k) is either a polynomial of degree σ(k)− k in the αj or zero,
and

• For 1 ≤ k ≤ m, Mn+k,σ(n+k) is a polynomial of degree σ(n+ k)− k in the βj.

Hence if
∏m+n

k=1 Mk,σ(k) 6= 0, then it has degree

n∑
k=1

(σ(k)− k) +
m∑
k=1

(σ(m+ k)− k) =
m+n∑
k=1

σ(m+ n)−
n∑
k=1

k −
m∑
k=1

k = mn.

Now when αj = βk, then by part 1, Res(A,B) = 0. Hence αj − βk divides Res(A,B).
By comparing degrees, we must have

Res(A,B) = C
m∏
j=1

n∏
k=1

(αj − βk).

To compute C, note that there is exactly one term in the determinant that gives
anm = (α1 · · ·αm)n, so C = 1. By scaling, the desired result holds for am, bn 6= 0.

3. We have

M(A,B)

X
m+n−1

...
1

 =



Xn−1A
...
A

Xm−1B
...
B


.

Let C denote the cofactor matrix of M(A,B). Multiplying by CT on both sides gives

Res(A,B)

X
m+n−1

...
1

 = CT



Xn−1A
...
A

Xm−1B
...
B


.

Let the coefficients of F,G be given by the bottom row of CT . Then multiplying out
the matrices and looking at the bottommost entry gives the desired conclusion.
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Field Theory

An extension of a field F is a field containing F .

1. A number field is a subfield of C.

2. A finite field has finitely many element.

3. A function field is an extension of C(t).

§1 Algebraic elements

Definition 1.1: Let L be an extension of K and α be an element of L. α is algebraic over
K if it is the zero of a polynomial in K[x], and transcendental otherwise.

Note α is transcendental if and only if the substitution homomorphism ϕ : K[x]→ L is
injective.

§2 Degree of a field extension

Definition 2.1: The degree [L : K] is the dimension of L as a K-vector space.

§3 Fundamental theorem of algebra

Theorem 3.1: C is algebraically closed.

In other words, every nonconstant polynomial with coefficients in C has a zero. Equiva-
lently, every nonconstant polynomial with coefficients in C splits completely.

Proof. We first show that all polynomials with real coefficients are reducible over the complex
numbers, by induction on the highest power of 2 dividing the degree. For odd degree, the
the statement follows since the polynomial has different signs near at ±∞. Now assuming
the induction hypothesis, suppose deg(f) = 2km where k is odd. Choose a splitting field L
of f , and write P (x) = (x− r1) · · · (x− rn). Consider the polynomial

Pt(x) =
∏

i≤i<j≤n

(x− ri − rj − trirj).
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Its degree is n(n−1)
2

= 2k−1m(n − 1). Since its coefficients are symmetric polynomials in
the ri, by hypothesis it has a complex zero, i.e. ri + rj + trirj is real for some i, j. Since
this is true for infinitely many values of t, we must have that ri + rj + trirj is real for all t
some i, j. This means ri + rj and rirj are both real. Then ri, rj are roots of the quadratic
x2 − (ri + rj)x+ rirj so they are complex roots of P (x). This concludes the induction.

Next for an arbitrary polynomial P (x), consider the real polynomial P (x)P (x). (We take
the conjugate of the coefficients, not x.) By the above, it factors entirely into linear factors.
P (x) divides P (x)P (x), so it splits as well.

§4 Constructions
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Finite fields

§1 Finite fields

A finite field is a vector space over Fp for some prime p, so has order q = pr. The (unique)
field of order q is denoted by Fq.

Proposition 1.1:

1. The elements in a field of order q are roots of xq − x = 0 (everything is modulo p).

2. F×q is a cyclic group of order q − 1.

3. There exists a unique field of order q up to isomorphism.

4. A field of order pr contains a subfield of order pk iff k | r. (Note this is a relation
between the exponents, not the orders.)

5. The irreducible factors of xq−x = 0 over Fp are the irreducible polynomials g ∈ Fp[X]
whose degrees divide r.

6. For every r there is an irreducible polynomial of degree r over Fp.

Proof. 1. The multiplicative group Fq of nonzero elements has order q − 1. The order of
any element divides q − 1 so αq−1 = 1 for any α ∈ Fq.

2. By the Structure Theorem for Abelian Groups, F×q is a direct product of cyclic sub-
groups of orders d1 | · · · | dk, and the group has exponent dk. Since xdk − 1 = 0 has at
most dk roots, k = 1 and d1 = q − 1.

3. Existence: Take a field extension where xq − x splits completely. If α, β are roots of
xq − x = 0 then (α+ β)q = α+ β. Since −1 is a root, −α is a root. The roots form a
field.

Uniqueness: Suppose K,K ′ have order q. Let α be a generator of K×; then K = F (α).
The irreducible polynomial f ∈ K[X] with root α divides xq−x. xq−x splits completely
in both K,K ′, so f has a root α′ ∈ K ′. Then F (α) ∼= F [x]/(f) ∼= F (α′) = K ′.
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4. Fpk ⊆ Fpr =⇒ k | r: Multiplicative property of the degree.

Fpk ⊆ Fpr ⇐ k | r: pr − 1 | pk − 1. Cyclic F×pr contains a cyclic group of order pk.

Including 0, they are the roots of xp
k − x = 0 and thus form a field by 3a.

5. =⇒ : Multiplicative property.

⇐: Let β be a root of g. If k | r, by 4, Fq contains a subfield isomorphic to F (β). g
has a root in Fq so divides xq − x.

6. Fq (q = pr) has degree r over Fp and has a cyclic multiplicative group generated by an
element α. Fp(α) has degree r over Fp.

To compute in Fq, take a root β of the irreducible factor of xq−x of degree r; (1, β, . . . , βr−1)
is a basis.

Let Wp(d) be the number of irreducible monic polynomials of degree d in Fp. Then by 2,

pn =
∑
d|n

dWp(d).

By Möbius inversion,

Wp(n) =
1

n

∑
d|n

µ
(n
d

)
pd.

Theorem 1.2: The Galois group G(Fqr/Fq) is cyclic of order r generated by the Frobenius
automorphism

φ(x) = xq.

Definition 1.3: Let L be a field extension of K. An element α ∈ K such that L = K(α) is
a primitive element for the extension.

Theorem 1.4 (Primitive element theorem): Every finite extension of a field K contains a
primitive element.

Proof. Need a general proof!

§2 Quadratic reciprocity via finite fields

We work in Fp. Since
(
p
q

)
= p

q−1
2 , we will explicitly find an element α such that α2 = ±p.

Then
(
p
q

)
= αq−1.

Let ζq be a primitive qth root of unity and consider the Gauss sum

α =

q−1∑
j=1

(
j

q

)
ζjq .
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All inverses below are modulo q. We calculate αq−1 in two different ways.

Step 1: We calculate

α2 =

q−1∑
j=1

q−1∑
k=1

(
j

q

)(
k

q

)
ζj+kq

=

q−1∑
j=1

q−1∑
k=1

(
jk

q

)
ζj+kq

(
•
q

)
is group homomorphism

=

q−1∑
s=0

(
ζsq

q−1∑
j=1

(
j(s− j)

q

))
(10.1)

(When s = j the terms are 0.)

1. When s 6= 0, noting 1 − sj−1 ranges over Fq − {1} when s ranges over Fq − {0}, we
have

q−1∑
j=1

(
j(s− j)

q

)
=

q−1∑
j=1

(
−1

q

)(
j2

q

)(
1− sj−1

q

)

=

q−1∑
j=1

(−1)
q−1

2

(
1− sj−1

q

)

= (−1)
q−1

2

((
q−1∑
j=0

(
j

q

))
−
(

1

q

))
= −(−1)

q−1
2 .

The last step comes from noting that there are as many quadratic residues as non-
residues.

2. When s = 0, we have

q−1∑
j=1

(
j(s− j)

q

)
=

(
−1

q

)(
j2

q

)
(q − 1) = (−1)

q−1
2 (q − 1).

Hence the sum (10.1) equals

(−1)
q−1

2

(
(q − 1)−

q−1∑
j=1

ζq

)
= (−1)

q−1
2 q

and

αp−1 = (α2)
p−1

2 = [(−1)
q−1

2 q]
p−1

2 = (−1)
p−1

2
· q−1

2 q
p−1

2 = (−1)
p−1

2
· q−1

2

(
q

p

)
.
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Step 2:Since the Frobenius map is an endomorphism, we have that

αp =

q−1∑
j=1

(
j

q

)p
�
���

1
ζpjq

=

q−1∑
j=1

(
jp−1

q

)
ζpq since p ≡ 1 (mod 2)

=

(
p

q

) q−1∑
j=1

(
j

q

)
ζpq

=

(
p

q

)
α

so αp−1 =
(
p
q

)
.

Equating the results of stpes 1 and 2 gives the result.

§3 Chevalley-Warning

Lemma 3.1: ∑
α∈Fq

αn =

{
0 if q − 1 - n
1 if q − 1 | n.

Proof. If q − 1 | n then αn = 1 for all α ∈ Fq, so the sum is 0.
If q − 1 - n then (since F×q ∼= Z/(q − 1)Z) there exists β ∈ F×q such that βn 6= 1.

Multiplication by β is a bijection on Fq so∑
α∈Fq

αn =
∑
α∈Fq

(αβ)nβn
∑
α∈Fq

αn.

Thus the sum must be 0.

Theorem 3.2 (Chevalley-Warning): Let f1, . . . fk ∈ Fq[X1, . . . , Xn] be polynomials with

k∑
j=1

deg(fj) < n.

Let V (f1, . . . , fk) = {(x1, . . . , xn) : fj(x1, . . . , xn) = 0 for all n}. Then

|V (f1, . . . , fk)| ≡ 0 (mod p).

In particular, there is a nontrivial point in V (f1, . . . , fk).
1

1This result says that finite fields are C1 fields.
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Proof. We engineer a polynomial that is 1 when x ∈ V (f1, . . . , fk) and 0 otherwise:

P (X1, . . . , Xn) :=
k∏
j=1

(1− fj(X1, . . . , Xn)q−1).

Indeed,

fj(x1, . . . , xn)q−1 =

{
1, fj(x1, . . . , xn) 6= 0

0, fj(x1, . . . , xn) = 0
,

so

1− fj(x1, . . . , xn)q−1 =

{
0, fj(x1, . . . , xn) 6= 0

1, fj(x1, . . . , xn) = 0
,

and multiplying gives the desired conclusion.
Hence we can count the number of points in V (f1, . . . , fn) as follows:

|V (f1, . . . , fn)| =
∑

(x1,...,xn)∈Fnq

P (x1, . . . , xn). (10.2)

Note

degP = (q − 1)
k∑
j=1

deg(fj) < (q − 1)n

so each term in P (X1, . . . , Xn) is in the form

Xa1
1 · · ·Xan

n

with a1 + · · ·+ an < (q− 1)n; this means aj < q− 1 for some j. Then
∑

xj∈Fq x
a1
1 · · ·xann ≡ 0

(mod p) by Lemma 3.1 so (after summing over the other xi) this term contributes 0 modulo
p to the sum in 10.2. Summing over all terms gives the result.

Theorem 3.3 (Erdős-Ginzburg-Ziv): From any set of 2n − 1 integers there exist n whose
sum is divisible by n.

Proof. We first prove the result for n = p prime.
Let S = {a1, . . . , a2p−1}. Associate a subset T to any (2p− 1)-tuple (x1, . . . , x2p−1) ∈ Fp

where xk 6= 0 iff ak ∈ T . We will translate the condition on T into equations in the xk.
Consider

f1(x) := xp−1
1 + · · ·+ xp−1

2p−1

f2(x) := a1x
p−1
1 + · · ·+ a2p−1x

p−1
2p−1

in Fp. The first equation is 0 iff |T | ≡ 0 (mod p), while the second is 0 iff
∑

a∈T a ≡ 0
(mod p). We have deg f1 + deg f2 = 2(p− 1) < 2p− 1 so by Chevalley-Warning the number
of solutions is a multiple of p. Since (0, . . . , 0) is a solution, there must be another one. That
solution must correspond to a subset of size p and hence satisfies the required conditions.
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Next suppose that the theorem holds for m,n relatively prime; we show it holds for mn.
Given r > 2m − 1 elements, by assumption there will be a subset T of m elements whose
sum is divisible by m. We start with a set S of 2mn− 1 integers; continue to pick subsets of
size m as described. After k steps we will have m(2n − k) − 1 elements, so we will be able
to carry out 2n− 1 steps and get

T1, . . . , T2n−1.

Let the sums of elements of these sets be t1, . . . , t2n−1. By the hypothesis for n, we can find
a subset of n elements, say tj1 , . . . , tjn with sum divisible by n. Then

Tj1 ∪ · · · ∪ Tjn

has mn elements and sum divisible both by m and n, hence by mn.

Problems

1. If k is infinite and P is a nonzero polynomial in k[x1, . . . , xn], then there exist t1, . . . , tn
such that P (t1, . . . , tn) 6= 0.

Solution: Induct on n. For n = 1, the polynomial can have at most n roots so the
assertion holds. Suppose it’s proved for n−1 and P ∈ k[t1, . . . , tn]. Since k[t1, . . . , tn−1]
has infinitely many elements, thinking of P as a polynomial of tn with coefficients in
k[t1, . . . , tn−1], some element in k[t1, . . . , tn−1] is not a zero of P . Set tn to be this
element to get a nonzero element of k[t1, . . . , tn−1]. By the induction hypothesis we
can find values for t1, . . . , tn−1 so that the polynomial does not evaluate to 0; substitute
these values into the polynomial for tn to get tn.
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Chapter 11

Galois Theory

§1 Galois groups and Galois extensions

Definition 1.1: The Galois group of an extension L/K, denoted

Gal(L/K) = G(L/K)

is the group of field automorphisms of L fixing K.

Definition 1.2: A Galois extension of K is a normal, separable extension.

Theorem 1.3: Suppose L/K is a finite field extension. L/K is a Galois extension if and
only if

|G(L/K)| = [L : K].

§2 Fixed fields

Definition 2.1: Let H be a group of automorphisms of a field K. The fixed field of H,
KH , is the set of elements of K fixed by every group element.

KH = {α ∈ K : σ(α) = α for every σ ∈ H} .

The following relationship between H and KH will be instrumental in proving the Fun-
damental Theorem of Galois Theory.

Theorem 2.2 (Fixed field theorem): 1. [K : KH ] = |H|: The degree of K over KH is
the order of the group.

2. H = G(K/KH): K is a Galois extension of KH with Galois group H.

Proof.
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§3 Splitting fields

Definition 3.1: A splitting field of f ∈ K[X] over K is an extension L/K such that

1. f splits completely in K: f = (X − α1) · · · (X − αn), αk ∈ K.

2. L = K(α1, . . . , αn).

A splitting field is a finite extension, and every finite extension is contained in a splitting
field.

The following shows that the splitting property of a splitting field is in a sense independent
of the polynomial chosen. This will help us relate splitting fields to Galois extensions.

Definition 3.2: A field extension L/K is normal if every polynomial g(X) ∈ K[X] with
one root in K splits completely in K.

Theorem 3.3 (Splitting theorem): The normal extensions L/K are exactly the splitting
fields of polynomials in K[X].

Proof. Suppose g(X) has the root β ∈ K. Then p1(α1, . . . , αn) = β for some p1 ∈ K[X1, . . . , Xn].
Let p1, . . . , pk be the orbit of p1 under the symmetric group. Then

∏k
i=1(X−pi(α1, . . . , αn)) ∈

K[X] by symmetry so it is divisible by g(X), the irreducible polynomial of β.

The order of G = G(L/K) divides [L : K], since

[L : K] = [L : LG]︸ ︷︷ ︸
|G|

[LG : K].

Theorem 3.4 (Characteristic properties of Galois extensions): For a finite extension L/K,
the following are equivalent.

1. L/K is a Galois extension.

2. LG(L/K) = L.

3. L is a splitting field over K.

Proof. (1) ⇐⇒ (2): By the Fixed Field Theorem, |G| = [L : LG].
(1) ⇐⇒ (3): Let γ1 be a primitive element for L with irreducible polynomial f . Let

γ1, . . . , γr be the roots of f in L. There is a unique K-automorphism σi sending γ1 7→ γi
for each i and these make up the group G(L/K). Thus the order of G(L/K) is equal to the
number of conjugates of γ1 in L. Hence we get the following chain of equivalences.

1. L/K Galois

2. |G| = [L : LG]

3. f splits completely in K
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4. K is a splitting field.

Proposition 3.5 (Properties of the Galois group): If L/K is a Galois extension, and g ∈
K[X] splits completely in L with roots β1, . . . , βr, then

1. G operates on the set of roots βi.

2. G operates faithfully if L is a splitting field of g over K.

3. G operates transitively if g is irreducible over K.

4. If L is the splitting field of irreducible g, then G embeds as a transitive subgroup of
Sr.

§4 Fundamental theorem of Galois theory

Theorem 4.1 (Fundamental theorem of Galois theory): Let L/K be a finite Galois exten-
sion and letG = G(L/K). Then there is a bijection between subgroups ofG and intermediate
fields, defined by

H 7→ KH

G(L/K ′)←[ K ′.

Moreover, letting K ′ = KH , K ′/K is a Galois extension iff H is a normal subgroup of G. If
so, then G(K ′/K) ∼= G/H. [Diagram here.]

Proof. Let γ1 be a primitive element for K ′/K and g the irreducible polynomial for γ1 over
K. Let the roots of g in K be γ1, . . . , γr. For σ ∈ G, σ(γ1) = γ1, the stabilizer of γi is
σHσ−1. Thus σHσ−1 = H if and only if γi ∈ K ′ = KH . H is normal iff all γi ∈ L iff K ′/K
Galois. Restricting σ to L gives a homomorphism ϕ : G→ G(K ′/K) with kernel H.

Definition 4.2: A normal basis of a Galois extension L/K is a basis in the form

{σ(β) : σ ∈ G(L/K)}

for some β ∈ L.

Theorem 4.3 (Normal basis theorem): Every Galois extension has a normal basis.

Proof. Write G(L/K) = {σ1, . . . , σm}. Consider two cases.

Case 1: K is infinite. We show the following.

Lemma 4.4: If f ∈ K[X1, . . . , Xm] is such that f(σ1α, . . . , σmα) = 0 for all α ∈ E, then
f = 0.
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Proof. Let X = (X1, . . . , Xm)T ; we write f(X) for f(X1, . . . , Xm). Let Y = (Y1, . . . , Ym),
and define

g(Y ) = g

σ1α1 · · · σ1αm
...

. . .
...

σmα1 · · · σmαm

X.

Then by assumption g(α) = 0 for each α ∈ K. Since K is infinite g is the zero polynomial.

Note the matrix

( σ1α1 ··· σ1αm
...

...
...

σmα1 ··· σmαm

)
is invertible (this is corollary of indep. of char - ). Hence

f must also be the zero polynomial.

Let A be the matrix with Xk in entry (i, j) if σi ◦ σj = σk. Let

f(X1, . . . , Xm) = det(A).

Note f(1, 0, . . . , 0) is the determinant of a permutation matrix (since given any g, h in a
group, there is exactly one element k and one element l so that lg = gk = h), so equals ±1.
This shows f is not the zero polynomial. Therefore, by Lemma 4.4, there exists α ∈ K such
that f(σ1α, . . . , σmα) 6= 0. Suppose that a1, . . . , am ∈ K and

m∑
k=1

akσk(α) = 0.

Then
m∑
k=1

akσiσk(α) = 0

for all i. Think of this as a system in the ai. The matrix corresponding to this system is
det(A) 6= 0, so all the ai = 0. This shows that σk(α) are linearly independent.

Case 2: K is a finite field. Then the Galois group is cyclic (Theorem ??); say G = 〈σ〉. By
independence of characters, I, σ, . . . , σn−1 are linearly independent so the minimal polynomial
of σ is Xn − 1. Consider L as a K[σ] ∼= K[X]/(Xn − 1)-module. By the structure theorem
for modules, we have

L ∼= K[X]/(p1)⊕ · · · ⊕K[X]/(pm)

for some polynomials (p1) dividing Xn − 1 with p1 | · · · | pm. Since the minimal polynomial
of σ is Xn− 1, we must have pm = Xn− 1. But [L : K] = n so m = 1 and L ∼= K[X].1 This
means there exists an element α such that α, σα, . . . , σn−1α generate L over K.

§5 Cubic and quartic equations

§6 Quintic equations

Theorem 6.1 (Quintic impossibility theorem):

1Compare this to the proof of primitive elements in finite fields.
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§7 Inverse limits and profinite groups

To study infinite Galois groups, it is fruitful to view them as the “limit” of finite Galois
groups. Thus we first introduce the notion of an inverse limit. This gives infinite Galois
groups the structure of a profinite group, and its topology becomes important.

7.1 Limits

We will eventually care about limits not just for abelian groups but also topological groups,
modules, and so forth. To take care of all this in one fell swoop, we introduce a bit of
abstraction, via category theory.

Definition 7.1: A category C is a collection of objects and morphisms (or maps). Each
morphism ϕ has a source and target object A and B; let HomC(A,B) be the set of morphisms
from A to B. There is a composition law

HomC(A,B)× HomC(B,C)→ HomC(A,C)

(α, β) 7→ β ◦ α

satisfying the following:

1. For each object B there exists an identity morphism 1B ∈ HomC(B,B) such that
1B ◦ α = α for any α ∈ HomC(A,B) and β ◦ 1B = β for any β ∈ HomC(B,C).

2. Composition is associative:

γ ◦ (β ◦ α) = (γ ◦ β) ◦ α

for any α ∈ HomC(A,B), β ∈ HomC(B,C), and γ ∈ HomC(C,D).

A morphism α ∈ HomC(A,B) is an isomorphism if there exists β ∈ HomC(B,A) such
that β ◦ α = 1A and α ◦ β = 1B.

Example 7.2: 2 We can often think of the objects as sets, possibly endowed with extra
structure, and morphisms as maps between them preserving the structure.

1. ((Sets)) Objects: sets. Morphisms: functions.

2. ((Rings)) Objects: rings. Morphisms: ring homomorphisms.

3. ((R-mod)), where R is a ring. Objects: R-modules. Morphisms: ring homomorphisms.

4. ((Groups)) Objects: groups. Morphisms: group homomorphisms.

(a) ((Ab Groups)) Objects: abelian groups. Morphisms: group homomorphisms.

5. ((Top)) Objects: topological spaces. Morphisms: Continuous maps.

2We have to be careful about the word “sets”... See [19] for all the stuff we’re sweeping under the rug.
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6. ((Top Groups)) Objects: topological groups.3 Morphisms: Continuous homomor-
phisms.

However, objects in categories do not have to be sets. For instance, any poset S can be
turned into a category, by letting the elements be the objects, and declaring a morphism ϕij
whenever i, j ∈ S and i 4 j.

Definition 7.3: Let C be a category. Let {Ai} and {ϕij} be a set of objects in C and
homomorphisms between them.4 We say that ({Ai}, {ϕij}) form a inverse (or projective)
system if the following two conditions are satisfied.

1. For every Ai 6= Aj there exists Ak such that there are morphisms ϕki : Ak → Ai and
ϕkj : Ak → Aj.

Ai

Ak

ϕki
>>

ϕij   

Aj

2. For every pair of maps ϕjk : Aj → Ak and ϕ′jk : Aj → Ak there exists a map5 αij : Ai →
Aj such that ϕjk ◦ ϕij = ϕjk ◦ ϕ′ij .

In our applications there will only ever be one map Ai → Aj, so the second condition is
empty.

Finally, we define the notion of inverse limit.

Definition 7.4: Let {Ai} and {ϕij} be a set of objects in C and homomorphisms between
them. Suppose that {ϕij} is closed under composition.6 We say a sequence of maps αi : A→
Ai is compatible if for every map ϕij : Ai → Aj in our set of maps,

αj = ϕij ◦ αi.

The inverse limit

A = lim←−Ai

is the unique object in C (up to isomorphism) with compatible maps αi, satisfying the
following universal mapping property (UMP): For every object B with compatible maps βi,

3Groups endowed with a topology such that multiplication is continuous on G×G and taking the inverse
is continuous.

4We’re allowed to have different maps between Ai and Aj ; however in our examples we usually won’t.
5called the equalizer
6Equivalently, the Ai and ϕij are indexed by a category, i.e. there is a functor from a small category into

C.
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there is a map ϕ : B → A such that βi = αi ◦ ϕ for every i, i.e. the following commutes:

B

βi

��

ϕ
��

βj

��

A
αi

��

αj

  

Ai
ϕij

// Aj.

(11.1)

This is a very abstract definition, but we will be able to construct A explicitly in the
cases we care about. Uniqueness follows from the UMP; the inverse limit exists for all inverse
systems if and only if C has products and equalizers. (See 18.705 notes.)

Theorem 7.5: Suppose C is ((Sets)), ((Groups)), ((R-mod)), or ((R-alg)). If ({Ai}, {ϕij})
is an inverse system, then lim←−Ai can be realized as the set of all sequences{

(ai) : ai ∈ Ai, ϕij(ai) = aj for all ϕij
}
,

with the natural module or algebra structure, as applicable.

Proof. Just verify that the UMP is satisfied.

Example 7.6: The ring of p-adic integers

Zp = lim←−Z/pnZ

is defined the inverse limit of ({Z/pnZ}n∈Z, ϕnm) where ϕnm : Z/pnZ → Z/pmZ, for n ≥ m,
are the natural projection maps. An element of Zp can be thought of as a number modulo
arbitrarily high powers of p. We have an injective map Z ↪→ Zp, but there are elements of
Zp not in Z (think this through).

We will explore p-adics in depth in Chapter 19.

Example 7.7: Define

Ẑ = lim←−Z/nZ

as the inverse limit of ({Z/nZ}n∈Z, ϕnm), where the maps ϕnm : Z/nZ → Z/mZ with m | n
are given by projection.

In the next section we will interpret these limits not just as limit of groups, but of
topological groups.

7.2 Profinite groups

We assume knowledge of topology (continuous maps, compactness, separation axioms, con-
nectedness, product topology, Tychonoff’s theorem).
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Definition 7.8: A profinite group is a inverse limit lim←−i∈I Gi of finite discrete topological
groups Gi.

Suppose that ϕi : G→ Gi are all surjective. The order #G of G is the formal product∏
p

pmaxi∈I vp(|Gi|).

In other words it is the “least common multiple” of the |Gi|.

We know that if we only consider the Gi as groups, then by Theorem 7.5, the inverse limit
can be described as the the set of tuples (gi)i∈I such that ϕij(gi) = gj for every transition
map ϕij : Gi → Gj. But we need to show that the inverse limit is well-defined when the Gi

are topological groups. We give a topology on the inverse limit of groups, lim←−i∈I Gi, so that it

satisfies the UMP for the inverse limit of topological groups. (In the category of topological
groups, homomorphisms must be continuous.)

Proposition 7.9: Give
G = lim←−

groups

Gi

the following topology: Equip each finite group Gi with the discrete topology and
∏

i∈I Gi

with the product topology. Then G = lim←−i∈I Gi is the closed subspace of
∏

i∈I Gi of compat-
ible sequences; give it the subspace topology.

Then
G = lim←−

top. group

Gi.

Proof. We show that G satisfies the UMP.
First, note that the maps ϕi : G → Gi are continuous. Indeed for any open Ui ∈ Gi,

letting πi be the projection map
∏

i∈I Gi, π
−1
i (Ui) is open. Hence ϕ−1

i (Ui) = π−1
i (Ui) ∩G is

open in G.
Now let H be a topological group with compatible maps βi : H → Gi. In order for 11.1

to commute, we must define
ϕ(h) = (βi(h))i.

This is a continuous map βi : H →
∏

iGi because it is the product of continuous maps; it is
also a homomorphism. Its image is in G ⊆

∏
iGi because the βi are compatible. Since G is

given the subspace topology, β is continuous, as desired.

The following characterizes the topology of profinite groups.

Proposition 7.10: A topological group G is profinite iff it is compact, Hausdorff, and
totally disconnected.

Proof. First suppose G = lim←−i∈I Gi is profinite.

1.
∏

i∈I Gi is compact by Tychonoff’s Theorem (an arbitrary product of compact spaces
is compact) so the closed subspace G is compact.

80



Number Theory, §11.8.

2. Given g = (gi) and h = (hi), suppose gi 6= hi. Partition Gi into two sets A and B
containing gi and hi, respectively. Then α−1

i (gi) and α−1
j (gj) are disjoint clopen (open

and closed) sets containing g and h, respectively. This shows that G is Hausdorff and
totally disconnected.

The converse is left as an exercise (we won’t need it).

Profinite groups can be constructed from arbitrary abelian groups as follows.

Definition 7.11: Let G be a group. Define the profinite completion of G to be

Ĝ = lim←−
N normal of finite index

G/N

with the natural projection maps.

Example 7.12: This agrees with our definition of Ẑ in Example 7.7. In the profinite
topology of Ẑ, the subsets nẐ form a neighborhood base of 0.

§8 Infinite Galois theory

Let Ω/K be an infinite Galois extension. We equip G(Ω/K) with a topology by interpreting
it as a profinite group, as follows.

Proposition 8.1:
G(Ω/K) = lim←−

L/K finite

G(L/K),

where the limit is with respect to the quotient maps G(M/K)→ G(L/K).

Proof. Identify the right side with compatible elements of
∏

L/K G(L/K) and send σ ∈
G(Ω/K) to (σ|L)L. This is a bijection because any element of Ω is in a finite extension over
K, so specifying a map Ω → Ω is the same as specifying a compatible sequence of maps
L→ L for every finite Galois extension.

Now we give G(Ω/K) the profinite topology. Equivalently, it is the topology such that a
neighborhood base of 1 is

G(S) = {σ ∈ G(Ω/K) : σs = s for all s ∈ S} , S finite.

We next show surjectivity of the quotient map.

Proposition 8.2: Every homomorphism σ : L→ Ω extends to a homomorphism Ω→ Ω.
If L/K is Galois, then the restriction map G(Ω/K)� G(L/K) is surjective.

Proof. Use Zorn’s lemma, as follows. Define a poset P whose elements are pairs (M,ϕM),
where M is a field with L ⊆ M ⊆ Ω and ϕM is a homomorphism M → Ω. Introduce a
partial ordering by saying

(M,ϕM) 4 (N,ϕN)
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if M ⊆ N and ϕN |M = ϕM . If (Mi, ϕMi
) is a chain (totally ordered subset), then it has a

maximal element in P , namely, (⋃
i

Mi, ϕ

)
where ϕ is defined as ϕ(x) = ϕi(x) if x ∈ Mi. Thus by Zorn’s lemma P has a maximal
element (M,ϕM).

For any element α ∈ Ω, by finite Galois theory (ref) we can extend (M,ϕM) to (M(α), ϕM(α)).
By maximiality of M , M = M(α), i.e. M = Ω.

The second part follows directly.

The following is the analogue of the fixed field theorem. Note that topology now plays a
role.

Theorem 8.3 (Fixed field theorem, infinite extensions): Suppose Ω/K is Galois and G =
G(Ω/K).

1. G(Ω/L) is closed, and ΩG(Ω/L) = L.

2. For every subgroup H ⊆ G, G(Ω/ΩH) = H.

Proof. 1. The setsG(S) are open of finite index, hence closed. HenceG(Ω/L) =
⋂

finite S⊆LG(S)
is closed.

For the second part, note that for every finite Galois extension M/L, we know

ΩG(M/L) ∩M = L.

Since this is true for every such M/L, and G(Ω/L)� G(M/L) is surjective, the result
follows.

2. It is clear that G(Ω/ΩH) ⊇ H. By part 1, G(Ω/ΩH) is closed, so it contains H.
FINISH...

Theorem 8.4 (Fundamental theorem of infinite Galois theory): There is a bijection between
closed subgroups of G and intermediate fields L with K ⊆ L ⊆ Ω.

H 7→ ΩH

G(Ω/L)←[ L.

We have the following.

1. This map is inclusion-reversing.

2. H is open if and only if [ΩH : K] <∞. Then [G : H] = [ΩH : K].

3. σHσ−1 corresponds to σM , so H is normal if and only if ΩH/K is Galois. Then
G(ΩH/K) ∼= G/H.
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Note given closed, open iff of finite index.

Example 8.5: We have

G(Fp/Fp) = lim←−G(Ω/Fp) = lim←−Z/nZ == Ẑ.

Example 8.6: Let
Q(ζ∞) := Q({ζn : n ∈ N}).

Then
G(Q(ζ∞)/Q) = lim←−

n∈N
G(Q(ζn)/Q) = lim←−(Z/nZ)× = Ẑ×

(Note that, by the Kronecker-Weber Theorem 23,7.2, Q(ζ∞) = Qab.)
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Chapter 12

Arithmetic over Finite Fields

Our main goal in this chapter is to find a way to find the number of solutions for equations
over finite fields. One problem we will look at in detail is, for a fixed b, how many solutions
are there to

b = yd1 + · · ·+ ydn

over a finite field? We encapsulate the number of representations as a sum of n dth powers
in a sum of orthonormal functions on Fq called the additive characters χ. We consider the
product ∑

y∈Fq

χ(yd)

n

=
∑

y1,...,yn∈Fq

χ(yd1 + · · ·+ ydn). (12.1)

(The additive characters have the nice property that χ(a + b) = χ(a)χ(b).) Note (12.1) is
true for all characters. To extract out the coefficient of χ(b), we multiply by χ(b), average
over all distinct characters χ, and take advantage of orthonormality to get

rd,n(b) =
1

q

∑
χ


∑
y∈Fq

χ(yd)

n

χ(b)

 . (12.2)

In the next section we will give define and give properties of characters that help us esti-
mate (12.2).

§1 Characters

To evaluate (12.2) it would be helpful if χ(yd) = χ(y)d. However, this cannot hold as we
defined χ so that it would preserve additive structure, not multiplicative structure. Thus to
evaluate (12.2) we would like to rewrite it as a sum of functions ψ such that ψ(ab) = ψ(a)ψ(b),
and such that the set of ψ are orthonormal. Thus we will need both the concepts of additive
and multiplicative characters. We make this precise below.

Definition 1.1: Let G be an abelian group. A character of G is a homomorphism from G
to C×. A character is trivial if it is identically 1. We denote the trivial character by χ0 or
ψ0.
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Definition 1.2: Let R be a given finite ring. An additive character χ : R+ → C is a
character χ with R considered as an additive group. A multiplicative character ψ : R× → C
is a character with R×, the units of R, considered as a multiplicative group.

The two cases we will be working with are R = Z/NZ (Section 1.1), and R = Fq
(Section 1.2). We extend multiplicative characters ψ toR by defining ψ(x) = 0 for x ∈ R\R×,
except we follow the convention of setting ψ0(0) = 1 when R = Fq. Note that in any case
the extended ψ still preserves multiplication.

We proceed to give an explicit description of characters for abelian groups. First, recall
the following theorem.

Theorem 1.3 (Structure Theorem for Abelian Groups): Let G be a finite abelian group.
Then there exist positive integers m1, . . . ,mk so that

G ∼= Z/m1Z× · · · × Z/mkZ.

Theorem 1.4: The group G = Z/m1Z× · · · ×Z/mkZ has |G| characters and each is given
by an element (r1, . . . , rk) ∈ Z/m1Z× · · · × Z/mkZ:

χr1,...,rk(n1, . . . , nk) =
k∏
j=1

e
2πirjnj
mj .

Moreover the set of characters Ĝ form a multiplicative group isomorphic to G.1

Proof. It is easy to check that χ = χr1,...,rk is a homomorphism. Let ej be the element
in G with 1 in the jth coordinate and 0’s elsewhere. Since χ(ej)

mj = 1, we must have

χ(ej) = e
2πirj
mj for some rj. Each element of G can be expressed as a combination of the ej,

so this shows all characters are in the above form.

This shows that (r1, . . . , rk) 7→ χr1,...,rk is surjective and hence an isomorphism.

Corollary 1.5: Every finite abelian group G has |G| characters.

Theorem 1.6 (Orthogonality relations): Let G be a finite abelian group and χj, 1 ≤ j ≤ n
be all characters of G. Then

1. (Row orthogonality) 〈χj, χk〉 :=
1

|G|
∑
g∈G

χj(g)χk(g) =

{
0, j 6= k

1, j = k
.

2. (Column orthogonality)
n∑
j=1

χj(g)χj(h) =

{
0, g 6= h

|G|, g = h
.

1This is a noncanonical isomorphism.
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Proof. Write G as Z/m1Z× · · · × Z/mkZ. Let (r1, . . . , rk) and (s1, . . . , sk) be in G. Then

〈χr1,...,rk , χs1,...,sk〉 =
∑

(p1,...,pk)∈G

k∏
j=1

e
2πi(rj−sj)pj

mj (12.3)

=
∑

(p1,...,pk−1)∈G

[(
k−1∏
j=1

e
2πi(rj−sj)pj

mj

)
mk−1∑
pk=0

e2πi(rk−sk)pk

]
. (12.4)

If (r1, . . . , rk) = (s1, . . . , sk) then (12.3) evaluates to |G|. Otherwise, we may assume without
loss of generality that rk 6= sk; then the inner sum in (12.4) evaluates to 0 by writing it as a
geometric series.

The proof for column orthogonality is similar.

The most useful case of row orthogonality is when we set χk = χ0:

Corollary 1.7: If χ is a character of G and χ 6= χ0 then∑
g∈G

χ(g) = 0.

Having established the basic prperties of characters of abelian groups, we now turn to
the specific cases Z/NZ and Fq.

1.1 Dirichlet characters

For our applications, it is helpful to think of consider characters on Z/NZ as functions on
Z. From Theorem 1.4, the additive characters are simply given by

χa(g) = e
2πiag
N .

Next we consider multiplicative characters.

Definition 1.8: A Dirichlet character of level N is a function χ : Z→ C that induces a
group homomorphism

χ : (Z/NZ)× → C,

and such that χ(n) = 0 for any n sharing a common factor with N . In other words, it
induces a multiplicative character Z/NZ→ C.

We say χ is principal if χ(n) = 1 for all (Z/NZ)×, and primitive if χ does not induce
a group homomorphism (Z/MZ)× → C for any M < N .

We say χ is even or odd if χ(−1) = 1 or χ(−1) = −1, respectively; we say χ is real
when im(χ) ⊂ R and say it is nonreal otherwise.

Any character can be written uniquely as a product of a primitive character χ1 of level
M | N and the principal character of level N :

χ = χ1χ0.
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1.2 Characters on finite fields

We give the additive and multiplicative characters on Fq explicitly. We know that F×q is
cyclic; let ξ be a generator.

Theorem 1.9 (Multiplicative characters of Fq): The multiplicative characters of Fq are
given by

ψj(ξ
n) = e

2πijn
q−1

for 0 ≤ j < q − 1.

Proof. By identifying ξ ∈ F×q with 1 ∈ Z/(q − 1)Z, this follows directly from Theorem 1.4.

Describing the additive characters takes slightly more creativity, since it is inconvenient
to decompose F+

q into cyclic groups.

Theorem 1.10 (Additive characters of Fq): Suppose q = pr with p prime. The additive
characters of Fq are given by

χa(g) = e
2πi
p

Tr(ag) (12.5)

for a ∈ Fq where2

Tr(g) = g + gp + · · ·+ gp
r−1

.

Proof. The automorphisms of Fq fixing Fp are generated by the Frobenius automorphism σ
sending g to gp. Since Tr(g) is fixed under this operation, it must be in the ground field Fp.
This makes (12.5) well-defined since only the value of Tr(ag) modulo p matters in (12.5).
The fact that χa is a homomorphism comes directly from the fact that σ is a homomorphism.

Since χ1(ag) = χa(g), if χa = χb then χ1(ag) = χ1(bg) and χ1((a − b)g) = 0. However,
χ1 is not trivial (identically equal to 1) since there are at most pr−1 values of g such that
g + · · · + gp

r−1
= 0. Thus a = b. This shows all characters in our list are distinct. Since we

have found |G| characters we have found all of them.

Remark 1.11: In general, a n-dimensional complex representation of a group G is a ho-
momorphism ρ from G into GLn(C), and the character χ of a representation is defined
by χ(g) = Tr(ρ(g)). This coincides with Definition 1.1 for abelian G, if we just consider
1-dimensional representations, since ρ is multiplication by a constant and χ is just that
constant.

The general case of Corollary 1.5 is replaced by the following: every finite group has a
number of irreducible characters equal to the number of conjugacy classes. The orthogonality
relations hold when we consider just irreducible characters, and with |G| replaced by the size
of the centralizer of g in the equation for column orthogonality.

2For the general definition of trace see Definition 13.2.1.
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§2 Gauss Sums

To relate additive characters to multiplicative characters, we need to evaluate sums in the
form

G(ψ, χ) =
∑
y∈R×

ψ(y)χ(y). (12.6)

where ψ is a multiplicative character and χ is an additive character.
Suppose we wanted to write an additive character on Fq in terms of multiplicative char-

acters. By row orthogonality, 1
q−1

∑
ψ∈F̂×q

ψ(y)ψ(g) equals 1 if y = g and is 0 otherwise. This

allows us to introduce multiplicative characters as follows: for y ∈ F×q ,

χ(y) =
1

q − 1

∑
g∈F×q

χ(g)
∑
ψ∈F̂×q

ψ(y)ψ(g)

=
1

q − 1

∑
ψ∈F̂×q

ψ(y)
∑
g∈F×q

ψ(g)χ(g)

=
1

q − 1

∑
ψ∈F̂×q

G(ψ, χ)ψ(y). (12.7)

The Gauss sums are the coefficients of the expansion of χ in terms of multiplicative charac-
ters. The next theorem tells us how to calculate Gauss sums.

Theorem 2.1: Let ψ0 and χ0 denote the trivial multiplicative and additive characters on
Fq, respectively. Then for multiplicative and additive characters ψ and χ on Fq, we have

G(ψ, χ) =


q − 1, ψ = ψ0, χ = χ0

−1, ψ = ψ0, χ 6= χ0

0, ψ 6= ψ0, χ = χ0

and

|G(ψ, χ)| = √q, ψ 6= ψ0, χ 6= χ0.

If ψ is a nontrivial multiplicative character and χ is a primitive additive character on
Z/NZ, then

|G(ψ, χ)| =
√
N.

Proof. The first case is trivial. For the second case,

G(ψ0, χ) =
∑
y∈F×q

χ(y) =

∑
y∈Fq

χ(y)

− 1 = −1

by Corollary 1.7. The third case directly from Corollary 1.7 with ψ.
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Now we consider the case case when ψ is nontrivial, and either χ 6= χ0 (in the case
R = Fq) or χ is primitive (in the case R = Z/NZ), respectively. We have

|G(ψ, χ)|2 =
∑

g1,g2∈R×
ψ(g1)ψ(g2)χ(g1)χ(g2)

=
∑

g1,g2∈R×
ψ(g−1

1 g2)χ(g2 − g1)

=
∑
h∈R×

∑
g1∈R×

ψ(h)χ(g1(h− 1)) setting h = g−1
1 g2

=
∑
h∈R×

ψ(h)

(∑
g1∈R

χ(g1(h− 1))

)
−

∑
y∈R\R×

χ(y)


=
∑
h∈R×

ψ(h)

(∑
g1∈R

χ(g1(h− 1))

)
by Corollary 1.7 with ψ

Now we note the following: when h = 1 all terms in the inner sum are 1, so it equals q or
N , respectively. When h 6= 1, consider two cases.

1. R = Fq: As g1 ranges over Fq, g1(h− 1) ranges over Fq.

2. R = Z/NZ: As g1 ranges over Z/NZ, g1(h − 1) ranges over a subgroup H ⊆ Z/NZ,
hitting each element N

|H| times. Since χ is primitive, χ|H is nontrivial.

In either case, Corollary 1.7 gives the inner sum to be 0. Hence |G(ψ, χ)|2 evaluates to
ψ(1)q = q or ψ(1)N = N , respectively.

We will need the following fact later on.

Proposition 2.2: Let R = Fq or Z/NZ. For a ∈ R× and b ∈ R,

G(ψ, χab) = ψ(a)G(ψ, χb).

Proof. Using the fact that χc(g) = χ1(cg),

G(ψ, χab) =
∑
y∈R×

ψ(y)χab(y)

=
∑
y∈R×

ψ(y)χb(ay)

=
∑
y∈R×

ψ(a−1y)χb(y) replacing y → a−1y

= ψ(a)−1
∑
y∈R×

ψ(y)χb(y)

= ψ(a)G(ψ, χb)
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§3 Enumerating Solutions

We return to our original problem. Rather than just work with sums of dth powers, we work
with diagonal equations

a1y
d1
1 + · · ·+ any

dn
n = b (12.8)

where ai ∈ F×q and di ∈ N. First, note that because of the following lemma, we can restrict
to case where di|q − 1.

Lemma 3.1: The multisets {yd|y ∈ Fq} and {ygcd(d,q−1)|y ∈ Fq} are equal.

Proof. Let ξ be a generator for F×q , and write d = k gcd(d, q − 1) where gcd(k, q − 1) = 1.
Then removing the one occurrence of 0 in the two sets, we get {ξjd|0 ≤ j < q − 1} and
{ξj gcd(d,q−1)|0 ≤ j < q − 1}. The lemma follows from the fact that as multisets,

{jd (mod q − 1)|0 ≤ j < q − 1} = {j gcd(d, q − 1) (mod q − 1)|0 ≤ j < q − 1}.

Indeed, each multiple of gcd(d, q − 1) appears q−1
gcd(d,q−1)

times on both sides.

As (12.8) always has the trivial solution when b = 0, we just need to estimate the number
of solutions to (12.8) when b 6= 0.

Theorem 3.2: [?, 6.37] Fix b 6= 0, di|q − 1 and let N be the number of solutions to (12.8)
when b 6= 0 is fixed. Then

|N − qn−1| ≤ [(d1 − 1) · · · (dn − 1)− (1− q−
1
2 )M(d1, . . . , dn)]q

n−1
2

where M(d1, . . . , dn) is the number of n-tuples in the set

S :=

{
(j1, . . . , jn) ∈ Zn|1 ≤ ji ≤ di − 1 and

n∑
i=1

ji
di
∈ Z

}
.

Note that we would expect N to be close to qn−1, because there are qn possible choices
for (y1, . . . , yn) and q possible values for their sum.

Proof. We use the idea mentioned in the introduction. We have

N =
1

q

∑
y1,...,yn∈Fq , χ∈F̂+

q

χ(a1y
d1
1 + · · ·+ any

dn
n )χ(b) =

1

q

∑
y1,...,yn∈Fq , χ∈F̂+

q

χ(a1y
d1
1 ) · · ·χ(any

dn
n )χ(b)

since by row orthogonality the inner sum is 1 if a1y
d1
1 + · · ·+any

dn
n = b and 0 otherwise. Note

that χ0 contributes qn to the sum. Taking it out and factoring the remaining terms gives

N = qn−1 +
1

q

∑
χ∈F̂+

q ,χ 6=χ0

χ(b)
n∏
j=1

∑
yj∈Fq

χ(ajy
dj
j )

 (12.9)

We write the sums of additive characters as sums of multiplicative characters using the
following lemma.
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Lemma 3.3: Let χ be a nontrivial additive character and λ a multiplicative character of
order d dividing q − 1. Then ∑

y∈Fq

χ(ayd) =
d−1∑
j=1

λ(a)jG(λj, χ).

Proof. Note that λ exists since the group of multiplicative characters is isomorphic to Z/(q−
1)Z by Theorem 1.4. Suppose χ = χc. We write χ as a sum of multiplicative characters
using (12.7), get the Gauss sum to be independent of a by using Proposition 2.2, and take
out the exponent as we were hoping to do:∑

y∈Fq

χ(ayd) =
∑
y∈Fq

χac(y
d)

= 1 +
∑
y∈F×q

χac(y
d)

= 1 +
1

q − 1

∑
ψ∈F̂×q

∑
y∈F×q

G(ψ, χac)ψ(yd)

= 1 +
1

q − 1

∑
ψ∈F̂×q

ψ(a)G(ψ, χc)
∑
y∈Fq

ψ(y)d (12.10)

= 1 +
d−1∑
j=0

λ(a)jG(λj, χ) (12.11)

=
d−1∑
j=1

λ(a)jG(λj, χ) (12.12)

Note (12.11) follows since by Corollary 1.7,
∑

y∈F×q ψ(y)d = 0 unless ψd is the trivial character,

which is true iff ψ is a power of λ. In that case, the inner sum in (12.10) is q− 1. In (12.12)
we used G(ψ0, χ) = −1 (Theorem 2.1).

Using Lemma 3.3 and letting λj be the multiplicative character with λj(ξ
t) = e

2πit
dj we

rewrite (12.9) as

N − qn−1 =
1

q

∑
χ∈F̂+

q ,χ 6=χ0

(
χ(b)

n∏
j=1

d−1∑
k=1

λj(aj)
kG(λkj , χ)

)

=
1

q

∑
χ∈F̂+

q ,χ 6=χ0

∑
(k1,...,kn),1≤ki≤di−1

χ(b)λ1
k1

(a1) · · ·λn
kn

(an)G(λ1
k1 , χ) · · ·G(λn

kn , χ)

=
1

q

∑
c∈F×q

∑
(k1,...,kn),1≤ki≤di−1

χc(b)λ1
k1

(a1) · · ·λn
kn

(an)G(λ1
k1 , χc) · · ·G(λn

kn , χc)

=
1

q

∑
(k1,...,kn),1≤ki≤di−1

G(λ1
k1 , χa1) · · ·G(λn

kn , χan)
∑
c∈F×q

χb(c)λ1
k1

(c) · · ·λn
kn

(c)

(12.13)
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=
1

q

∑
(k1,...,kn),1≤ki≤di−1

G(λ1
k1 , χa1) · · ·G(λn

kn , χan)G(λ1
k1 · · ·λn

kn
, χb) (12.14)

where in (12.13) we used Proposition 2.2 twice, to get

λj
kj

(aj)G(λj
kj , χc) = λj

kj
(c)λj

kj
(aj)G(λj

kj , χ1) = λj
kj

(c)G(λj
kj , χaj).

Now we apply Theorem 2.1 to get that |G(λkii , χai)| =
√
q. Note

(λ1
k1 · · ·λn

kn
)(ξt) = e

(2πi)
(
k1
d1

+···+ kn
dn

)
t

is the trivial character iff (k1, . . . , kn) ∈ S. Hence |G(λ1
k1 · · ·λn

kn
, χb)| = 1 if (k1, . . . , kn) ∈ S

and
√
q otherwise. Using this and the triangle inequality, (12.14) becomes

|N − qn−1| ≤ 1

q
[q

n
2 |S|+ q

n+1
2 ((d1 − 1) · · · (dn − 1)− |S|)],

proving the theorem.

§4 Applications to Waring’s Problem

Now we derive Small’s bound for Waring’s constant g(d, q), the minimum n such that (12.8)
has a solution with d1 = · · · = dn = d for all b. By Lemma 3.1, g(d, q) = g(gcd(d, q − 1), q),
so it suffices to consider the case d|q − 1.

First, note that sufficient condition for Waring’s constant to exist is that the set {yd|y ∈
Fq} is not contained in a proper subfield of Fq. Since this set is generated multiplicatively

by ξd, and any subfield is multiplicatively generated by ξ
pr−1

pk−1 for some k|d, writing q = pr

with p prime we need

pr − 1

pk − 1
- d for every proper divisor k of r. (12.15)

Apply Theorem 3.2 (dropping the term with M(d1, . . . , dn)) to get

N ≥ qn−1 − (d− 1)nq
n−1

2 (12.16)

This is positive when

q
n−1

2 > (d− 1)n ⇐⇒ n

2
(ln q − 2 ln(d− 1)) >

ln q

2
(12.17)

Thus we obtain the following bound for g(d, q):

Theorem 4.1: Suppose d|q − 1 and q > (d− 1)2. Then

g(d, q) ≤
⌊

ln q

ln q − 2 ln(d− 1)
+ 1

⌋
.

Note that in particular, (12.17) for n = 2 allows us to make the “inverse” statement that
if q > (d− 1)4, then the equation yd1 + yd2 = b has a solution for any b ∈ Fq. That is, for any
d, in any sufficiently large finite field every element can be written as a sum of 2 dth powers.
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Algebraic Number Theory
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Chapter 13

Rings of integers

When we have a field extension L of Q, we would like to define a ring of integers for L, with
properties similar to the ring Z ⊆ Q. We will define this ring of integers in a slightly more
general context.

§1 Integrality

Definition 1.1: Let A be an integral domain and L a field containing A. An element of
x ∈ L is integral over A if it is the zero of a monic polynomial with coefficients in A:

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0, n ≥ 1, a0, . . . , an−1 ∈ A.

The integral closure of A in L is the set of elements of L integral over A.

Example 1.2: The integral closure of Z in Q is simply Z itself (we see this more generally
in Proposition 1.8). Thus, integral closure generalizes the notion of what it means to be an
“integer” in other number fields. As we will see in Example 4.7, for d squarefree, the integral

closure of Q(
√
d) is Z[

√
d] when d ≡ 3 (mod 4) and Z

[
1+
√
d

2

]
when d ≡ 1 (mod 4). Algebra

is much nicer in integral extensions—which is why, for instance, we would study Z
[

1+
√
−3

2

]
rather than just Z[

√
−3].

Theorem 1.3: Let L be a field containing the ring A. Then the elements of L integral over
A form a ring.

Proof. We give two proofs. We need to show that if a, b are algebraic over A then so are
a+ b and ab.
Proof 1: Let p, q be the minimal polynomials of a, b, let a1, . . . , ak be the conjugates of a and
b1, . . . , bl be the conjugates of b. The coefficients of∏

1 ≤ i ≤ m
1 ≤ j ≤ n

(x− (ai + bj)),
∏

1 ≤ i ≤ m
1 ≤ j ≤ n

(x− (aibj))

are symmetric in the ai and symmetric in the bj so by the Fundamental Theorem of Sym-
metric Polynomials can be written in terms of the elementary symmetric polynomials in the
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ai and in the bj, with coefficients in A. By Vieta’s Theorem these are expressible in terms
of the coefficients of p, q, which are in A. Hence these polynomials have coefficients in A.
They have a+ b, ab as roots, as desired.

Proof 2: We use the following lemma.

Lemma 1.4 (Criterion for integrality): An element α ∈ L is integral over A if and only if
there exists a nonzero finitely generated A-submodule of L such that αM ⊆ M . If so, then
we can take M = A[α].

Example 1.5: For example, 1√
2

fails this criterion over Z—multiplying by it has the effect

of making M “finer.”
√

2, however, is integral.
In the case A = Z and B = Q, a ∈ Q is integral over Z iff a ∈ Z. Indeed, a ∈ Z satisfies

x − a, and if a 6∈ Z, then powers of a contain arbitrarily large denominators so Z[α] is not
finitely generated.

Proof. ⇒: If α satisfies a monic polynomial of degree n, thenA[α] is generated by 1, α, . . . , αn−1.
⇐: Suppose M is generated by v1, . . . , vn. Then we can find a matrix T with coefficients

in A such that

α

v1
...
vn

 = T

v1
...
vn

 .
Since v1, . . . , vn 6= 0, αI−T is singular, and det(αI−T ) = 0. This gives a monic polynomial
equation satisfied by α.

Now for α, β ∈ L and let M = A[α] and N = A[β]. Note

1. if M,N are finitely generated by {αi} and {βj}, then MN is finitely generated by
{αiβj}.

2. αβMN ⊆MN and (α + β)MN ⊆MN .

Hence αβ and α + β are integral over A by Lemma 1.4 as needed.

For the rest of this chapter, A is an integral domain, K is its fraction field, L is an
extension of K, and B is the integral closure of A in L.

L B

K A

(13.1)

Definition 1.6: A is integrally closed or normal if its integral closure in K = Frac(A)
is itself.

Proposition 1.7: If L is algebraic over K then every element of L can be written as b
a

where
b ∈ B and a ∈ A. Thus L = Frac(B). In particular, for any extension L/Q, Frac(OL) = L.
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Proof. Given α ∈ L, suppose that it satisfies the equation

P (x) := anx
n + an−1x

n−1 + · · ·+ a0 = 0

with a0, . . . , an ∈ K and an 6= 0. Since Frac(A) = K, by multiplying by an element of A as
necessary we may assume a0, . . . , an ∈ A. Then

an−1
n P

(x
d

)
:= xn + an−1x

n−1 + anan−2x
n−2 + · · ·+ an−1

n a0.

Hence anα is integral over A, i.e. anα ∈ B. This shows α is in the desired form.
For the last part, take K = Q and A = Z.

For short we call (13.1) the “AKLB” setup if we further assume A is integrally closed in
K. In the usual case, A is the integral closure of Z in K. in this case, we write A = OK .1

When F = Q, the algebraic closure of Q, a ∈ Q is called an algebraic number and a ∈ OQ
is an algebraic integer.

Theorem 1.8 (Rational Roots Theorem): A UFD is integrally closed.

Proof. Suppose R is a UFD with field of fractions K. Let x ∈ K be integral over R; suppose
x satisfies

xn + an−1x
n−1 + · · ·+ a0 = 0

where a0, . . . , an−1 ∈ R. Write x = p
q

where p, q ∈ R are relatively prime. Then multiplying
the above by qn gives

pn + an−1p
n−1q + · · ·+ a1pq

n−1 + a0q
n = 0

q(an−1p
n−1 + · · ·+ a0q

n−1) = −pn

Thus q | p, possible only if q = 1. This shows x ∈ R.

Note that in the definition of integrality, an element is integral if it is the zero of any
monic polynomial in A[x]. However, it suffices to check that its minimal polynomial is in
A[x].

Proposition 1.9: Let L be an algebraic extension of K and A be integrally closed. Then
α ∈ L is integral over A iff its minimal polynomial f over K has coefficients in A.

Proof. The reverse direction is clear. For the forward direction, note all zeros of f are integral
over K since they satisfy the same polynomial equation that α satisfies. The coefficients of
f are polynomial expressions in the roots so are integral over A, and hence in A (since they
are already in K).

Proposition 1.10 (Finite generation):

1Later on, when we take K to be an extension of the p-adic field Qp, we will use OK to denote the integral
closure of Zp in K.
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1. Let A ⊆ B ⊆ C be rings. If B is finitely generated as an A-module and C is finitely
generated as a B-module, then C is finitely generated as an A-module.

2. IfB is integral overA and finitely generated as anA-algebra, then it is finitely generated
as an A-module.

Proof.

1. Take products of generators.

2. Let algebra generators be β1, . . . , βm. Then

A ⊆ A[β1] ⊆ · · · ⊆ A[β1, . . . , βm]

is a chain of integral extensions, so item 2 follows from 1.

Combining this proposition with Lemma 1.4 we get the following:

Proposition 1.11 (Transitivity of integrality): Let A ⊆ B ⊆ C be integral domains and
K, L, M be their fraction fields.

1. If B is integral over A and C is integral over B, then C is integral over A.

2. Let A′ is the integral closure of A over B and A′′ be the integral closure of A′ over C.
Let A′′′ be the integral closure of A in C.

3. The integral closure of A is integrally closed.

Proof.

1. For γ ∈ C, let bi be the coefficients of the minimal polynomial of C over B. Then γ
is integral over A[b0, . . . , bm], so by Proposition 1.10, item 2, A[b0, . . . , bm, γ] is finitely
generated over A. Since γA[b0, . . . , bm, γ] ⊆ A[b1, . . . , bm, γ], by Lemma 1.4, γ is integral
over A.

2. By item 1 applied to A ⊆ A′ ⊆ A′′, A′′ is integral over A so A′′ ⊆ A′′′. Conversely, any
element a ∈ A′′′ is integral over A so a fortiori integral over A′′; thus A′′′ ⊆ A′′.

3. Follows from item 2 applied to A = B = C.

§2 Norms and Traces

Let B be a free A-module of rank n. Then any element β ∈ B defines an A-linear map mβ

(or [β]), multiplication by β. It is helpful to think of β as a linear map because then we can
apply results from linear algebra.

Definition 2.1: The trace, determinant, and characteristic polynomial of mβ are called the
trace, norm, and characteristic polynomial of β.
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These are computed by choosing any basis of e1, . . . , en for B over A, and then computing
the action of β on this basis.

Proposition 2.2 (Elementary properties): The following hold (a ∈ A; β, β′ ∈ B):

1. Tr(β + β′) = Tr(β) + Tr(β′)

2. Tr(aβ) = aTr(β)

3. Tr(a) = na

4. Nm(ββ′) = Nm(β) · Nm(β′)

5. Nm(a) = an

Proposition 2.3 (Behavior with respect to field extensions): Suppose L/K is a degree n
field extension, M is a finite extension of L, and β ∈ L.

1. (Relationship with roots of minimal polynomial) If f(X) is the minimal polynomial
of β over K and β1, . . . , βm are the roots of f(X) = 0 in a Galois closure of K, then
letting r = [L : K(β)] = n

m
,

(a) charL/K(β) = f(X)r

(b) TrL/K(β) = r(β1 + · · ·+ βm)

(c) NmL/K(β) = (β1 · · · βm)r

2. (Relationship with embeddings) Suppose L is separable over K, M is a Galois extension
of K, and σ1, . . . , σn are the set of distinct embeddings L→M fixing K. Then

(a) TrL/K(β) = σ1(β) + · · ·+ σn(β)

(b) NmL/K(β) = σ1(β) · · ·σn(β)

In particular, this is true when L = M is a Galois extension of K, and we can think
of the σk as simply the elements of G(L/K).

3. (Transitivity of trace and norm) Suppose β ∈M and M/K is separable.2 Then

(a) TrM/K(β) = TrL/K(TrM/L(β))

(b) NmM/K(β) = NmL/K(NmM/L(β))

4. (Integrality) Assume AKLB. If β ∈ B, then the coefficients of charL/K(β), and hence
TrL/K(β) and NmL/K(β), are integral over A. In particular, if A is integrally closed in
L then they are in A.

Proof.

2The last condition is not necessary. TODO: Find a proof of the general case.
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1. If r = 1, i.e. K[β] = L, then by the Cayley-Hamilton Theorem, f(mβ) = 0. Since
f(X) is irreducible, f(X) | charL/K(β). However, these are monic polynomials of the
same degree so they are equal.

In the general case, take a basis xi of K[β] over K and a basis yj of L over K[β]. Then
xiyj form a basis of L over K, and the matrix of mβ with respect to this basis is n
copies of A. This proves (a), which implies the rest of the statements.

2. Let β1, . . . , βm be the conjugates of β. There are m distinct imbeddings K(β) → M ;
they each take β to a different βk. Each of these imbeddings extend to r := [L :
K(β)] = n

m
imbeddings L→M . Now use item 1.

3. Note that for any finite extensions K ⊆ L ⊆ N with N Galois, an imbedding L ↪→ N
fixing K can be extended to a K-automorphism on N , and so be considered an element
of the set G(N/K)/G(N/L).3

Let N be a Galois extension containing M . By item 2,

TrM/K(β) =
∑

σ∈G(N/K)/G(N/M)

σ(β)

TrL/K(TrM/L(β)) = TrL/K

 ∑
σ∈G(N/L)/G(N/M)

σ(β)


=

∑
τ∈G(N/K)/G(N/L)

∑
σ∈G(N/L)/G(N/M)

τ(σ(β))

where in the second sum we take arbitrary representatives τ ∈ G(N/K) and σ ∈
G(N/L). These are equal because for any choice of these representatives,

{σ ∈ G(N/K)/G(N/M)} = {τσ | τ ∈ G(N/K)/G(N/L), σ ∈ G(N/L)/G(N/M)}

when considered in G(N/K)/G(N/M) (i.e. as imbeddings M ↪→ N fixing K). The
same is true of the norm.

4. The minimal polynomial of α has coefficients in A, by Proposition 1.9. Hence the
result follows from item 1.

§3 Discriminant

Definition 3.1: If B is a ring and free A-module of rank m, and β1, . . . , βm ∈ B, then their
discriminant is

D(β1, . . . , βm) = det[TrB/A(βiβj)]1≤i,j≤m.

3Using the primitive element theorem, write L = K(β). The imbeddings L→ N are those taking β to a
conjugate; there are [L : K] imbeddings. But we know G(N/K)/G(N/L) = [L : K], so all of the imbeddings
must be extendable. We also use this fact (in addition to a counting argument) in the proof of 2.
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Proposition 3.2: If the change of basis matrix from γi to βi is T , then

D(γ1, . . . , γm) = det(T )2 ·D(β1, . . . , βm).

Proof. Let M1 and M2 be the matrices of the bilinear form

(α, α′) = TrB/A(αα′)

with respect to the bases (β1, . . . , βm) and (γ1, . . . , γm), respectively. Then, using the change
of basis formula for bilinear forms,

D(β1, . . . , βm) = det(M1)

D(γ1, . . . , γm) = det(M2)

M2 = T tM1T

det(M2) = det(T )2 · det(M1)

from which the result follows.

Consider the discriminant of an arbitrary basis of B over A. By the above fact, this is
well-defined up to multiplication by the square of a unit. The residue in A/(A×)2 is called
the discriminant disc(B/A). The discriminant also refers to the ideal of A this element
generates.

Note disc(B/A) can be thought of as the determinant of the matrix of the bilinear form
(β, β′) = TrB/A(ββ′).

Proposition 3.3 (Criterion for integral basis): Let A ⊆ B be integral domains and B be a
free A-module of rank m with disc(B/A) 6= 0. Then γ1, . . . , γm ∈ B form a basis for B as
an A-module iff

(D(γ1, . . . , γm)) = (disc(B/A))

as ideals.

Proof. Let βi be a basis. If the change of basis matrix from γi to βi is T , then by Proposi-
tion 3.2,

D(γ1, . . . , γm) = det(T )2 ·D(β1, . . . , βm) = det(T )2 disc(B/A)

Now γi is basis iff T is invertible, iff det(T ) is a unit, iff (D(γ1, . . . , γm)) = (disc(B/A)).

Proposition 3.4 (Discriminants and Field Extensions):

1. (Relationship with embeddings) Let L be separable finite over K of degree m, and
σ1, . . . , σm be the embeddings of L into a Galois extension M fixing K. Then for any
basis β1, . . . , βm of L over K,

D(β1, . . . , βm) = det(σiβj)
2 6= 0.

2. (Nondegeneracy of trace pairing) If B is free of rank m over A (with fraction fields
K,L as above), then the pairing

(β, β′) 7→ Tr(ββ′)

is a perfect K-bilinear pairing, and disc(B/A) = disc(K/L) 6= 0.
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Here perfect means that the map a 7→ (b 7→ (a, b)) is an isomorphism L→ L∗, and similarly
for b 7→ (a 7→ (a, b)). This is equivalent to saying that the bilinear form is nondegenerate.

Proof. Use Proposition 2.3(1b), and that σk, det are both multiplicative. Inequality follows
from independence of characters:

Let G be a group, F a field. Then the homomorphisms G→ F× are linearly independent.

Thus for K of degree m over Q, we can talk of disc(OK/Z).
A closely related quantity to the discriminant is the different.

Definition 3.5: Assume AKLB, and suppose L/K is a finite separable extension. The
codifferent of B with respect to A is

B∗ = {y ∈ L | Tr(xy) ∈ A for all x ∈ B}.

The different of B with respect to A is

DB/A = (B∗)−1.

In other words, it is the largest B-submodule satisfying Tr(E) ⊆ A.

Note that DB/A = (B∗)−1.

Remark 3.6: We will define the discriminant in general, when B is not necessarily a free A-
module, in Chapter 21. The relationship between the two definitions is the following: Let p be
an ideal in A. Then Ap is a principal ideal domain (in fact, a DVR). Let S = A−p; then S−1B
is free over S−1A by the structure theorem for modules. We have (disc(S−1B/S−1A)) =
(pAp)

m(p) for some m(p). Then

disc(B/A) =
∏
p

pm(p).

§4 Integral bases

Proposition 4.1 (Finite generation of integral extensions): Let A be integrally closed and
L separable of degree m over K. There are free finite A-submodules M and M ′ of L such
that M ⊆ B ⊆ M ′. B is a finitely generated A-module if A is Noetherian, and free of rank
m if A is a PID.4

Proof. Let {β1, . . . , βm} ⊆ B be a basis for L over K. Take a basis β′i so that Tr(βiβ
′
j) = δij.

Then
Aβ1 + · · ·+ Aβm ⊆ B ⊆ Aβ′1 + · · ·+ Aβ′m.

The second inclusion follows because if β ∈ B, then writing β =
∑

j bjβ
′
j, we have that

bi = Tr(ββi) ∈ A. (In other words, the β′i form a basis for the codifferent B∗, which contains
B.)

4Alternative proof: proceed as in 5.8.
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If A is Noetherian, then M ′ is finitely generated, so its submodule B is finitely generated
over A. If A is a PID, then by the Structure Theorem for Modules (over PIDs), M is a direct
sum of cyclic modules and a free module. Since it is contained in a free module of rank m
and contains a free module of rank m, it must be free of rank m.

The following is immediate:

Theorem 4.2: If K is finite over Q (i.e. a number field), then OK is a finitely generated
Z-module. It is the largest subring that is finitely generated over Z.

Definition 4.3: A basis for OK as a Z-module is called an integral basis.

Proposition 4.4: Suppose K has characteristic 0 (so L separable over K), L = K[β], and
f is the minimal polynomial of β over K. Let f(X) =

∏
(X − βi) in the Galois closure of L.

Then
D(1, β, . . . , βm−1) =

∏
1≤i<j≤m

(βi − βj)2 = (−1)m(m−1)/2 · NmL/K(f ′(β)).

This is called the discriminant of f .5

Proof. Note the βi are conjugates of β; assume β = β1.
By Proposition 3.4, we have

D(1, β, . . . , βm−1) =

∣∣∣∣∣∣∣∣∣
1 β1 · · · βm−1

1

1 β2 · · · βm−1
2

...
...

. . .
...

1 βm · · · βm−1
m

∣∣∣∣∣∣∣∣∣
2

=
∏

1≤i<j≤m

(βi − βj)2,

where the last statement follows by evaluating the Vandermonde determinant.
For the second equality, note by Proposition 2.3(1c) that

NmL/K(f ′(β)) = NmL/K((β1 − β2) · · · (β1 − βm)) =
∏

1≤i≤m

∏
1≤j≤m, j 6=i

(βi − βj)

= (−1)
m(m−1)

2

∏
1≤i<j≤m

(βi − βj)2.

Proposition 4.5: IfK = Q[α], α ∈ OK , andD(1, α, . . . , αm−1) = disc(O/Z) then {1, α, . . . , αm−1}
is an integral basis.

Proof. Using change-of-basis and the correspondence between index and determinant,

D(1, α, . . . , αm−1) = disc(OK/Z) · [OK : Z[α]]2.

Now disc(OK/Z) ∈ Z so [OK : Z[α]] = 1.

5This gives an alternative proof of the perfect pairing.
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Theorem 4.6 (Stickelberger’s Theorem):

1. Let s is the number of complex (nonreal) embeddings K → C. Then

sign[disc(K/Q)] = (−1)s/2.

2. disc(OK/Z) ≡ 0 or 1 (mod 4).

Proof. 1. Write K = Q[α] by the Primitive Element Theorem and α1, . . . , αr be the real
conjugates and β1, β1, . . . , βs, βs be the complex conjugates. By Proposition 4.4,

sign(D(1, α, . . . , αm−1)) = sign

( ∏
1≤j≤s

(βj − βj)2

)
=
∏

1≤j≤s

i2 = (−1)s/2.

2. Let α1, . . . , αm be an integral basis. Let P and −N be the sum of the terms in the
expansion of det(σiαj) corresponding to even and odd permutations, respectively:

P =
∑

even π∈Sm

m∏
i=1

σiαπ(i)

N =
∑

odd π∈Sm

m∏
i=1

σiαπ(i).

Then

disc(OK/Z) = det(σiαj)
2

= (P −N)2

= (P +N)2 − 4PN.

Take σ ∈ G(Kgal/Q). Note composition by σ permutes the σi, say by ν. Then

P =
∑

even π∈Sm

m∏
i=1

σiαν−1π(i)

N =
∑

odd π∈Sm

m∏
i=1

σiαν−1π(i)

and hence σ permutes {P,N}. Hence σ fixes P +N,PN and they are rational. Since
they are integral over Z they are integers. Thus the above is congruent to 0 or 1 modulo
4.

Example 4.7 (Quadratic extensions): Any quadratic extension of Q is in the form Q(
√
m)

for some squarefree integer m. We find the ring of integers of Q(
√
m). Consider two cases.
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1. m ≡ 2, 3 (mod 4): The minimal polynomial of
√
m is X2 −m, so

disc(1,
√
m) = (

√
m− (−

√
m))2 = 4m.

Note disc(1,
√
m)

disc(Q(
√
m)/Q)

must be a square by Proposition 3.2 so disc(Q(
√
m)/Q) equals m

or 4m. However, by Stickelberger’s Theorem, disc(Q(
√
m)/Q) ≡ 0, 1 (mod 4). Hence

disc(Q(
√
m)/Q) 6= m and disc(Q(

√
m)/Q) = 4m. By Proposition 3.3, 1,

√
m is an

integral basis.

2. m ≡ 1 (mod 4): Note 1+
√
m

2
is integral with minimal polynomial X2 −X − m−1

4
, so

disc

(
1,

1 +
√
m

2

)
=

(
1 +
√
m

2
− 1−

√
m

2

)2

= m.

Since m is squarefree, disc(Q(
√
m)/Q) = m and Proposition 3.3 says 1, 1+

√
m

2
is an

integral basis.

The following tells us about integral bases for products of fields.

Proposition 4.8: Suppose that K,L are field extensions of Q such that

[KL : Q] = [K : Q][L : Q].

Let d = gcd(disc(K/Q), disc(L/Q)). Then

1. OK ⊆ d−1OKOL.

2. If OKL = OKOL, then disc(KL/Q) = disc(K/Q)[L:Q] disc(L/Q)[K:Q].

Proof. Let {α1, . . . , αm} be an integral basis for K and {β1, . . . , βn} be an integral basis for
L. By the degree assumption, we know that {αiβj} is a basis for KL over Q. Any element
of KL integral over Q can be written as

γ =
∑

1 ≤ i ≤ m
1 ≤ j ≤ m

aij
r
αiβj (13.2)

where gcd(r, gcd(aij)) = 1.
We need to show that r | d. Let xi =

∑n
j=1

aij
r
βj. We will turn (13.2) into a system of

equations by considering all embeddings K ↪→ C, solve for the xi using Cramer’s rule, and in
this way show that each xi is an algebraic integer in L divided by a bounded denominator.

Note given embeddings σK : K ↪→ C and σL : L ↪→ C, there is exactly one embedding
σKL : KL ↪→ C such that restricts to σK and σL. It is clearly unique if it exists. To
show existence, write K = Q(α) ∼= Q(x)/(f(x)) by PET, and note that the characteristic
polynomial of f does not change upon passing to L because of the degree assumption. Hence
KL = L(α) = L(x)/(f(x)), and in extending σL to σKL, we are allowed to send α = x to
σL(α).
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Fix an embedding σ : L ↪→ C, and let σ1, . . . , σm be all embeddings K ↪→ C. Then
applying σk to 13.2 we obtain the system of equations

m∑
i=1

σk(αi)xi = σk(γ), 1 ≤ k ≤ m.

By Cramer’s rule, letting D = det[(σk(αi))k,i] we get Dxi = Di where Di has the ith column
of D replaced by (σk(αi))

m
k=1. Note that D and Di are both algebraic integers. Using

disc(OK/Z) = D2 (Proposition 3.4), we get

disc(OK/Z)xi = DDi.

Hence disc(OK/Z)xi is an algebraic integer (in OL). Since the βj are an integral basis for
OL, this forces r | disc(OK/Z). Similarly, r | disc(OL/Z), as needed.

Now we prove the second part. Choose (α1, . . . , αm) a basis for K/Q and (β1, . . . , βn) a
basis for L/Q. Then (αjβk)1≤j≤m,1≤k≤n is a basis for KL/Q. For γ ∈ KL, let (γ)j,k denote
the coordinate of αjβk in γ. Then the mn×mn matrix

[Tr(αi1βi2αi′1βi′2)] =

[ ∑
1≤j≤m,1≤k≤n

(αi1βi2αi′1βi′2αjβk)j,k

]

=

[ ∑
1≤j≤m,1≤k≤n

(αi1αi′1αj)j(βi2βi′2βk)k

]

=

[ ∑
1≤j≤m

∑
1≤k≤n

(αi1αi′1αj)j(βi2βi′2βk)k

]
= [Tr(αi1αi′1)]⊗ [Tr(βi2βi′2)].

Taking determinants and using

det(A⊗B) = det(A)n det(B)m, A ∈Mm×m, B ∈Mn×n

we get
disc(KL/Q) = disc(K/Q)[L:Q] disc(L/Q)[M :Q].

§5 Problems

1. Suppose that f ∈ Z[x] is irreducible and has a root of absolute value at least 3
2
. Prove

that if α is a root of f then f(α3 + 1) 6= 0.

2. Let a1, . . . , an be algebraic integers with degrees d1, . . . , dn. Let a′1, . . . , a
′
n be the con-

jugates of a1, . . . , an with greatest absolute value. Let c1, . . . , cn be integers. Prove
that if the LHS of the following expression is not zero, then

|c1a1 + . . .+ cnan| ≥
(

1

|c1a′1|+ · · ·+ |cna′n|

)d1d2···dn−1

.
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For example,

|c1 + c2

√
2 + c3

√
3| ≥

(
1

|c1|+ |2c2|+ |2c3|

)3

.

3. Let p be a prime and consider k pth roots of unity whose sum is not 0. Prove that the
absolute value of their sum is at least 1

kp−2 .
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Chapter 14

Ideal factorization

§1 Discrete Valuation Rings

Definition 1.1: Let K be a field. A discrete valuation on K is a surjective function
v : K× → Z such that for every x, y ∈ K×,

1. π is a group homeomorphism: v(xy) = v(x)v(y).

2. v(x+ y) ≥ min(v(x), v(y)).

We set v(0) =∞.
A discrete valuation ring (over Z) is a local integral domain R (not a field), whose

fraction field has a discrete valuation v.
An element t with v(t) = 1 is a uniformizing parameter.

Proposition 1.2: Suppose R is a DVR with fraction field K. Let v be the valuation on K.

1. The units are exactly the elements with 0 valuation:

R× = v−1(0).

2. Its maximal idea is the set of elements with positive valuation.

m = {x : v(x) > 0} .

3. R is a PID with ideals mn = {x : v(x) ≥ n} = (tn) for n ∈ N.

4. R is a UFD; any element can be written uniquely in the form utn where u is a unit.

Lemma 1.3: Let A be a local domain with maximal ideal m principal and nonzero. If⋂
n≥0 m

n = 0 then A is a DVR.

Theorem 1.4: Let (A,m) be a Noetherian local domain. The following conditions are
equivalent.

1. A is a DVR.
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2. A is a normal domain of dimension 1. (Dimension 1 means that the longest chain of
prime ideals is 2: p0 ⊆ p1.) (Since A is local this means it has only two prime ideals.)

3. A is a normal domain of depth 1. (There is a nonzero x ∈ A with m ∈ Ass(A/〈x〉).)

4. A is a regular local ring of dimension 1. (Regular means its maximal ideal is generated
by a number of elements equal to its dimension. So here it means m is principal.)

5. m is principal and nonzero.

Proof. Note (5) =⇒ (1) uses Krull Intersection Theorem: For R a Noetherian ring, a an
ideal, and M a finitely generated module (esp. when M = R), then there exists x ∈ a such
that

(1 + x)
∞⋂
n=0

anM = 0.

§2 Dedekind Domains

Definition 2.1: A Dedekind domain is a normal Noetherian integral domain A such that
every nonzero prime ideal is maximal.

Proposition 2.2: A local integral domain is Dedekind iff it is a DVR.

Proposition 2.3: For every nonzero prime ideal p in a Dedekind domain A, the localization
Ap is a DVR. (Locally, Dedekind domains are DVR’s.)

(The converse, i.e. if Ap is a DVR for every p, then A is Dedekind, holds using Serre’s
criterion.)

Theorem 2.4 (Unique factorization of prime ideals): Let A be a Dedekind domain. Every
proper nonzero ideal of A can be written uniquely as a product of prime ideals.

Proof. Let a be a proper nonzero ideal of A.

1. If A is Noetherian, then every ideal a ⊆ A contains a product b =
∏

prkk of nonzero
prime ideals: Otherwise, choose a maximal counterexample a (possible since A is
Noetherian). Since a is not prime, there exist x, y 6∈ a such that xy ∈ a. By the
maximality assumption both a+(x) and a+(y) contain a product of prime ideals, and
so does a ⊇ (a + (x))(a + (y)).

2. By the Chinese Remainder Theorem

A/b ∼=
∏
k

A/prkk

via the natural map.
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3. If p is a maximal ideal in a ring A, and q = pAp, then the natural map A/pm →
(A/pm)p = Ap/q

m is an isomorphism. (Indeed, it is injective because p is prime and
surjective because any s ∈ A− p is invertible modulo pm, on account of (s) + pm = A.)
Thus ∏

k

A/prkk
∼=
∏
k

Apk/q
rk
k .

(This is where we use the fact that nonzero prime ideals are maximal.)

4. Combining the above, we get a one-to-one correspondence between ideals in A contain-
ing b, and ideals in

∏
k Apk/q

rk
k . All ideals in the last ring are in the form

∏
k q

sk
k /q

rk
k ,

so a is of the form
∏

k q
sk
k . Moreover, different prime ideals containing b correspond to

different
∏

k q
sk
k /q

rk
k , which are different for different sk, giving uniqueness.

Corollary 2.5: Let A be a Dedekind domain.

1. If a =
∏

p p
rk
k and b =

∏
p p

sk
k are ideals in A and p is a nonzero prime ideal then

a ⊇ b ⇐⇒ rk ≥ sk for all k

⇐⇒ aAp ⊇ bAp for all p.

2. If a ⊃ b 6= 0 are ideals in A then a = b + (a) for some a ∈ A. In particular, if b ∈ a
then there exists a ∈ A such that a = (a, b); i.e. each ideal is generated by at most
two elements.

3. (Inverses) Let a 6= 0 be an ideal of A. There exists a nonzero ideal a∗ such that aa∗ is
principal.

(a) We can choose a∗ so aa∗ = (a) for given a ∈ a.

(b) Alternatively we can choose a∗ to be relatively prime to a given ideal c 6= 0.

Proof. 1. The forward direction was shown in the course of the theorem. The reverse
directions are easy.

2. Choose any a ∈ a\{0}. By unique factorization, we can write

(a) = pu1
1 · · · purr

a = pv1
1 · · · pvrr

for primes p1, . . . , pr and uj ≥ vj ≥ 0. Now choose bj ∈ p
vj
j \p

vj+1
j . By the Chinese

remainder theorem we can choose b such that b ≡ bj (mod p
vj+1
j ) for all j. Since

ordpj(bj) = vj, by item 1, the highest power of pj dividing (b) is vj. The highest power
of pj dividing (a) is uj ≥ vj, so the highest power of pj dividing (a, b) is vj. Now for
a prime q 6∈ {p1, . . . , pr}, we have a 6∈ q (else q would divide a), so q does not divide
(a, b). We conclude

(a, b) = pv1
1 · · · pvrr ,

as needed.
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3. (a) follows from item 1; for (b), use item 2 and 3(a) to write a = ac+ (a) = ac+ aa∗ =
a(c + a∗).

Theorem 2.6: Assume AKLB, and K/L is finite separable. If A is a Dedekind domain,
then so is B. In particular, taking A = Z and K = Q, every ring of integers in a finite
separable extension of Q is Dedekind.

Proof.

1. B is noetherian: By Proposition 13.4.1, B is a finitely generated A-module, hence a
Noetherian A-module, hence Noetherian as a ring.

2. B is integrally closed by Proposition 13.1.11(2).

3. Every nonzero prime ideal q of B is maximal: Take a nonzero β ∈ q and let its minimal
polynomial be xn+an−1x

n−1 + · · ·+an. Then an = −βn−· · ·−a1β ∈ βB∩A ⊆ q∩A.
This shows q ∩ A 6= 0; since A is Dedekind and q ∩ A is prime, q ∩ A is maximal and
A/q is a field. Since B is integral over A, B/q is integral over A/q.

Lemma 2.7: An integral domain B containing a field k and algebraic over k is a field.

Proof. Let β ∈ B be nonzero. Then k[β] is a finite dimensional vector space and the
multiplication-by-β map mβ : k[β] → k[β] is injective, hence surjective. Thus there
exists β′ so ββ′ = 1, i.e. β has an inverse.

The lemma shows B/q is a field. Hence q is maximal.

Alternatively, this follows directly from “lying-over” and “going up” for integral exten-
sions.

Theorem 2.8: Suppose K is a finite extension of Q. Then unique factorization of ideals
holds in OK .

Proof. Combine Theorem 2.4 and Theorem 2.6.

§3 Primary decomposition*

[ADD: Commutative algebra generalization, and a new proof of unique ideal factorization]

§4 Ideal class group

Let A be a Dedekind domain with fraction field K.
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Definition 4.1: A fractional ideal of A is a nonzero A-submodule of K such that da ∈ A
for some d ∈ A.

A principal fractional ideal is one of the form

(b) := bA := {ba|a ∈ A}.

The product of two fractional ideals is

ab =
{∑

aibi|ai ∈ a, bi ∈ b
}
.

Note that given a nonzero A-submodule of K, it is finitely generated iff it is a fractional
ideal. (Take common denominators of the generators.)

We can extend unique factorization to fractional ideals, in the same way that we can
extend unique factorization from Z to Q.

Theorem 4.2: The set Id(A) of fractional ideals is a free abelian group on the set of prime
ideals. Thus each fraction ideal can be uniquely written in the form

a =
∏
p

prp .

Proof. Freeness follows from unique factorization (Theorem 2.4) and existence of inverses
follows from Corollary 2.5(3a).

Now we are ready for the following definition.

Definition 4.3: Let P (A) be the group of principal ideals of A. The ideal class group
C(A) is Id(A)/P (A). Its order is the class number.

The ideal class group and class number of K are defined as the ideal class group and
class number of OK .

Note that we have an exact sequence

0→ P (A)→ I(A)→ C(A)→ 0.

The class number is 1 iff all A is a PID. Thus in some sense it measures how far A is
from being a PID.

Alternatively there is an exact sequence

1→ O×K → K× → IK → CK → 1

where the map K× → K is given by a 7→ (a).

Theorem 4.4 (Approximation Theorem): Let x1, . . . , xm ∈ A, and p1, . . . , pm be distinct
prime ideals. For any x ∈ N, there is x ∈ A such that

ordpi(x− xi) > n

for all i.

Proof. Immediate from the Chinese Remainder Theorem.
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§5 Factorization in extensions

Assume AKLB, with A Dedekind and L/K finite separable. A prime ideal p ⊂ A will factor
in B:

pB = Pe1
1 · · ·Peg

g .

We say ei is the ramification index of Pi. For P | p, we write e(P/p) for the ramification
index and f(P/p) for the residue class degree [B/P : A/p].

1. If ek > 1 for some k, p is ramified in B.

(a) If g = 1 and e1 > 1, p is totally ramified.

(b) When |A/p| = pn, p prime, and p - [B/P : A/p], then p is tamely ramified.

2. If ei = fi = 1 for all i, p splits completely.

3. If pB stays prime, p is inert.

Lemma 5.1: A prime ideal P divides p iff P ∩K = p.

Theorem 5.2 (Degree equation): Let m = [L : K] and suppose pB = Pe1
1 · · ·P

eg
g . Then

g∑
i=1

eifi = m.

If L/K is Galois, then all the ei are equal and all the fi are equal. Letting e and f denote
these common values,

efg = m.

Proof. We show both sides of the equation equal dimA/p(B/pB).
For the LHS, by the Chinese Remainder Theorem B/pB ∼=

∏g
i=1B/P

ei
i so

dimA/p(B/pB) =

g∑
i=1

dimA/p(B/P
ei
i ). (14.1)

Consider the filtration
B ⊃ Pi ⊃ · · · ⊃ Pei

i .

There are no ideals between any two consecutive ideals by Corollary 2.5 (the first iff), so
there are no proper B/Pi-ideals (i.e. subspaces) of Pr

i/P
r+1
i . Hence dimB/Pi(P

r
i/P

r+1
i ) = 1

and dimA/p(P
r
i/P

r+1
i ) = fi. Thus

dimA/p(B/P
ei
i ) = eifi. (14.2)

Combining (14.1) and (14.2) give

dimA/p(B/pB) =

g∑
i=1

eifi.
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For the RHS, let A′ = (A− p)−1A = Ap and B′ = (A− p)−1B. First note that

A/p = Frac(A/p) ∼= (A/p)p = A′/pA′

and

B/p
(∗)
= (A− p)−1(B/pB) = B′/pB′,

where in (*) we use the fact that all elements of A− p are invertible modulo pB, on account
of A/p being a field. Note A′ is a a DVR and hence a PID. Since B is finitely generated over
A, and localization is exact, B′ is finitely generated over A′. Furthermore, B′ is A′-torsion
free. The previous three statements along with the Structure Theorem for Modules gives
that B′ ∼= A′n (as A′-modules) for some n. Perform the following operations:

B′ ∼= A′n

⊗K
xx

•/p•

))

K ∼= Ln B′/pB′ ∼= (A′/pA′)n

B/pB ∼= (A/p)n

Hence
[L : K] = n = dimA/pB/pB

as needed.
Now suppose L/K is Galois. Then G(L/K) permutes the primes P dividing p. Since

e(P/p) = e(σP/p) and f(P/p) = f(σP/p), it suffices to show G(L/K) acts transitively.
Suppose by way of contradiction that P and Q are not in the same orbit. By the Chinese

Remainder Theorem there exists β ∈ Q− {σP | σ ∈ G(L/K)}. Now

NmL/K(β) =
∏

σ∈G(L/K)

σ(β) ∈ Q ∩ A = p ⊆ P,

the first because β ∈ Q and the second because β ∈ B is integral over A (which is integrally
closed in K). But σ(β) 6∈ P so ∏

σ∈G(L/K)

σ(β) 6∈ P,

a contradiction.

Note that the ramification indices and residue degrees multiply under field extension.

Proposition 5.3: Suppose thatM/L and L/K are finite separable extensions (with Dedekind
ring of integers), and that Q | P | p are primes in M,L,K respectively. Then

e(Q/p) = e(Q/P)e(P/p)

f(Q/p) = f(Q/P)f(P/p)

Proof. The first comes from substituting the factorization of POM in the factorization of
pOL. The second comes from multiplicativity of degrees of field extensions.
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§6 Computing factorizations

Theorem 6.1 (Criterion for ramification): Assume AKLB, with L/K finite, A Dedekind,
and B free over A. (The last condition is satisfied when A is a PID.) Then p ramifies in L
iff p | disc(B/A). In particular, only finitely many prime ideals ramify.

Proof.

1. If A is a ring, B is a ring containing A and admitting a finite basis {e1, . . . , em} as
an A-module, and a is an ideal of A, then {e1, . . . , em} is a basis for B/aB as a A/a
module, and D(e1, . . . , em) = D(e1, . . . , em) mod a. Hence

disc(B/A) mod p = disc((B/pB)/(A/p)).

2. Lemma 6.2: Let k be a perfect field and B be a k-algebra of finite dimension. Then
B is reduced (has no nilpotent elements) iff disc(B/k) 6= 0.

Proof. First suppose β 6= 0 is a nilpotent element ofB. Choose a basis e1 = β, e2, . . . , em
of B. Then βei is nilpotent, so has trace 0. The first row of (Tr(eiej)) is zero, so
disc(B/k) = det(Tr(eiej)) = 0.

Now suppose B is reduced. By the Scheinnullstellensatz, ∩p primep = nil(R) = {0}.
Since B/p is integral and algebraic over k, Lemma 2.7 shows it is a field. Hence p is
maximal, and different p are relatively prime. Let p1, . . . , pr be prime ideals of B. By
the Chinese Remainder Theorem, B/

⋂r
i=1 pi =

∏r
i=1B/pi so

dimk B ≥ dimk

(
B/

r⋂
i=1

pi

)
=

r∑
i=1

dimk(B/pi) ≥ r.

Since dimk B is assumed finite, B has only finitely many prime ideals, say p1, . . . , pg.

EachB/pi is a finite separable (as k is perfect) extension of k, so by Proposition 13.3.4(2)
(nondegeneracy of trace pairing), disc((B/pi)/k) 6= 0. Since B = B/∩gi=1 pi =

∏g
i=1 pi,

by taking the union of the bases for B/pi, we get disc(B/k) 6= 0.

3. Let pB =
∏

iP
ei
i . From the lemma, since A/p is perfect (as it is a finite field),

disc((B/pB)/(A/p)) = 0

iff B/pB is not reduced. By the Chinese Remainder Theorem B/pB =
∏

iB/P
ei
i , and

this is nonreduced iff some ei > 1, i.e. p ramifies.

Theorem 6.3 (Computing the factorization of pB): Assume AKLB, A is Dedekind and
L/K is separable. Suppose B = A[α] and f(X) is the minimal polynomial of α over K. Let
p be a prime ideal in A, and suppose f(X) factorizes into irreducible polynomials modulo p
as

f(X) ≡
r∏
i=1

gi(X)ei (mod p).
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Then

pB =
r∏
i=1

(p, gi(α))ei

is the prime factorization of pB. Moreover, letting ḡi = gi mod p,

B/(p, gi(α)) ∼= (A/p)[X]/(ḡi)

fi = deg gi.

Proof. The map X 7→ α gives an isomorphism

A[X]/(f(X)) ∼= B.

Modding out by p gives
k[X]/(f̄(X)) ∼= B/p.

This gives a correspondence between ideals in k[X]/(f̄(X)) and ideals in B containing p:

Maximal ideals of k[X]/(f̄(X)) (ḡi)

←→Maximal ideals of B/p (ḡi(α))

←→Maximal ideals of B containing p (p, gi(α))

But the maximal ideals of B containing p are exactly the prime ideals (since B is Dedekind)
dividing p (Lemma 5.1).

Now
∏

(ḡi)
ei = 0 but no power with smaller exponents is 0. Hence pB ⊇

∏
(p, ḡi)

ei but
does not contain any power with smaller exponents, and equality holds.

Note that the condition that p be relatively prime to the conductor is somewhat pesky.
The problem is that the we may have prime ideals dividing p that are in the form (p, g(α))
where g does has coefficients with elements of p in the denominator. So looking at the
polynomial modulo p fails to capture this behavior. We can’t look at them modulo a power
of p either—because then we would not be in a field. The solution is to pass to the completion
with respect to p—we will do this in Chapter ??.

Example 6.4 (Quadratic extensions):

1.

Prime p x2 + 1 mod p (p)
2 (x+ 1)2 Ramifies: (i+ 1)2

p ≡ 1 (mod 4) factors since
(
−1
p

)
= 1 Splits

p ≡ 3 (mod 4) irreducible since
(
−1
p

)
= −1 Remains prime

2.

Prime p x2 + 2 mod p (p)

2 x2 Ramifies: (
√
−2)2

p ≡ 1, 3 (mod 8) factors since
(
−2
p

)
= 1 Splits

p ≡ 5, 7 (mod 8) irreducible since
(
−2
p

)
= −1 Remains prime

119



Number Theory, §14.7.

3.

Prime p x2 + x+ 1 mod p (p)

3 (x− 1)2 Ramifies:
(
−3+

√
−3

2

)2

p ≡ 1 (mod 3) factors since
(
−3
p

)
=
(
p
3

)
= 1 Splits

p ≡ 2 (mod 3) irreducible since
(
−3
p

)
=
(
p
3

)
= −1 Remains prime

Note we used quadratic reciprocity to translate the “square” condition into a modular condi-
tion on p. This is true in general for any quadratic ring: whether a prime p splits is entirely
determined by a modular condition on p, because of quadratic reciprocity.

§7 Decomposition and inertia groups

Let L/K be a finite Galois extension, with residue fields l and k.
For a prime p of K, we know that there are three kinds of behavior it could express when

we pass to L:

1. It can split into distinct primes P1, . . . ,Pg.

2. The primes have some residue degree f = [OL/Pj : OK/p] over p.

3. There can be ramification, the primes Pj appearing with exponent e.

Moreover, [L : K] = efg. We would like to separate these three kinds of behavior by defining
two intermediate extensions LD(P) and LI(P).

Definition 7.1: Let P | p be primes in L and K.
The decomposition group of P is

DL/K(P) = {σ ∈ G(L/K) : σ(P) = P} .

The inertia group of P is

IL/K(P) = {σ ∈ G(L/K) : σ(α)− α ∈ P for all α ∈ OL} .

Equivalently, letting l, k be the residue fields of L and K, IL/K(P) is the kernel of the map
ε : D(P)→ G(l/k).

We drop the subscript when there is no confusion. The main theorem is the following.

Theorem 7.2: Let L/K be a finite Galois extension with residue fields l, k, with l/k sepa-
rable.1 Let P | p be primes of L and K. Let e, f, g be the ramification index, residue class
degree, and number of prime divisors of p in L.

Let PD = P ∩ LD(P) and PI = P ∩ LI(P) (the fixed fields of the decomposition and
inertia groups). Then the following hold.

1If l/k is not assumed separable, then [L : LI(P)] = e[l : k]i, [LI(P) : LD(P)] = [l : k]s, and [LD(P) : L] = g.
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1. [L : LI(P)] = e and PI totally ramifies in L/LI(P).

PIOL = Pe.

2. [LI(P) : LD(P)] = f and PD remains inert in the extension LI(P)/LD(P).

PDOLI(P) = PI

f(PI/PD) = f.

Moreover, LI(P)/K is Galois.

3. [LD(P) : K] = g, and p splits completely in LD(P) if LD(P)/K is Galois2:

pOLD(P) = P1,D · · ·Pg,D.

We have the following picture. By Galois theory, the groups on the right are the Galois
groups acting on each extension; we set G = G(L/K).

P

total ramification

L

e I(P)

G

PI

inert

LI(P)

f D(P)/I(P)

PD

totally split if Galois

LD(P)

g G/D(P) if Galois

p K

Remark 7.3: To study ramification, we can define subgroups of I(P) called ramification
groups and get fixed fields in between L and LI(P). See Chapter 21.

The rest of this section is devoted to the proof of Theorem 7.2. We keep the notations
and assumptions in the theorem.

7.1 Decomposition group

Proposition 7.4: The decomposition group D(P) has order ef , and for σ ∈ G(L/K),

D(σ(P)) = σD(P)σ−1.

Moreover, the following are equivalent:

1. D(P) is normal in G.

2. The groups D(Q) are equal for all Q | p.

2This is actually an iff. Exercise!
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3. LD(P)/L is Galois.

Proof. Since D(P) is the stabilizer of P under the action of G := G(L/K), |G/D(P)| is
simply the size of the orbit of G. This equals g since G acts transitively on the primes
P1, . . . ,Pg above p. Hence

|D(P)| = |G|
|G/D(P)|

=
n

g
= ef.

The second part follows from the fact that if G acts on S and G is the stabilizer of s ∈ S,
then tGt−1 is the stabilizer of ts.

For the equivalences, use the second part and the fundamental theorem of Galois the-
ory 11.4.1.

We first show that PD is non-split in L and prove item 3 of Theorem 7.2.
By the Fixed Field Theorem, D(P) = G(L/LD(P)), and

[L : LD(P)] = |D(P)| = ef. (14.3)

Since L/LD(P) is Galois, D(P) acts transitively on the primes of L above PD. However,
D(P) stabilizes P; thus P is the only prime above PD.

By the degree equation,

ef = [L : LD(P)] = e(P/PD)f(PD/p).

By Proposition 5.3,

e = e(P/PD)e(PD/p)

f = f(P/PD)f(PD/p).

All equations are satisfied only when e = e(P/PD), f = f(P/PD), and e(PD/p) =
f(PD/p) = 1.

If LD(P) is Galois, then e(PD/p) = f(PD/p) = 1 are the same as the e and f values for
all primes in LD(P) over L. Thus p is totally split over L.

7.2 Inertia group

First we study the homomorphism

ε : D(P)→ G(l/k).

Proposition 7.5: Suppose P | p are primes in L and K, and let k and l be the residue
fields of L and K with respect to P and p.

1. l/k is normal (and hence Galois if separable).

2. Let ε be the map D(P)→ G(l/k). Then ε is surjective.

Proof. Let G = G(L/K).
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1. We need to show that for α ∈ l, its minimal polynomial over k splits completely. Let
α be a lift to OL and let

f(X) =
∏
σ∈G

(X − σ(α)) ∈ OK [X].

Taking this modulo P gives a polynomial in k[X] containing α as a root and splitting
completely.

Thus l/k is normal, and hence Galois if it is separable.

2. First note we may assume l/k is separable. Indeed, we have G(l/k) ∼= G(lsep/k)3.

It suffices to show that ε(D(P)) acts transitively on the conjugates of α over k (as
then the image has at least [l : k] = |G(l/k)| elements). By the Chinese Remainder
Theorem, choose α ∈ OL such that

α ≡

{
α (mod P)

0 (mod P′), P′ 6= P,P′ | p.

Define f as in item 1. Then, noting that for σ ∈ G\D(P), we have α ≡ 0 (mod σ−1(P))
and hence σ(α) ≡ 0 (mod P),

f(X) =
∏

σ∈D(P)

(X − σ(α))
∏

σ 6∈D(P)

x

=
∏

σ∈D(P)

(X − ε(σ)(α))︸ ︷︷ ︸
(∗)

∏
σ 6∈D(P)

x ∈ k[x]

Now (∗) is in k[x], so is divisible by the minimal polynomial of α over k. Given a
conjugate α′ of α, it divides (∗), so equals (ε(σ))(α) for some σ.

Corollary 7.6: There is a short exact sequence

1→ I(P)→ D(P)→ G(l/k)→ 1,

i.e. D(P)/I(P) ∼= G(l/k).

Note I(P) is normal in D(P) as it is a kernel, so LI(P)/K is Galois.
Now we finish the proof of Theorem 7.2. The above corollary gives

|D(P)/I(P)| = |G(l/k)| = [l : k] = f.

Since G(LI(P)/LD(P)) = |D(P)/I(P)| = f , we get [LI(P) : LD(P)] = f . From (14.3) we get
[L : LI(P)] = e.

3From the Fixed Field Theorem l/lG(l/lsep) is Galois. But l/lsep is purely inseparable and normal. Thus
we must have l = lG(l/lsep), i.e. every automorphism of l/k is trivial on l/lsep.
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We will apply Corollary 7.6 to L/LI(P). Note

DL/LI(P)(P) = IL/LI(P)(P) = G(L/LI(P)) = I(P)

since the fact that I(P) operates trivially on l/k implies that it operates trivially on l/κ(PI).
Hence the corollary gives

G(l/κ(PI)) = 1,

i.e. l = κ(PI) and f(P/PI) = 1. We know that PD is non-split in L, so

e = [L : LI(P)] = e(P/PI) f(P/PI)︸ ︷︷ ︸
=1

f = [LI(P) : LD(P)] = e(PI/PD)f(PI/PD).

Now

e = e(P/PD) = e(P/PI)e(PI/PD)

f = f(P/PD) = f(P/PI)f(PI/PD),

so we must have

e(P/PI) = e, f(P/PI) = 1

e(PI/p) = 1, f(PI/p) = f.

This finishes the proof.

7.3 Further properties and applications

Theorem 7.7: Let M/K be a Galois extension and L/K a subextension. Then

1.

DM/L(P) = DM/K(P) ∩G(M/L)

IM/L(P) = IM/K(P) ∩G(M/L).

2. If L/K is Galois, the following commutes and has exact rows and columns.

1

��

1

��

1

��

1 // IM/L
//

��

IM/K
//

��

IL/K //

��

1

1 // DM/L
//

��

DM/K
//

��

DL/K
//

��

1

1 // G(M/L) //

��

G(M/K) //

��

G(L/K) //

��

1

1 1 1
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Theorem 7.8: Let L/K and L′/K be finite extensions. Then p unramified in L,L′ if and
only if p is unramified in LL′.

Proof. First we prove the result for L,L′ Galois. Note that for any Galois extension M/K,
with P | p primes in M and K,

IP = 1 ⇐⇒ p unramified in M. (14.4)

Now there is a injective homomorphism

Φ : G(LL′/K) ↪→ G(L/K)×G(L′/K)

Φ(σ) = (σ|L, σ|L′).

Take Q | p with Q a prime in LL′, and let P = Q∩OL and P′ = Q∩OL′ . Suppose σ ∈ IQ.
Then σ(Q) = Q and hence, taking the intersections with OL,OL′ (which are fixed by σ since
L,L′ are Galois)

σ|L(P) = P

σ|L′(P′) = P′.

This shows σ|L ∈ IP, σ|L′ ∈ IP′ ; by assumption and (14.4), we get (σ|L, σ|L′) = (1, 1). By
injectivity of Φ, σ = 1. This shows IQ = 1, by (14.4) again, we get Q is unramified over p,
as needed.

Now consider the general case. Given P | p in L and K, let Q be a prime above P in
the Galois closure Lgal. Now (Lgal)IQ(Lgal/L) is a Galois extension containing L; since Lgal is
the Galois closure of L, we get

Lgal = (Lgal)IQ(Lgal/L),

But [Lgal : (Lgal)IQ(Lgal/L)] is the ramification degree of Q/P; we see that it is 1, i.e. Q is
not ramified over P and hence not ramified over p. Thus Lgal/K is unramified. Similarly,
L′gal/K is unramified. By the above, LgalL′gal/K is unramified, so LL′/K is unramified.

§8 Problems

1. A half-factorial domain (HFD) A is an integral domain where any given factorization
of a has the same length. Prove Carlitz’s Theorem:

Theorem 8.1 (Carlitz): The ring of integers OK is a HFD iff the class group has
order at most 2.

See AMM, 12/2011, for related results.

2. Show that if p splits completely in LD(P), then LD(P)/L is Galois.

Conclude that if p splits completely in L, then p splits completely in the Galois closure
Lgal.
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Chapter 15

The class group

§1 Norms of ideals

Assume AKLB, A is Dedekind, and L/K is separable. We generalize the definition of norm
to ideals, not just elements, so that it is a map Id(B) → Id(A) that is consistent with our
old condition, i.e.

NmL/K((a)) =
(
NmL/K(b)

)
.

Consider a principal ideal p = (p) ⊆ A, and suppose it factors in B as pB =
∏g

i=1 P
ei . We

want the norm to satisfy

NmL/K(p) = NmL/K(pB) =

g∏
i=1

NmL/K(P)ei , (15.1)

since we want it to be multiplicative. But Nm(p) = pn where n = [L : K]. By the degree
equation, if Nm(P) = Pfi where fi = [B/Pi : A/p], then (15.1) will be satisfied. Hence we
make the following definition.

Definition 1.1: For P is a prime of B, let p = P ∩ A and f(P/p) = [B/P : A/p]. Define
the norm of P to be

NmL/K(P) = pf(P/p).

This extends uniquely to a homomorphism Id(A)→ Id(B), since the ideal group is free.

Proposition 1.2 (Behavior with respect to field extensions):

1. For an ideal a ⊆ A,
NmL/K(aB) = am,

where m = [L : K].

2. If L/K is Galois and p 6= 0 is a prime ideal of A, and P | p, then

NmL/K(p) =
∏

σ∈G(L/K)

σP.

3. For any nonzero β ∈ B, NmL/K(βB) = NmL/K(β)A. (I.e. this is consistent with our
previous definition.)
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Compare the first two items to Chapter 13, Proposition 2.2(5) and Proposition 2.3(2b),
respectively.

Proof.

1. By the degree equation (Theorem 5.2), for p prime

NmL/K(pB) = NmL/K

(∏
i

Pei
i

)
= p

∑
i eifi = pm.

The general statement follows by multiplicativity of NmL/K .

2. G(L/K) acts transitively on {P1, . . . ,Pg}, so each Pi occurs m
g

= ef times in {σP |
σ ∈ G(L/K)}.

3. First suppose L/K is Galois. We use the description in terms of Galois conjugates
to relate the norms of elements with the norms of ideals. By part 2 and Proposi-
tion 13.2.3(2b), we have

NmL/K(βB) ·B (2)
=

∏
σ∈G(L/K)

σ(βB) =

 ∏
σ∈G(L/K)

σ(β)

B
13.2.3
= NmL/K(β) ·B.

Hence, NmL/K(β) ·A and NmL/K(β ·B) determine the same ideal in B. Since Id(A)→
Id(B) is injective, they are equal in A.

Now consider the general case. Let M be the Galois closure of L over K, let C = OM ,
and let d = [M : L]. Then the above, together with part 1 and Proposition 13.2.2(5),
give

NmL/K(β ·B)d
(1)
= NmM/K(β ·B) = NmM/K(β) · A 13.2.2(5)

= NmL/K(β)d · A.

Since Id(B) is torsion-free, NmL/K(β ·B) = NmL/K(β) · A.

Definition 1.3: The numerical norm of a in OK is its index in the lattice of integers:

Na = [OK : a].

Note the following comparisons between the ideal and numerical norms.

1. The ideal norm is defined for a field extension K/F while the numerical norm is defined
for any number field K/Q.

2. The ideal norm returns an ideal while the numerical norm returns an integer.

3. However, if we take the base field F to be Q, and identify integers with the ideals they
generate, the two norms are equivalent. This is the content of the following proposition.

Proposition 1.4 (Relationship between ideal and numerical norm):
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1. For any ideal a ⊆ OK ,
NmK/Q(a) = (N(a)).

Therefore, N(ab) = N(a)N(b).

2. Let b ⊆ a ⊆ K be fractional ideals. Then

[a : b] = N(a−1b).

In other words, the norm of an ideal is its index in the ring of integers.

Proof.

1. Write a =
∏

peii and let (pi) = Z ∩ pi, fi = f(pi/(pi)). By the Chinese remainder
theorem,

OK/a ∼=
∏
i

OK/peii .

Since OK/peii is a vector space over Fpi of dimension eifi, we find

Na = |OK/a| =
∏
i

peifii = NmK/Q(a).

Multiplicativity follows from the same property for the ideal norm.

2. We can multiply by an integer d so that a and b are integral ideals. Then

[a : b] = [da : db] =
[OK : db]

[OK : da]
=

N(db)

N(da)

(1)
= N(a−1b).

§2 Minkowski’s Theorem

Theorem 2.1 (Minkowski): Let V be a subset of Rn that is convex and symmetric around
the origin (“centrally symmetric”). Let L be a full lattice with fundamental paralleopiped
D. If

µ(T ) > 2nµ(D)

then T contains a point of L other than the origin. If furthermore D is compact, we can
weaken the hypothesis to

µ(T ) ≥ 2nµ(D).

Proof. First note that if S is a measurable set such that µ(S) > µ(D), then S contains
two points a, b such that a − b ∈ L. Indeed, we can tile the space with fundamental paral-
lelopipeds, and translate each of them to the origin. We consider the intersections of these
parallelopipeds with S. Since the sum of these volumes is µ(S) > µ(D), and they are all
packed in D, there must be overlap, i.e. unequal a, b ∈ S that were translated to the same
point. This implies a− b ∈ L.
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The set S = 1
2
T has volume 1

2n
T > µ(D). Hence by the above, there exist 1

2
a 6= 1

2
b ∈ S

(a, b ∈ T ) such that 1
2
a − 1

2
b ∈ L. Since T is symmetric, −b ∈ T ; since T is convex,

1
2
(a− b) ∈ T . This is the desired lattice point.

Now suppose instead T is convex and µ(T ) ≥ 2nµ(D). Let Ln be the set of lattice points
in
(
1 + 1

n

)
T other than the origin. By the first part, Ln is nonempty; since T is bounded it

must be finite. We have that Ln ⊆ Lm when n ≥ m. Hence

T ∩ L =
∞⋂
n=1

(
1 +

1

n

)
T ∩ L =

∞⋂
n=1

Ln 6= φ.

Theorem 2.2 (Sums of four squares): (A digression, but nice to talk about)

§3 Finiteness of the class number

We now show that the class number is finite (Theorem 3.6). The idea of the proof is as
follows.

1. Embed K as a Q-vector space in Rr × Cs. Under the R-vector space isomorphism
K⊗QR→ Rr×Cs, the ideal a is realized as a lattice L in V = Rr×Cs (Proposition 3.1).
The norm on K translates into a “norm” on V .

2. Find an element in a of small norm (Theorem 3.2): Find a compact, symmetric convex
set in V consisting of elements of norm at most R. Choosing R large enough, we can
make sure V has large volume. By Minkowski’s Theorem, V contains an element of L.

3. Using step 2, show that every ideal class contains an representative of norm at most a
constant (Theorem 3.5).

4. Show that there are a finite number of ideals with bounded norm (Lemma 3.7).

We first embed a as a full lattice using the embeddings of K, and find the volume of the
fundamental parallelopiped in terms of the discriminant (the discriminant is related to the
embeddings by Proposition 3.4).

Let {σ1, . . . , σr} be the real embeddings and {σr+1, σ̄r+1, . . . , σr+s, σ̄r+s} be the complex
embeddings of K. This gives an embedding1

σ : K ↪→ Rr × Cs

σ(α) = (σ1α, . . . , σr+sα).

Identify V = Rr × Cs with Rn using the basis {1, i} for C.

1This is the canonical embedding K ↪→ K ⊗Q R: Indeed, by Chinese Remainder

K ⊗Q R = Q[x]/(f(x))⊗Q R =

r∏
i=1

R[x]/(x− σiα)×
s∏
j=1

(R[x]/(x− σr+jα)(x− σr+jα)) ∼= Rr × Cs.
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Proposition 3.1: Let a be an ideal in OK . Then σ(a) is a full lattice in V and the volume

of its parallelopiped is 2−s · Na · |∆K |
1
2 .

Proof. Let α1, . . . , αn be a basis for a as a Z-module. To prove that σ(a) is a lattice,
we need to show σ(α1), . . . , σ(αn) are linearly independent, i.e. the following has nonzero
determinant:

A =

σ1(α1) · · · σr(α1) <(σr+1(α1)) =(σr+1(α1)) · · ·
σ1(α2) · · · σr(α2) <(σr+1(α2)) =(σr+1(α2)) · · ·

...
...

...
...

...
. . .


To do this we relate this to the matrix

B =

σ1(α1) · · · σr(α1) σr+1(α1) σr+1(α1) · · ·
σ1(α2) · · · σr(α2) σr+1(α2) σr+1(α1) · · ·

...
...

...
...

...
. . .

 .

Note det(B) = ± disc(α1, . . . , αn)
1
2 6= 0. Let J =

(
1
2

1
2i

1
2
− 1

2i

)
. Then

A = B


Ir 0 0 · · ·
0 J 0 · · ·
0 0 J · · ·
...

...
...

. . .

 .

Using
disc(α1, . . . , αn) = [OK : a]2 · | disc(OK/Z)|

we get that the volume of a fundamental parallelopiped for D is

µ(D) = | det(A)| = 2−s| det(B)| = 2−s| disc(α1, . . . , αn)|
1
2 = 2−s · Na · |∆K |

1
2 .

(In particular, this is nonzero.)

Theorem 3.2: Let a be a nonzero ideal in OK . Then a contains a nonzero element α of K
with

|Nm(α)| ≤
(

4

π

)s
n!

nn
Na|∆K |

1
2 .

Proof. The norm on K translates into the “norm”

Nm(x1, . . . , xr, zr+1, . . . , zr+s) = |x1| · · · |xr||zr+1|2 · · · |zr+s|2.

However, Nx < r is by no means a compact convex set. Fortunately, however, we note by
the AM-GM inequality that

|Nm(x)| = |x1| · · · |xr||zr+1|2 · · · |zr+s|2 ≤
(∑r

k=1 |xk|+ 2
∑s

k=1 |zr+k|
n

)n
. (15.2)
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Defining the norm ‖·‖ on V = Rr × Cs by

‖(x1, . . . , xr, zr+1, . . . , zr+s)‖ =
r∑

k=1

|xi|+ 2
s∑

k=r+1

|zi|,

and letting B(t) = {x ∈ V : ‖x‖ < t}, B(Nm, t) = {x ∈ V : |Nm(x)| < t}, we see from (15.2)
that

B(t) ⊆ B

(
Nm,

tn

nn

)
. (15.3)

To apply Minkowski we need some computations.

Lemma 3.3: The volume of B(t) = {x ∈ V : ‖x‖ < t} is

µ(B(t)) = 2r−sπs
tn

n!
.

Proof. We write the complex variables as zk = xk + yki. Let

B′(t) = {(x1, . . . , xr, xr+1, yr+1, . . . , xr+s, yr+s) ∈ B(t) : x1, . . . , xr ≥ 0} .

Write dV = dx1 · · · dxn. Using symmetry and a polar change of coordinates, we compute

µ(B(t)) = 2r
∫
B′(t)

dV dxr+1 dyr+1 · · · dxr+s dyr+s (15.4)

= 2r
∫
x1,...,xr≥0,

∑
xk+2

∑
ρk≤t

(ρr+1 · · · ρr+s) dV dρr+1 dθr+1 · · · dρr+s dθr+s (15.5)

= 2r−2s

∫
x1,...,xr≥0,

∑
xk+

∑
ρk≤t

(ρr+1 · · · ρr+s) dV dρr+1 dθr+1 · · · dρr+s dθr+s

= 2r−2s(2π)s
∫
x1,...,xr≥0,

∑
xk+

∑
ρk≤t

(ρr+1 · · · ρr+s) dV dρr+1 · · · dρr+s

= 2r−sπst(r+s)+s
1

((r + s) + s)!
(15.6)

= 2r−sπs
tn

n!
.

Note (15.4) follows by symmetry, (15.5) follows from polar change of coordinates, and (15.6)
follows from the lemma below.

Lemma 3.4:∫
xi≥0,

∑
xi≤t

xa1
1 · · ·xamm dx1 · · · dxm = tm+

∑m
i=1 ai

Γ(a1 + 1) · · ·Γ(am + 1)

Γ(a1 + · · ·+ am +m+ 1)
.

Proof. Making the substitution xi = tx′i, dxi = t dx′i, we find that the integral equals

tm+
∑m
i=1 ai

∫
xi≥0,

∑
xi≤1

xa1
1 · · ·xamm dx1 · · · dxm.
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Hence it suffices to prove the lemma for t = 1.
For m = 1, note ∫ 1

0

xa dx =
1

a+ 1
=

Γ(a+ 1)

Γ(a+ 2)
.

For m = 2, let B(α, β) =
∫ 1

0
vα−1(1− v)β−1 dv. We need to show B(α, β) = Γ(α)Γ(β)

Γ(α+β)
. By

Fubini,

Γ(α)Γ(β) =

∫ ∞
0

∫ ∞
0

sα−1e−stβ−1e−t ds dt =

∫ ∞
0

∫ ∞
0

sα−1tβ−1e−(s+t) ds dt.

Note F : (0,∞)×(0, 1)→ (0,∞)2 with F (u, v) = (uv, u(1−v)) is a diffeomorphism. Indeed,
it has an inverse F−1(s, t) =

(
t+ s, s

t+s

)
hence is bijective and its Jacobian is det ( v u

1−u −u ) =
u 6= 0. Using the change of variables (s, t) = F (u, v) gives∫ 1

0

∫ ∞
0

(uv)α−1(u(1− v))β−1e−(uv+u(1−v))u du dv =

∫ 1

0

∫ ∞
0

uα+β−1e−uvα−1(1− v)β−1 du dv

=

(∫ ∞
0

uα+β−1e−u du

)(∫ 1

0

vα−1(1− v)β−1 dv

)
= Γ(α + β)B(α, β),

as needed.
Now we use induction; suppose the theorem proved for m− 1. We have∫

xi≥0,
∑m
i=1 xi≤1

xa1
1 · · ·xamm dx1 · · · dxm =

∫ 1

0

xamm

∫
xi≥0,

∑m−1
i=1 xi≤1−xm

xa1
1 · · ·x

am−1

m−1 dx1 · · · dxm−1 dxm

=

∫ 1

0

xamm (1− xm)m−1+
∑m−1
i=1 ai

Γ(a1 + 1) · · ·Γ(am−1 + 1)

Γ(a1 + · · ·+ am−1 +m)
dxm

=
Γ(am + 1)Γ(

∑m−1
i=1 ai +m)

Γ(a1 + · · ·+ am +m+ 1)
· Γ(a1 + 1) · · ·Γ(am−1 + 1)

Γ(a1 + · · ·+ am−1 +m)

=
Γ(a1 + 1) · · ·Γ(am + 1)

Γ(a1 + · · ·+ am +m+ 1)
,

using the induction hypothesis and the m = 2 case.

Taking

t =
n

√
n! · 2n−r

πs
· Na|∆K |

1
2

we find by Lemma 3.3 that

µ(B(t)) = 2r−sπs
tn

n!
= 2n

(
2−sNa|∆K |

1
2

)
= 2nµ(D)

where D is the fundamental parallelopiped. Note that B(t) is a closed ball, and it is convex
by the triangle inequality. Hence by Minkowski’s Theorem, B(t) contains an element of σ(a).
For this element, we have by (15.3) that

NmK/Q(a) ≤ tn

nn
=

(
4

π

)s
n!

nn
Na|∆K |

1
2 .
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Theorem 3.5: Suppose K/Q is an extension of degree n, and let ∆K = disc(K/Q). Let 2s
be the number of nonreal complex embeddings ofK. Then there exists a set of representatives
for the ideal class group C(K) consisting of integral ideals a with

N(a) ≤ n!

nn

(
4

π

)s
︸ ︷︷ ︸

CK

|∆K |
1
2 .

Proof. Given a fractional ideal c, there exists b such that

bc = (d)

is principal. By Theorem 3.2, there is an element β ∈ b of norm at most
(

4
π

)s n!
nn
Nb|∆K |

1
2 .

Since (β) ⊆ b we have
ab = (β)

for some a. Note a ∼ b−1 ∼ c, and taking norms of the above equation gives

NaNb = N(β) ≤
(

4

π

)2
n!

nn
Nb|∆K |

1
2 .

Canceling Nb gives that a is the desired representative.

Theorem 3.6: The class number of K is finite.

Proof. By Theorem 3.5, every ideal class has a representative with norm at most CK |∆K |
1
2 .

Thus it suffices show the following (take C = CK |∆K |
1
2 ).

Lemma 3.7: There are only a finite number of integral ideals a with Na ≤ C (take C =

CK |∆K |
1
2 ).

Proof. Suppose a is an integral ideal. Write a =
∏

prii . Let (pi) = pi ∩ Z and fi = [OK/pi :
Z/(pi)]. Then

Na =
∏
i

pfirii .

Given Na ≤ C, there are a finite possibilities for the pi and hence pi, as well as for the ri.

The bound in Theorem 3.5 also gives the following corollaries.

Theorem 3.8: Every algebraic extension of Q ramifies over Q.

Proof. It suffices to prove this statement for finite extensions. Let K/Q be a finite extension.
By Theorem 3.2, every ideal contains a representative α with

1 ≤ |Nm(α)| ≤
(

4

π

)s
n!

nn
.
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Hence we have

|∆K | ≥
n2n

n!2

(π
4

)2s

> 1. (15.7)

The last inequality comes from the fact that defining an = n2n

n!2

(
π
4

)2s
, we have that a2 > 1

and an+1

an
=
(
π
4

) 1
2
(
1 + 1

n

)n
> 1 for n ≥ 2.

Since ∆K > 1 and every prime dividing the discriminant ramifies (Theorem 6.1), K/Q
is ramified.

Corollary 3.9: There does not exist an irreducible monic polynomial f(X) ∈ Z[X] of degree
greater than 1 with discriminant ±1.

Proof. Let f be an irreducible monic polynomial of degree greater than 1. Let α be a root
of f . By Theorem 3.8, Q[α] is ramified over Q. By (15.7), |∆K | > 1. Then

disc(f) = disc(Z[α]/Z) = |∆K | · [OK : Z[α]]2 > 1.

§4 Example: Quadratic extensions

To compute the class group in quadratic extensions, note the following two facts.

1. The complete description of prime ideals is given by Example ?? (actually put this
in!).

2. By Theorem 3.2, each ideal class has a representative of norm at most 4
π
|∆K |

1
2 .

In fact, Minkowski’s bound can be improved in the quadratic case.

Theorem 4.1: (*) Let K = Q(
√
d) where d is a negative squarefree integer. Let

µ =


√
|d|
3
, d ≡ 1 (mod 4)

2
√
|d|
3
, d ≡ 2, 3 (mod 4).

Every ideal class in OK has a representative a with

Na ≤ µ.

Proof. First we show that every ideal a has an element a 6= 0 with NmK/Q(a) ≤ µN(a). For
a lattice L let ∆(L) be the area of a fundamental parallelogram.

Note that NmK/Q(z) = |z|2. An ideal a of K forms a lattice in C. Let a be the element
of minimal nonzero norm in a and b be the element of minimal nonzero norm that is not a
integer multiple of a. By the minimality assumption, since b−a cannot be a integer multiple
of a, we have

|b− a| ≥ |b| ≥ |a|.

Let A,B denote the points a, b and O the origin. Using the fact that in a triangle the side
lengths are in the same order least-to-greatest as the opposite angles, we get that in the

135



Number Theory, §15.4.

triangle AOB, the angle at O is largest, in particular at least 60◦. Let O′ be so that OAO′B
is a parallelogram. The minimality assumption similarly forces OO′ ≥ AO,AO′, so we get
∠OAO′ ≥ 60◦. Thus

60◦ ≤ ∠AOB ≤ 120◦. (15.8)

Furthermore, the parallelogram with sides OA and OB is a fundamental parallelogram:
Suppose C is the point c ∈ a, and is in the triangle OAB but not any of the vertices. Let
OC intersect AB at C ′. We have ∠OC ′B > ∠OAB ≥ ∠ABO = ∠C ′BO, where the middle
inequality is from OB ≥ OA. Hence looking at 4OC ′B, OB > OC ′ ≥ OC, contradicting
minimality of b. Similarly, if C is in ABO′, then we have |a+b−c| < |b|, also a contradiction.

By (15.8), the area of the fundamental parallelogram is

∆(OK)Na = ∆(a) = |ab| sin∠AOB ≥ |a|2
√

3

2
=

√
3

2
NmK/Q(a).

Solving gives

NmK/Q(a) ≤ 2√
3

∆(OK)Na.

Finally note that for d ≡ 1 (mod 4), a basis for OK is
(

1, 1+
√
d

2

)
while for d ≡ 2, 3 (mod 4)

the basis is
(

1,
√
d
)

. The fundamental parallelograms have areas
√
d

2
and
√
d, respectively,

giving
NmK/Q(a) ≤ µNa.

Given a fractional ideal c, there exists b such that

bc = (d)

is principal. By the above, there is an element b ∈ b of norm at most µNb. Since (b) ⊆ b
we have

ab = (b)

for some a. Note a ∼ b−1 ∼ c, and taking norms of the above equation gives

NaNb = N(b) ≤ µNb.

Canceling Nb gives that a is the desired representative.

We give an example of computing the class group. The general procedure to compute
the class group of A = OK where K = Q(

√
d) and d is negative and squarefree is as follows.

1. List the primes p ≤ bµc.

2. For each p, determine whether p splits in A by checking whether

f(x) :=

{
x2 − x+ d−1

4
, d ≡ 1 (mod 4)

x2 − d, d ≡ 2, 3 (mod 4)

is irreducible.
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3. If p = aa splits in A, include it in the list of generators.

4. Compute the norm of some small elements (with prime divisors in the list found above),

like k + δ for k ∈ N0, δ =
√
d or 1+

√
d

2
depending on d (mod 4). Factor NmK/Q(a) to

factor

(a)(a) = (NmK/Q(a));

match factors using unique factorization. Note (a) ∼ (a) ∼ 1. Repeat until there are
enough relations to determine the group.

5. For the prime 2, if d ≡ 2, 3 (mod 4), 2 ramifies, (2) = p2, and p has order 2 for
d 6= −1,−2. (Note p = (2, δ) and (2, 1 + δ) in these two cases, respectively.)

We first consider the cases when the class group is trivial.

Theorem 4.2: The rings

Z[
√
−1], Z[

√
−2], Z

[
1 +
√
d

2

]
, d = −3,−7,−19,−43,−67,−163

are unique factorization domains.

In fact, they are the only ones (part of Gauss’s class number problem).

Proof. Note Z[
√
−1], Z[

√
−2], and Z

[
1+
√
d

2

]
are Euclidean domains and hence unique fac-

torization domain.

The class group of Z
[

1+
√
d

2

]
is generated by the classes of prime ideals whose norms are

prime integers p ≤ µ, which are the factors of (p) when it splits. When d ≡ 1 (mod 4) as in

all the remaining cases, an integer prime p remains prime in Z
[

1+
√
−d

2

]
iff x2 − x− 1

4
(1− d)

is irreducible modulo p, iff x2 − x − 1
4
(1 − d) has no zero modulo p. We show that for

d = −7,−11,−19,−43,−67,−163, x2 − x − 1
4
(1 − d) is irreducible modulo all primes less

than µ. Then no prime ideals have norms that are prime integers p ≤ µ, and the only ideal
class is that of the principal ideals. It follows that Z[

√
d] is a principal ideal domain and

hence a unique factorization domain.
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d bµc , µ =
√
|d|
3

x2− x+ 1
4
(1− d) Primes p ≤ bµc, x2 − x+ 1

4
(1− d) (mod p)

-7
⌊√

7
3

⌋
= 1 None

-11
⌊√

11
3

⌋
= 1 None

-19
⌊√

19
3

⌋
= 2 x2 − x+ 5 2: x2 + x+ 1 = 1 for x = 0, 1

-43
⌊√

43
3

⌋
= 3 x2 − x+ 11 2: x2 + x+ 1 = 1 for x = 0, 1

3: x2 − x− 1 =

{
−1 for x = 0, 1

1 for x = 2

-67
⌊√

67
3

⌋
= 4 x2 − x+ 17 2: x2 + x+ 1 = 1 for x = 0, 1

3: x2 − x− 1 =

{
−1 for x = 0, 1

1 for x = 2

-163
⌊√

163
3

⌋
= 7 x2 − x+ 41 2: x2 + x+ 1 = 1 for x = 0, 1

3: x2 − x− 1 =

{
−1 for x = 0, 1

1 for x = 2

5: x2 − x+ 1 =


1 for x = 0, 1

3 for x = 4, 2

2 for x = 3

7: x2 − x− 1 =


−1 for x = 0, 1

1 for x = 2, 6

5 for x = 3, 5

4 for x = 4

Example 4.3: We compute the class group of Z[
√
−41].

For d = −41, bµc =
⌊
2
√

41
3

⌋
= 7. Modulo 2, 3, 5, and 7, -41 is congruent to 1, 1, 4, and

1, which are all squares. Factor

(2) = AA

(3) = BB

(5) = CC

(7) = DD

Then the class group is generated by 〈A〉, 〈B〉, 〈C〉, 〈D〉. (Note that 〈A〉 = 〈A〉−1, etc.) We
have

(1 + δ)(1 + δ) = (42) = (2)(3)(7) = AABBDD.

If a prime ideal P divides (1 + δ) then P divides (1 + δ). Hence the conjugate factors are
divided between (1 + δ) and (1 + δ). Without loss of generality, we can suppose

(1 + δ) = ABD.
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The class of a principal ideal is the identity in the class group, so

〈A〉〈B〉〈D〉 = 1. (15.9)

Next consider
(2 + δ)(2 + δ) = (45) = (3)2(5) = B2B

2
CC.

Note that 3 does not divide 2 + δ so BB = (3) doesn’t divide (2 + δ). Thus B2, B
2

divide
(2 + δ), (2 + δ) in some order. Since we haven’t distinguished between C and C yet, we may
assume WLOG that 〈B〉2〈C〉, 〈B〉2〈C〉 are equal to (2 + δ) and (2 + δ) in some order, and

〈B〉2〈C〉 = 〈B〉2〈C〉−1 = 1

or
〈C〉 = 〈B〉2. (15.10)

Similarly, looking at

(3 + δ)(3 + δ) = (50) = (2)(5)2 = AAC2C
2
,

we get that
〈A〉〈C〉2 = 1 or 〈A〉〈C〉2 = 1.

Noting that A = A (since (2) = (2, 1 + δ)(2, 1 − δ) and (2, 1 + δ) = (2, 1 − δ) when d ≡ 3
(mod 4) by [Artin, 13.8.4]),

〈A〉 = 〈C〉2. (15.11)

From (15.10) we may omit 〈C〉 from the list of generators for the group, from (15.11) we
may omit 〈A〉, and from (15.9) we may omit 〈D〉. Thus the class group is the cyclic group
generated by 〈B〉. From (15.10) and (15.11), we get

〈A〉 = 〈B〉4. (15.12)

Since A is not principal, 〈B〉4 6= 1. Note 〈A〉 = 〈A〉 = 〈A〉−1 implies 〈A〉2 = 1. Combining
this with (15.12) gives that 〈B〉8 = 1. Since 〈B〉n 6= 1 for any proper divisor n of 8 (it
sufficed to check n = 4), the class group is cyclic of order 8, C8.
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Chapter 16

The algebra of quadratic forms

We follow Cox [9], except for the proof of Gauss composition, when we follow Cassels (add
reference). The last section is based on Bhargava’s paper [6].

§1 Quadratic forms

Definition 1.1: Let R be an integral domain. A quadratic form on R is a function on
Rn, in the form

f(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj.

Supposing R is a UFD, we say f is primitive iff gcd1≤i≤j≤n aij = 1.

A quadratic form may be represented by a matrix

Q =


a11

a12

2
· · · a1,n−1

2

a1,n

2
a12

2
a22 · · · a2,n−1

2

a2,n

2
...

...
. . .

...
...

a1,n−1

2

a2,n−1

2
· · · an−1,n−1

an−1,n

2
a1,n

2

a2,n

2
· · · an−1,n

2
ann


(working in K = Frac(R) as necessary to allow division by 2); we have

f(x) = xQxT .

Definition 1.2: We say two forms f and g are equivalent if there are is an invertible
matrix A (i.e. a matrix with determinant a unit) such that

f(x) = g(xAT ).

We say f and g are properly equivalent if det(A) = 1.

Note that the matrices corresponding to f and g are related by

Qf = ATQgA.

For the rest of this chapter, we will focus on integral binary quadratic forms, i.e. those
in two variables over Z.
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§2 Representing integers

Definition 2.1: We say that f represents n if there exists x = (x1, . . . , xn) such that
f(x) = n. We say that f properly represents n if we can choose x so that gcd(x1, . . . , xn) =
1.

Lemma 2.2: A form f(x, y) properly represents n if and only if f(x, y) is properly equivalent
to the form nx2 + b′xy + c′y2 for some b′, c′ ∈ Z.

Proof. If f(p, q) = n with (p, q) relatively prime, then by Bézout we can find r, s such that
ps− qr = 1. Let f(x, y) = ax2 + bxy + cy2. Then f is equivalent to

f(px+ ry, qx+ sy) = f(p, q)︸ ︷︷ ︸
n

x2 + (2apr + bps+ brq + 2cqs)xy + f(r, s)y2.

For the converse, note that nx2 + bxy + cy2 properly represents n by taking (x, y) =
(1, 0).

Theorem 2.3: Let n 6= 0 and d be integers. Then the following are equivalent.

1. There exists a binary quadratic form of discriminant d which properly represents n.

2. d is square modulo 4n.

Proof. Suppose f is a binary quadratic form of discriminant d properly representing n.
Then by Lemma 2.2, f is equivalent to some form nx2 + bxy + cy2. Hence the discriminant
is d = b2 − 4nc, and d ≡ b2 (mod 4n).

Conversely, suppose b2 ≡ d (mod 4n), so b2 = d+4nc for some integer n, i.e. d = b2−4nc.
Then

f(x, y) = nx2 + bxy + cy2

properly represents n, as f(1, 0) = n, and disc(f) = b2 − 4nc = d.

Corollary 2.4: Let n be an integer and p an odd prime not representing n. Then
(
−n
p

)
= 1

iff p is represented by a primitive form of discriminant −4n.

Proof. Note
(
−n
p

)
= 1 iff

(
−4n
p

)
= 1, and this is equivalent to the second statement by the

theorem.

The results in this section are particularly useful if there are few quadratic forms with
determinant d. There is a method to list all these quadratic forms, as we will show in the
next section.

§3 Reduction of quadratic forms

We would like to have a canonical representative for every equivalence class of binary
quadratic forms. We choose the one with “smallest” coefficients. This is made precise
by the following definition.
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Definition 3.1: A positive definite binary quadratic form ax2 + bxy + cy2 is reduced if it
is primitive and

|b| ≤ a ≤ c

and
b ≥ 0 if |b| = a or a = c.

Theorem 3.2: Every equivalence class of primitive binary quadratic forms contains exactly
one reduced form.

Proof. Existence, Step 1: We first show there is a form in the class with |b| ≤ a ≤ c.
Take the form f(x) = ax2 + bxy + cy2 in the equivalence class such that |b| is smallest.

Note a, c > 0 because the form is positive definite. We claim that a, c ≥ |b|. Indeed, we have

f(x+my, y) = ax2 + (2am+ b)xy + (am2 + c)y2,

so −b ≤ 2am+ b ≤ b for all m ∈ Z, giving a ≥ |b|. Similarly, c ≥ |b|.
Next, if a > c, then replacing (x, y) by (−y, x) we get c > a ≥ |b|.

Step 2: The form is reduced unless b < 0 and a = −b or a = c. We tackle these cases next.
In these cases ax2− bxy+cy2 is reduced, so it suffices to show ax2± bxy+cy2 are equivalent.
In these two cases we make the following substitutions:

f(x, y) = ax2 − axy + cy2 =⇒ f(x+ y, y) = ax2 + axy + cy2

f(x, y) = ax2 + bxy + ay2 =⇒ f(−y, x) = ax2 − bxy + ay2.

Uniqueness, Step 1: We claim that for (x, y) ∈ Z2 with xy 6= 0, and f(x, y) = ax2 +bxy+cy2

with a, c ≥ |b|, we have
f(x, y) ≥ (a− |b|+ c) min(x2, y2).

Indeed, without loss of generality assume x ≥ y. Then

f(x, y) ≥ (a− |b|)xy + cy2 ≥ (a− |b|+ c)y2.

As a corollary, for xy 6= 0,
ax2 + bxy + cy2 ≥ a− |b|+ c

with equality iff x, y = ±1, xy = − sign(b).

Step 2: To distinguish between reduced forms, we examine the smallest nonzero values at-
tained by a them, and the number of primitive solutions to them. Note all solutions (x, y)
with xy = 0 and one of |x|, |y| ≥ 2 are removed from consideration.

1. If |b| < a < c, then the smallest values attained by f primitively are

a < c < a− |b|+ c

with solutions (±1, 0), (0± 1) and ±(−1, sign(b)) respectively.

143



Number Theory, §16.3.

2. If b ≥ 0 and |b| = a < c, then the smallest values attained by f primitively are

a < c = a− |b|+ c;

the first has 2 solutions and the latter has 4 primitive solutions.

3. If b ≥ 0 and |b| < a = c, then the smallest values attained by f primitively are

a = c < a− |b|+ c;

the first has 4 solutions and the latter has 2 primitive solutions.

4. If b ≥ 0 and |b| = a = c, then the smallest value attained by f primitively is

a = c = a− |b|+ c

which has 6 primitive solutions.

After examining this data, the only reduced forms that could be equivalent are those falling
in the first category with opposite b’s, i.e. ax2 ± bxy + cy2. But any change of variables
sending one to the other must preserve the solutions (±1, 0) and (0,±1), so must have matrix( ±1 0

0 ±1

)
. If this matrix has determinant 1, then it must be ±I and cannot change between

the two forms.

Suppose d < 0; note that there is an algorithm to list all reduced quadratic forms with
discriminant d. The conditions |b| ≤ a ≤ c and b2 − 4ac = d give

d = b2 − 4ac ≤ a2 − 4a2 = −3a2.

Hence

a ≤
√
−d

3
.

We simply check for solutions to b2 − 4ac = d for all 0 ≤ |b| ≤ a ≤
√
−d

3
.

3.1 Examples

Example 3.3: When n = 1, 2, 3, the above check gives that the only reduced form of
discriminant −4n is x2 + ny2.

Combining this fact with Theorem 2.3, we get that f properly represents m iff d := −4n is
a square modulo 4m, i.e. −1 is a square modulo m. Thus we have the chain of equivalences:

1. f represents m.

2. f properly represents m
k2 for some square factor k2 | m.

3. d is a square modulo m
k2 for some m.

4. d is a square modulo m
k2 for the largest square factor k2 | m.
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5. d is a square modulo p for every p | m with ordp(m) odd.

By quadratic reciprocity, we have(
−1

p

)
= (−1)

p−1
2 =

{
1, p ≡ 1 (mod 4)

−1, p ≡ 3 (mod 4)(
−2

p

)
= (−1)

p−1
2 (−1)

p2−1
8 =

{
1, p ≡ 1, 3 (mod 8)

−1, p ≡ 5, 7 (mod 8)(
−3

p

)
= (−1)

p−1
2 (−1)

3−1
2
· p−1

2

(p
3

)
=

{
1, p ≡ 1 (mod 3)

−1, p ≡ 2 (mod 3).

Hence we have the following.

m represented by iff every such prime has even exponent in m
x2 + y2 p ≡ 3 (mod 4)
x2 + 2y2 p ≡ 5, 7 (mod 8)
x2 + 3y2 p ≡ 2 (mod 3)

Compare this with the proof using factorization in Z[
√
−d].1 In particular, note that

Z[
√
−d] is a UFD when d = 1, 2, and in these cases, there is exactly one form of discriminant

−4d. This is not a coincidence!
Next we show the following.

Example 3.4: A positive integer n is represented by x2 + 5y2 iff

1. Any prime p ≡ 11, 13, 17, 19 (mod 20) appears in n with even exponent.

2. There are an even number of prime divisors that are p ≡ 2, 3, 7 (mod 20), counting
multiplicity.

3. (No restriction on primes p ≡ 1, 5, 9 (mod 20).)

Note this condition is quite different from the ones before!

Proof 1. This time we have to check a ≤
√
−20

3
< 3. The reduced forms of discriminant

−20 are

f(x) := x2 + 5y2

g(x) = 2x2 + 2xy + 3y2.

We run into trouble already: Theorem 2.3 fails to distinguish between these. We still start
with the same argument, though.

1When d = 3 we have to be slightly careful.
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Step 1: By Corollary 2.3, a prime p is represented by f or g iff
(
−5
p

)
= 1. By quadratic

reciprocity, (
−5

p

)
= (−1)

p−1
2

(p
5

)
=

{
1, p ≡ 1, 3, 7, 9 (mod 20)

−1, p ≡ 11, 13, 17, 19 (mod 20).

Step 2: Now we distinguish between these two cases. By checking modulo 4, we see that
f only represents primes p ≡ 1, 9 (mod 20) (and 5) and g only represents primes p ≡ 3, 7
(mod 20) (and 2).2 By Step 1, f , g must represent all of these respective primes.

Step 3: We have the desired result for primes. How to pass to products of primes? First note
that primes p ≡ 11, 13, 17, 19 (mod 20) have to appear with even exponent (if x2 + 5y2 ≡ 0

(mod p), since
(
−5
p

)
= −1, we must have p | x, y; now divide x, y by p and repeat).

Now consider the magical identity

(2x2 + 2xy + 3y2)(2z2 + 2zw + 3w2) = (2xy + xw + yz + 3yw)2 + 5(xw − yz)2, (16.1)

which says that a product of numbers represented by g is represented by f ! This immediately
gives the sufficiency condition.

For the necessary condition, note we may divide x, y by 2 until they are not both even.
Now take it modulo 8 to see that n ≡ 1, 4, 5, 6 (mod 8). This gives that item 2 is necessary.

Wait a minute. Where does the magical identity come from? Historically this was the
way such problems were solved, and in fact the motivation for composing quadratic forms:
for primitive quadratic forms f, g, h, we say f ◦ g = h iff there exist integral bilinear forms
B1, B2 satisfying certain conditions such that

f(x)g(y) = h(B1(x,y), B2(x,y)).

We won’t go into the historical details, because the modern way of thinking of composition
is cleaner (see Section 5). We know we had the “composition law”

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

We can view this as coming from the identity

NmK/Q(a+ bi) NmK/Q(c+ di) = NmK/Q((a+ bi)(c+ di)) (16.2)

where K = Q(i), so NmK/Q(z) = |z|2. We now look at a different proof of Example 3.4.

Proof 2. This time the complication comes from that Z[
√
−5] is not a UFD, nor PID; its

ideal class group has order 2, with representatives

a = 1

b = (3, 1 +
√
−5).

2These sets are disjoint; we say f, g are unique in their genus.
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Step 1: Let p be prime. As in the proof of Theorem 7.2.1, we factor the equation x2 +5y2 = p

in Z[
√
−5] to get

(x+
√
−5y)(x−

√
−5y) = p.

Now we know the ideal (p) splits iff x2 + 5 (mod p) splits, i.e.
(
−5
p

)
= 1. We calculated

that this happens when p ≡ 1, 3, 5, 7, 9 (mod 20).

Step 2: So if p is of the above form, we know that either p is a product of two principal
ideals, or two (conjugate) ideals similar to b. In the two cases, we have respectively

(p) = (λ)(λ)

(p) = λ(3, 1 +
√
−5)λ(3, 1 +

√
−5)

for some λ ∈ Q(
√
−5). Then calculating the norm of the ideal in K = Q(

√
−5) gives

p = NmK/Q(λ)

p = N((3, 1 +
√
−5))︸ ︷︷ ︸

3

NmK/Q(λ)2.

Let λ = x + y
√
−5. In the first case, we must have p = x2 + 5y2, so p ≡ 1, 5, 9 (mod 20),

while in the second case, we must have p = 3(x2 + 5y2) (x, y ∈ Q, here) so when p is odd,
p ≡ 3 · 1, 3 · 9 (mod 20). (We can check that x, y do not have 2 or 5 in the denominator
by an infinite descent argument, so we may consider x, y ∈ Z/20Z.) p = 2 is possible as
(2, 1 +

√
−5)2 = (2). Thus again we’ve distinguished between the two cases.

Step 3: A prime p ≡ 1, 5, 9 (mod 20) splits into two principal ideals, a prime p ≡ 2, 3, 7
(mod 20) splits into two ideals of type b, and a prime p ≡ 11, 13, 17, 19 (mod 20) remains
prime. In order for (n) to split into two principal ideals, we must be able to write

(n) = cc

where c is a product of ideals, containing an even number of prime ideals of type b, and c
contains the conjugates of those ideals. (Two ideals of type b multiply to a principal ideal.)
The result follows.

It seems like the quadratic forms in the first proof are related to the ideals in the second
proof. This is indeed the case: we can explain (16.1) similarly to (16.2) by

NmK/Q(2x+ (1 +
√
−5)y)

N(2, 1 +
√
−5)

·
NmK/Q(2z + (1 +

√
−5)w)

N(2, 1 +
√
−5)

=
NmK/Q((2x+ (1 +

√
−5)y)(2z + (1 +

√
−5)w))

N((2))

The two forms on the LHS are exactly those on the LHS of (16.1) while that on the RHS
can be written in the form B2

1 + 5B2
2 because 1

2
(2x + (1 +

√
−5)y)(2z + (1 +

√
−5)w) is an
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integral ideal. We will see that in this way the group law on ideal classes translates into a
group law on quadratic forms.

After we establish Gauss composition, we will show the equivalence between a quadratic
form Q representing a prime p, and (p) splitting into ideals of a certain form (Theorem 5.4).
The above proof was a specific example of this.

§4 Ideals on quadratic rings

Definition 4.1: We will be considering rings that are free Z-modules of finite rank. We call
such rings quadratic, cubic, quartic, and quintic, if the rank is 2, 3, 4, or 5, respectively.

The rings we are primarily interested are integral domains, which are exactly the rings
that can be embedded in field extensions.

Definition 4.2: An order O in a finite extension K/Q is a subring of K containing 1, that
is a free Z-module of rank [K : Q].

The maximal order of K is simply OK , the ring of integers of K.

Definition 4.3: Let R be a ring that is a free Z-module of finite rank. The conductor of
R is the greatest integer n for which there exists a ring T such that

O = Z + nT.

(Necessarily, T has the same rank.)

If S is a quadratic ring then S = 〈1, τ〉 for some τ satisfying a quadratic equation
τ 2 + bτ + c = 0. If this polynomial is irreducible over Z, then S can be embedded in a
quadratic field extension. Otherwise, S is not an integral domain. We make the following
definitions. The first four are equivalent to our previous definitions when S is integrally
closed.

1. The discriminant of S is the discriminant of the characteristic polynomial, b2 − 4c.

2. Conjugation is the linear transformation that takes 1 to 1 and switches the zeros of
x2 + bx+ c.

3. The norm of an element α ∈ S is αα.

4. The numerical norm NR(a) of an ideal a ∈ R to be [R : I] = |R/I|.3

5. A basis (α, β) for a ⊆ R is positively oriented if∣∣∣∣α α

β β

∣∣∣∣
disc(S)

=
αβ − βα

d
> 0.

3For fractional ideals a, i.e. R-submodules of R ⊗Z Q, take a fractional ideal b containing a and R and

define NR(a) = [b:a]
[b:R] .
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We now describe all quadratic rings.

Proposition 4.4: There is a bijection betweenD = {d ∈ Z : d ≡ 0, 1 (mod 4)} and quadratic
rings (up to isomorphism), given by

S : d 7→ Z[τd]

where τd satisfies a monic quadratic equation with discriminant d.
Moreover,

d = f 2dK ,

where f is the conductor of Z[τd] and, when d is nonsquare, dK is the discriminant of Q(τd)
(dK ≡ 0, 1 (mod 4) and 16 - dK).

1. An integer d ∈ D corresponds to a integral domain if and only if d is not a square.

2. If d = 0 then S(d) = Z[x]/(x2).

3. If d is a nonzero square then S(d) = Z · (1, 1) +
√
d(Z⊕ Z).

4. If dK ≡ 1 (mod 4), dK 6= 1, then S(d) = Z[fτ ] = 〈1, fτ〉 where τ = 1+
√
dK

2
.

5. If dK ≡ 0 (mod 4) then S(d) = Z[fτ ] = 〈1, fτ〉 where τ =
√
dK
2

—the root of the
nonsquare part of d.

Proof. Note the map is well-defined, because any two quadratic equations with discriminant
d, say x2 + bjx+ cj, j = 1, 2, have b1 ≡ b2 ≡ d (mod 2) and hence are related by the change
of variable x 7→ x + k for some k. The map is injective because the discriminant doesn’t
change under replacing τ with τ + k.

For item 1, note d is a square iff the characteristic polynomial factors. Item 2 is clear;
for item 3 note that we have the homomorphism

Z[τ ]/(τ 2 − d) ↪→ Z[τ ]/(τ −
√
d)× Z[τ ]/(τ +

√
d) ∼= Z× Z

1 7→ (1, 1)

τ 7→ (
√
d,−
√
d)

with image Z · (1, 1) +
√
d(Z⊕ Z).

Now write d = f 2dK ; we will show f is the conductor. Choose b = 0 or 1 with b ≡ d
(mod 4) and c such that b2 − 4c = d, and let

S(dK) = Z[τ ]/(τ 2 + bτ + c) = Z
[
−b+

√
dK

2

]
S(d) = Z[τ ]/(τ 2 + fbτ + fc) = Z

[
−fb+ f

√
dK

2

]
.

Now S(dK) is the ring of integers of S(d), so the largest quadratic ring containing S(d);
moreover the above representation gives

S(d) = Z + fS(dK), (16.3)
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so f must be the conductor.

Items 4 and 5 come from (16.3) and the fact that Z
[
−b+
√
dK

2

]
= Z[τK ].

4.1 Proper and invertible ideals

From now on, assume that d is not a square. We create a bijection between the “ideal
class group” of a quadratic ring of discriminant d and quadratic forms of discriminant d.
To do this we first have to define the “ideal class group” of a quadratic ring. This is more
complicated than defining it for a ring of integers, because a general order is not a Dedekind
domain. We find that we first have to restrict the ideals under consideration, in order for
inverses to exist.4 Later we restrict the ideals further so that we have unique factorization.

Definition 4.5: A proper ideal of O is an ideal such that

O = {β ∈ K : βa ⊆ a} .

(In general we only have ⊆.)

Note that for the maximal order OK , all ideals are proper, and for any order, all principal
ideals are proper. Furthermore, any ideal is proper for exactly most one order, namely the
order {β ∈ K : βa ⊆ a}. The following tells us exactly which order that is.

Lemma 4.6: Suppose a = (α, β) is an ideal in a order of a quadratic field.
Suppose τ = β

α
has degree 2 over Q and satisfies the equation

ax2 + bx+ c = 0

where a, b, and c are integers with gcd(a, b, c) = 1. Let K = Q(τ). Then a is a proper ideal
of R := (1, aτ), and

NR(a) =
NmK/Q(α)

a
.

Proof. Let O be the order. Now (1, τ) is also a fractional ideal of O ⊆ Q(τ). We know
O = {β ∈ K : βa ⊆ a}. Now, β is in this set iff

β ∈ (1, τ)

βτ ∈ (1, τ),

i.e.

β = p+ qτ for some p, q ∈ Z

βτ = (p+ qτ)τ = pτ + q

(
− b
a
τ − c

a

)
∈ (1, τ);

since gcd(a, b, c) = 1, this is true iff a | q. Hence O = (1, aτ).

4Else we only get a semigroup.
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For the second part, note

N(a) = [O : a] =
[O : (1, τ)]

[a : (1, τ)]
=

[α(1, τ) : (1, τ)]

[(1, aτ) : (1, τ)]
=

Nm(α)

a
.

Proposition 4.7: Let a be a fractional O-ideal. Then a is proper iff it is invertible. Hence
the proper fractional ideals form a group I(O) under multiplication.

Proof. If a is invertible, then ab = O for some b. If βa ⊆ a, then

βO = β(ab) = (βa)b ⊆ ab = O

so β ∈ O. This shows a is proper.
Conversely, suppose a is proper. Write a = α(1, τ). Letting ax2 + bx+ c be the minimal

polynomial of τ with integer coefficients, by Lemma 4.6, O = (1, aτ). We show that

aa =
NmK/Q(α)

a
O;

it will follow that a
NmK/Q(α)

a is the inverse of a.

First note O = O, since O = (1, aτ) = (1, aτ) (on account of aτ + aτ = −b). Hence a is
actually an ideal of O. Next, we calculate

aa = α(1, τ)α(1, τ)

= NmK/Q(α)(1, τ, τ , ττ)

= NmK/Q(α)
(

1, τ + τ , τ,− c
a

)
= NmK/Q(α)

(
1,− b

a
,− c

a
, τ

)
=

NmK/Q(α)

a
(1, aτ)

as needed (using gcd(a, b, c) = 1 in the last step).

Let P (O) be the subgroup of principal ideals in I(O). Define the class group of O to
be

C(O) = I(O)/P (O).

Let P+(O) be the subgroup of principal ideals in the form (α) where α is totally positive, i.e.
positive under every real embedding. (This is an empty condition if O is imaginary.) Define
the narrow class group of O to be

C+(O) = I(O)/P+(O).

(This is an example of what is called a ray class group in class field theory.)
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§5 Gauss composition

Theorem 5.1 (Correspondence between ideals and binary quadratic forms): There is a
bijection between

1. narrow ideals classes in quadratic rings with given orientation and

2. binary quadratic forms (up to proper equivalence),

given by

(a = (α, β), R) 7→
NmK/Q(αx− βy)

NR(a)((
1,
−b+

√
d

2a

)
,Z

[
−b+

√
d

2

])
←[ Q(x, y) = ax2 + bxy + cy2

where K is the quadratic field containing a, (α, β) is a positively oriented basis for a, and
d = b2 − 4ac. This restricts to a bijection between invertible oriented ideal classes in the
order of discriminant d and primitive binary quadratic forms of discriminant d:

C+(O(d))
∼=↔ C(d).

Corollary 5.2 (Gauss composition): There exists a group structure on equivalence classes
of binary quadratic forms, induced by the group structure on ideal classes.

Proof. Step 1: We show the forward map is well-defined. We need to check two things.

1. Change of basis gives an equivalent form: Temporarily writeQa1,a2(x, y) =
NmK/Q(a1x−a2y)

Na
.

Suppose a = (a1, a2) = (b1, b2) where both bases are positively oriented. We can write(
b1

−b2

)
= A

(
a1

−a2

)
, A ∈ SL2(Z).

Then

Qb1,b2(x, y) =

NmK/Q

(
(x, y)

(
b1

−b2

))
NR(a)

=

NmK/Q

(
(x, y)A

(
a1

−a2

))
NR(a)

= Qa1,a2 ((x, y)A)

(16.4)
so the quadratic forms are equivalent.

2. Multiplying by a totally positive element gives an equivalent form: Suppose λ is totally
positive. Then NmK/Q(λ) > 0. First note that (λa1, λa2) is also positively oriented:∣∣∣∣λa1 λa1

λb1 λb1

∣∣∣∣
d

= NmK/Q(λ)

∣∣∣∣a1 a1

b1 b1

∣∣∣∣
d

> 0.
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Then

Qλa1,λa2(x, y) =
Nm(λa1x− λa2y)

NR(λa)

=
NmK/Q(a1x− a2y)

NR(a)

= Qa1,a2(x, y)

as needed.

Step 2: We show this map is injective. First note an alternate characterization for the forward
map. Writing (α, β) = α(1, τ), we find that the quadratic form corresponding to (α, β) is

Qα,β(x, y) =
NmK/Q(αx− βy)

NR(a)

=
(αx− βy)(αx− βy)

NR(a)

=
ααx2 − (αβ + αβ)xy + ββy2

NR(a)

=
NmK/Q(α)

NR(a)
(x− τy)(x− τy), τ =

β

α
. (16.5)

Suppose Qa1,a2(x, y) ∼ Qb1,b2(x, y). By changing the basis of b = (b1, b2), which by (16.4)
corresponds to changing the basis of the quadratic form, we may assume Qa1,a2(x, y) =
Qb1,b2(x, y). The above factorization (16.5) says that one of the following holds:

1. a1

a2
= b1

b2
. Letting λ = a1

b1
= a2

b2
, we find a = λb. Since both bases are positively oriented,

0 <

∣∣∣∣a1 a1

a2 a2

∣∣∣∣∣∣∣∣b1 b1

b2 b2

∣∣∣∣ = NmK/Q(λ),

showing either λ or −λ is totally positive.

2. a1

a2
= b1

b2
. We show that this kind of “disorientation” is impossible. Let λ = a1

b1
= a2

b2
.

Then

0 <

∣∣∣∣a1 a1

a2 a2

∣∣∣∣∣∣∣∣b1 b1

b2 b2

∣∣∣∣ = −

∣∣∣∣a1 a1

a2 a2

∣∣∣∣∣∣∣∣b1 b1

b2 b2

∣∣∣∣ = −NmK/Q(λ),

giving NmK/Q(λ) < 0. But

Qb1,b2(x, y) =
(b1x− b2y)(b1x− b2y)

NR(a)

Qa1,a2(x, y) =
(a1x− a2y)(a1x− a2y)

NR(b)
= λλ

(b1x− b2y)(b1x− b2y)

NR(b)
;

equating gives NmK/Q(λ) > 0, contradiction.
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Step 3: Applying the reverse map and then the forward map gives the identity.
Given Q(x, y) = ax2 + bxy + cy2 = a(x − τy)(x − τy), the reverse map takes it to

a := (1, τ). Note {1, τ := −b+
√
d

2a
} is in fact a Z-basis for (1, τ) over R := Z[aτ ] = Z

[
−b+
√
d

2

]
(not just a generating set over O). Indeed, aτ(τ) = (−bτ − c) ∈ (1, τ). In exactly the same
way, {1, aτ} is a Z-basis for R over R.

By (16.5), the forward map then takes (a, R) to

1

NR(a)
(x− τy)(x− τy) = [a : R](x− τy)(x− τy) = a(x− τy)(x− τy).

Step 4: Invertible classes correspond to primitive forms. Suppose a = α(1, τ) is invertible

and τ satisfies ax2 + bx + c = 0, where gcd(a, b, c) = 1. Then by Lemma 4.6, a =
NmK/Q(α)

NR(a)
.

Hence by (16.5), the quadratic form is ax2 + bxy + cy2, which is primitive.
Conversely suppose Q is primitive. Then by Proposition 4.6, the corresponding ideal

(1, τ) is proper in R := (1, aτ).
The fact that the discriminant is preserved can be seen from the reverse map.

Example 5.3: We calculate the binary quadratic form corresponding to the order O of
discriminant d. This will be the identity element in the form class group C(D). We have
O = (1, τ) where

τ =

{
1+
√
d

2
, d ≡ 1 (mod 4)

√
d

2
, d ≡ 0 (mod 4).

.

Then

QO(x, y) = NmK/Q(x+ yτ) =

{
x2 − d

4
y2, d ≡ 0 (mod 4)

x2 + xy − d−1
4
y2, d ≡ 1 (mod 4).

This is consistent with the fact that x2 − d
4

and x2 + x − d−1
4

are the minimal polynomials
of τ in the two cases, respectively.

Theorem 5.4: Let a be an invertible ideal in the quadratic ring O and f its associated
quadratic binary form. Let m be a nonzero integer. Then the following are equivalent.

1. There exists a′ in the same ideal class as a with

a′a′ = (m).

2. There exists a′ in the same ideal class as a with NO(a′) = m.

3. f represents m.

Proof. Equivalence of the first two items is clear. We show (2) ⇐⇒ (3).
Suppose f represents m. Suppose m = d2a, and f represents a primitively. By Propo-

sition 2.2, f is equivalent to a form ax2 + bxy + cy2. By Gauss composition, this form
corresponds to an ideal a′ = a(1, τ) with aτ 2 + bτ + c = 0 inside O = (1, aτ). Hence
NO(a′) = a. Then

NO(da′) = d2a,
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as needed.
Conversely, suppose NO(a) = m. Write a = α(1, τ) with NmK/Q(α) > 0. Suppose

aτ 2 + bτ + c = 0 with gcd(a, b, c) = 1, so O = (1, aτ) and NO((1, τ)) = 1
a
. The corresponding

quadratic form is

g(x, y) =
NmK/Q(x− τy)

NO((1, τ))
= aNmK/Q(x− τy).

Since α ∈ O = (1, aτ), we have α = p−qaτ for some p, q ∈ Z. We have ατ = pτ−q(−bτ−c) =
(p+ qb)τ + cq; since ατ ∈ O = (1, aτ) as well, we get p+qb

a
∈ Z. Now by Lemma 4.6,

m = NO(a) =
NmK/Q(α)

a

=
1

a2
· aNmK/Q(p− qaτ)

=
1

a2
g(p, aq)

= g
(p
a
, q
)

= g

(
−bq − p

a
, q

)
g(x, y) = g

(
− b
a
y − x, y

)
.

We showed above that −bq−p
a
∈ Z, as needed. (Think of the last step as “root flipping.”)

§6 Ideal class group of an order

Suppose O is an order in the field K, and OK is the ring of integers (the maximal order).
We want to relate C(O) to C(OK), because the latter is the most “natural” class group for
K. In reality, we will relate C(O) to a quotient of a subgroup of I(OK), a generalized ideal
class group of OK .

After learning class field theory, which relates generalized class ideal class groups to
extensions of K, we will see that the primes represented by the quadratic form corresponding
to O can be characterized in terms of a certain field extensions L/K.

Definition 6.1: Define

IK(f) = {a ∈ IK : a relatively prime to fOK}
PK(Z, f) = {αOK : α ≡ a (mod fOK) for some a ∈ Z}
IK(O, f) = {a ∈ I(O) : a relatively prime to fO} .

Theorem 6.2: Let f be the conductor of O, i.e. O = Z + fOK . There is an isomorphism

IK(f)/PK(Z, f)→ I(O)/P (O) = C(O)

induced by the map g : IK(f)→ I(O),

g(a) = a ∩ O.
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First, a preliminary lemma.

Lemma 6.3: Let O be an order of conductor f . Then every O-ideal prime to f is proper.

Proof. Cox, Prop. 7.20. Suppose a is prime to f . Then a+fO = O. Suppose βa ⊆ a. Then

βO = β(a + fO) = βa + βfO ⊆ a + fOK ⊆ O
so β ∈ O. Thus a is proper.

Proof of Theorem 6.2. Step 1: We show there is a norm-preserving isomorphism

IK(f)→ I(O, f)

a 7→ a ∩ O
bOK ←[ b.

Step 2: The map above induces an isomorphism IK(f)/PK(Z, f)→ I(O, f)/P (O, f)

Step 3: The inclusion I(O, f) ↪→ I(O) induces an isomorphism I(O, f)/P (O, f)→ I(O)/P (O).
This follows from Theorem 22.1.1.

§7 Cube law

We now derive quadratic composition in a different way. We will associate a “cube” of
integers with three quadratic forms. In order to identify equivalent binary quadratic forms,
we mod out by SL2(Z)3. After decreeing that the sum of forms making up any cube is 0, we
find that we have

1. identified quadratic forms up to equivalence, and

2. recovered our original composition law.

Later we will see that these ideas generalize to composition laws for other polynomial forms
and associated ideals/rings.

Let C2 = Z2 ⊗ Z2 ⊗ Z2. Choosing a basis (v1, v2) for Z2, every element of C2 can be
written in the form

av1 ⊗ v1 ⊗ v1 + bv1 ⊗ v2 ⊗ v1 + cv2 ⊗ v1 ⊗ v1 + dv2 ⊗ v2 ⊗ v1

+ ev1 ⊗ v1 ⊗ v2 + fv1 ⊗ v2 ⊗ v2 + gv2 ⊗ v1 ⊗ v2 + hv2 ⊗ v2 ⊗ v2.

We represent this graphically as a cube.

e f

a b

g h

c d

112 122

111 121

212 222

211 221
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Think of this as a higher-dimensional analogue of a matrix. Let Mi, Ni for i = 1, 2, 3 be the
two matrices obtained by slicing the cube along the 3 possible directions.

M1 =

(
a b
c d

)
, N1 =

(
e f
g h

)
M2 =

(
a c
e g

)
, N2 =

(
b d
f h

)
M3 =

(
a e
b f

)
, N3 =

(
c g
d h

)
.

Define an action of Γ = SL2(Z)× SL2(Z)× SL2(Z) on C2 by letting ( r st u ) in the ith factor of
SL2(Z)3 act on A by sending(

Mi

Ni

)
7→
(
r s
t u

)(
Mi

Ni

)
=

(
rMi + sNi

tMi + uNi

)
.

Note that the actions of the 3 factors of SL2(Z) commute, in the same way that row and
column operations commute for a matrix.

Now associate a cube A with three binary quadratic forms QA
1 , Q

A
2 , Q

A
3 by letting

QA
i (x, y) = − det(Mix−Niy).

We call A projective if QA
1 , Q

A
2 , Q

A
3 are all primitive.

Invariant theory gives the following result.

Proposition 7.1: The ring of invariants of C2 under SL2(Z)3 is

(C2)SL2(Z)3

= Z[disc(A)]

where

disc(A) := disc(Q1) = disc(Q2) = disc(Q3)

=
∑

s,t long diagonal

s2t2 − 2
∑

s,t,u,v face

stuv + 4
∑

s,t,u,v regular tetrahedrom

stuv.

(The fact that disc(A) is invariant is easy to see; we shall not need the opposite implica-
tion.)

We now prove the bijection in Theorem 5.1 and Gauss composition (Corollary 5.2) in a
different way, using cubes. The idea is to associate triples of ideals multiplying to 1 with
triples of quadratic forms in the same cube (which we will deem to add up to 0), and in this
way transfer the group structure from narrow ideal classes to classes of quadratic forms.

Definition 7.2: We say that three oriented fractional ideals I1, I2, I3 in a quadratic ring S
form a balanced triple if

I1I2I3 ⊆ S and

N(I1)N(I2)N(I3) = 1.
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We say two balanced triples (I1, I2, I3) and (I ′1, I
′
2, I
′
3) are equivalent if there are λ1, λ2, λ3

such that

I1 = λ1I
′
1

I2 = λ2I
′
2

I3 = λ3I
′
3.

Theorem 7.3: There is a bijection between equivalence classes of cubes, and ordered pairs
(S, (I1, I2, I3)) where S is a quadratic ring and (I1, I2, I3) is a balanced triple modulo equiv-
alence.

Z2 ⊗ Z2 ⊗ Z2/ SL2(Z)3 ↔ {(S, (I1, I2, I3))}

If (α1, α2), (β1, β2) and (γ1, γ2) are correctly oriented bases for I1, I2, and I3, then the cube
is given by (aijk)1≤i,j,k≤2 where

αiβjγk = cijk + aijkτ

and τ is such that

τ 2 − d

4
= 0, d ≡ 0 (mod 4)

τ 2 − τ − d− 1

4
= 0, d ≡ 1 (mod 4).
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Chapter 17

Units in number fields

§1 Units

Any finitely generated abelian group is isomorphic to Ators ⊕ Zt where Ators consists of all
torsion elements, i.e. elements of finite order. The number t is called the rank of A.

The main theorem of this chapter is the following.

Theorem 1.1 (Dirichlet’s unit theorem): Let K be a number field with r real embeddings
and 2s nonreal complex embeddings. Then the group of units in K is finitely generated with
rank equal to r + s− 1.

The idea of the proof is as follows.

1. Following the idea of the proof that the class number is finite (Section 15.3), we embed
the set of units as a lattice in Rr × Rs. Since we want to send a group (under multi-
plication) to a lattice (under addition), we take logarithms of the norm to define our
embedding. In actuality, the homomorphism L is not injective, but the kernel will be
finite, which is good enough. (See Proposition 2.2.)

2. Construct independent units from elements generating the same ideal. We do this by
finding α, γ generating the same principal ideal and taking αγ−1. Consider a fixed
large symmetric convex compact set T of Rr × Cs, which will contain elements σ(α)
by Minkowski. For α such that L(α) ∈ T , (α) is one of a finite number of principal
ideals (γk). Then αγ−1

k is a unit.

However, since we want independent units, we look not for points in the form L(α) but
rather of the form xL(α) where x has norm 1. Think of this as “rotating” or “twisting”
the unit that we get.

First, a basic criterion for being a unit.

Proposition 1.2: Let K/Q be a finite extension. An element α ∈ K is a unit if and only
if Nm(α) = ±1.

Proof. Suppose α is a unit. Then α−1 ∈ K and

Nm(α) Nm(α−1) = Nm(αα−1) = 1
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so Nm(α) = ±1.

Conversely, suppose Nm(α) = ±1. Then by Theorem 2.3, letting σ1 = I, . . . , σn be the
distinct embeddings of K to the Galois closure, we have

α ·
n∏
k=2

σk(α) = NmL/K(α) = ±1.

Hence α−1 = ±
∏n

k=2 σk(α) ∈ OK .

§2 Dirichlet’s unit theorem

We now prove Dirichlet’s unit theorem.

Lemma 2.1: There are a finite number of algebraic integers α such that

[Q(α) : Q] ≤ m

|α′| ≤M for all conjugates α′.

Proof. The second condition means that the coefficients of the minimal polynomial f are
bounded. Since the degree of f is at most m, there are a finite number of possibilities for
the f and hence α.1

Let {σ1, . . . , σr} be the real embeddings and {σr+1, σ̄r+1, . . . , σr+s, σ̄r+s} be the complex
embeddings of K. Since

Nm(α) = |σ1(α)| · · · |σr(α)||σr+1(α)|2 · · · |σr+s(α)|2,

we define the homomorphism

L : K× → Rr+s

L(α) = (ln |σ1(α)|, . . . , ln |σr(α)|, 2 ln |σr+1(α)| · · · , 2 ln |σr+s(α)|).

This is the composition of our previous embedding σ with f :

σ : K → Rr × Cs σ(α) = (σ1(α1), . . . , σr(αr))

f : Rr × Rs → Rr+s f(x1, . . . , xr, zr+1, . . . , zr+s) = (ln |x1|, . . . , ln |xr|, 2 ln |zr+1|, . . . , 2 ln |zr+s|).

Proposition 2.2: The image L(UK) is a lattice contained in the hyperplane

H := {(x1, . . . , xr+s) : x1 + · · ·+ xr+s = 0} .

Moreover, L has finite kernel.

1See Chapter 37 for...
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Proof. If L(u) = (x1, . . . , xr+s) ∈ UK then

x1 + · · ·+ xr+s = ln |σ1(α)|+ · · ·+ ln |σr(α)|+ 2 ln |σr+1(α)|+ · · ·+ 2 ln |σr+s(α)|
= ln |Nm(α)| = 0.

To show L(UK) is a lattice it suffices to show it is discrete. To this end, we show the
base elements

B(r) = {(x1, . . . , xr+s) : |xj| ≤ C}

centered at the origin contain finitely many points of L(UK). Indeed, if σ(α) ∈ B(r), then
|σk(α)| < C for every embedding σk. By Proposition 2.1, there are a finite number of
possibilities for α.

If α ∈ kerL, then |σk(α)| = 1 for all k. Again by Proposition 2.1 there are a finite
number of possibilities for α.

Since UK is abelian, we now know

UK ∼= ker(L)︸ ︷︷ ︸
Utors
K

⊕ L(UK)︸ ︷︷ ︸
lattice of H

.

It remains to show the following.

Lemma 2.3: L(UK) is a full lattice in H. Therefore it has rank r + s− 1.

Proof. Let x ∈ Rr × Cs. By Proposition 3.1, the volume of the fundamental parallelopiped
of σ(a) is 2−s ·Na · |∆K |

1
2 . Note that multiplication by x multiplies the norm by Nm(x) (more

precise here?) so the volume of the fundamental parallelopiped of σ(a) is Nm(x)2−sNa·|∆K |
1
2 .

Now suppose x is any element such that Nm(x) = 1. Let V = 2−sNa · |∆K |
1
2 . Let T be

any compact convex symmetric set with volume at least 2r+sV . We note the following.

1. By Minkowski’s Theorem, there is point of T in the lattice x · σ(OK).

2. Since T is bounded, all elements of T have norm bounded by a constant C. If σ(α) ∈ T ,
then α has norm bounded by C. By Lemma 15.3.7 there are a finite number of
principal ideals with norm bounded by C, say (γ1), . . . , (γm). Then if σ(α) ∈ T , we
have (α) = (γk), i.e. α = uγk for some unit u, and some k.

In conclusion, for each x we find α such that

T 3 xσ(α) = xσ(uγk) for some k,

i.e.

xσ(u) ∈
m⋃
k=1

σ(γ−1
k )T. (17.1)

Since T is bounded, so is
⋃m
k=1 σ(γ−1

k ). There exists C ′ so that every coordinate of xσ(u) is
less than C ′:

(xσ(u))k < C ′. (17.2)
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The idea is that this places a large constraint on the possibilities for ε, so as we vary x
between “extreme” values, we will have to get linearly independent u.

Take

xk =
(
C ′, . . . , C ′,

1

C ′r+s−1︸ ︷︷ ︸
k

, C ′, . . . , C ′
)

Then letting uk be such that (17.1) holds for xk, uk, we get by (17.2) that, componentwise,

σ(uk) < (1, . . . , 1, C ′r+s, 1, . . . , 1),

i.e.

L(uk) = f(σ(uk)) < (0, . . . , 0, ln(C ′r+s), 0, . . . , 0).

Note the following.

1. Every entry of L(uk) is negative except for the kth one, which must be positive because
the entries sum up to 0.

2. The sum of entries of L(uk), omitting the last term, is positive.

The following lemma will show that L(u1), . . . , L(ur+s−1) are linearly independent. It will
follow that u1, . . . , ur+s−1 generate a free abelian group. This means rank(UK) ≥ r + s− 1;
we have equality by Proposition 2.2 since dimH = r + s− 1.

Lemma 2.4: Suppose that A is a n× n matrix such that

1. ai,j < 0 for i 6= j and ai,i > 0.

2.
∑n

j=1 ai,j > 0.

Then A is invertible.

Proof. Suppose v =

( v1

...
vn

)
is a nonzero vector. Suppose i is such that |ai| is greatest. Then

looking at the ith component gives
∑n

j=1 aijvj = 0. Then

n∑
j=1

aijvj > aijvi +
∑
j 6=i

aijvi > 0,

so Av 6= 0. Thus A is invertible.

This finishes the proof of Dirichlet’s Unit Theorem.
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§3 S-units

Definition 3.1: Let S be a finite set of prime ideals of K. The ring of S-integers is

OK(S) =
⋂
p6∈S

(OK)p = {α ∈ K : ordp(α) ≥ 0 for all p 6∈ S} .

I.e. we allow dividing by elements whose “only prime factors” are in S. The group of S-units
is the group of units in OK(S):

U(S) = OK(S)× = {α ∈ K | ordp(α) = 0 for all p 6∈ S}.

There are more units in U(S) than in UK ; the following generalization of Dirichlet’s theorem
says that we get an “extra” unit for every prime in S.

Theorem 3.2 (Dirichlet’s S-unit theorem): The group of S-units is finitely generated with
rank r + s+ |S| − 1.

Proof. Let S = {p1, . . . , pt}. Consider the maps

UK ↪→ U(S)
ϕ−→ Zm

where
ϕ(x) = (ordp1(x), . . . , ordpm(x)).

Its kernel is UK , as the elements of UK are exactly those x with order 0 for every prime p,
and by definition ordp(x) = 0 for x ∈ U(S) and p outside of S. Let h be the class number of
K. Then phk = (αk) for some αk. We have

ϕ(x) = (0, . . . , 0, h︸︷︷︸
k

, 0 . . . , 0).

Hence ϕ(U(S)) is a full lattice in Zm. Since UK has rank r + s − 1 by Dirichlet’s Unit
Theorem (1.1), U(S) has rank r + s− 1 +m.

§4 Examples and algorithms

§5 Regulator
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Chapter 18

Cyclotomic fields

§1 Cyclotomic polynomials

Definition 1.1: A cyclotomic extension of Q is a field Q[ζ] where ζ is a root of unity.
We call ζ a primitive nth root of unity if ζn = 1 but ζm 6= 1 for 0 < m < n.

We will use ζn to denote a primitive nth root of unity.
The nth cyclotomic polynomial is defined by

Φn(x) =
∏

0≤j<n,gcd(j,n)=1

(x− e
2πij
n )

Equivalently, it can be defined by the recurrence Φ0(x) = 1 and

Φn(x) =
xn − 1∏

m|n,m<n Φm(x)
.

Hence, it has integer coefficients.

Theorem 1.2: The cyclotomic polynomials are irreducible over Q[x].

Proof. We need the following lemma:
Suppose ω is a primitive nth root of unity, and that its minimal polynomial is g(x). Let

p be a prime not dividing n. Then ωp is a root of g(x) = 0.
Since Φn(ω) = 0, we can write Φn = fg. If g(ωp) 6= 0 then f(ωp) = 0. Since ω is a zero

of f(xp), f(xp) factors as
f(xp) = g(x)h(x)

for some polynomial h ∈ Z[x].
Now, in Z/pZ[x] note (f1 + . . . + fk)

p = fp1 + . . . + fpk since the pth power map is an
homomorphism. Hence

g(x)h(x) ≡ f(xp) ≡ f(x)p (mod p).

Hence f(x) and g(x) share a factor modulo p. However, the derivative of xn− 1 modulo p is
nxn−1 6= 0, showing that xn − 1 has no repeated irreducible factor modulo p; hence Φn has
no repeated factor modulo p. Since Φn = fg, this produces a contradiction.
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Therefore g(ωp) = 0, as needed.
Any primitive nth root is in the form ωk for k relatively prime to n. Writing the prime

factorization of k as p1 · · · pm, we get by the lemma that ωp1 , ωp1p2 , . . . , ωp1···pm are all roots of
g. Hence g contains all primitive nth roots of unity as roots, and Φn = g is irreducible.

Theorem 1.3:
[Q(ζn) : Q] = ϕ(n).

Proof. The minimal polynomial of ζn equals the cyclotomic polynomial by Theorem 1.2; the
latter has degree ϕ(n).

We use cyclotomic polynomials to prove a special case of Dirichlet’s theorem.

Theorem 1.4 (Dirichlet’s theorem for p ≡ 1 (mod n)): (†) Let n be a positive integer.
There are infinitely many primes p with p ≡ 1 (mod n).

Lemma 1.5: For any integer m, all divisors of Φn(m) either divide n or are 1 (mod n).

Proof. Suppose p is prime and p | Φn(m). Then p | mn − 1, i.e.

mn ≡ 1 (mod p)

so r := ordp(m) | n. Since mp−1 ≡ 1 (mod p) by Fermat’s little theorem, r | p− 1.
If r = n, then n | p− 1, i.e. p ≡ 1 (mod n). Suppose that r < n. Then

p | Φn(m) | m
n − 1

mr − 1
= mr(n

r
−1) + · · ·+mr + 1.

However, mr ≡ 1 (mod p) so

mr(n
r
−1) + · · ·+mr + 1 ≡ n

r
(mod p),

so p | n
r
| n.

Proof of Theorem 1.4. Suppose by way of contradiction that only finitely many primes are
1 (mod n). Let their product be P (if there are no such primes, P = 1). Consider Φn(knP ),
k ∈ Z. Since it divides (nP )n−1, it can’t have prime divisors in common with n or P . With
appropriate choice of k we can be sure Φn(knP ) 6= 0,±1. By the claim all prime divisors of
Φn(knP ) are 1 (mod n), but they don’t divide P , contradiction.

§2 Ring of integers

Our next two propositions will give us information about the ring of integers of Q[ζ], as well
as some other useful facts. In the process we will rederive Theorem 1.3.

Proposition 2.1: Suppose ζ and ζ ′ are primitive nth roots of unity. Then 1−ζ′
1−ζ is a unit in

Z[ζ] = Z[ζ ′].

166



Number Theory, §18.2.

Proof. Then we have ζ ′ = ζs and ζ = ζ ′t for some s, t, so Z[ζ] = Z[ζ ′] and

1− ζ ′

1− ζ
= 1 + ζ + · · ·+ ζs−1 ∈ Z[ζ]

1− ζ
1− ζ ′

= 1 + ζ ′ + · · ·+ ζ ′t−1 ∈ Z[ζ].

Therefore 1−ζ′
1−ζ is a unit in Z[ζ].

Proposition 2.2: Let p be prime and r ∈ N. Suppose pr > 2, let ζpr be a primitive pr-th
root of unity, and let K = Q[ζpr ]. Then

1. [Q[ζpr ] : Q] = ϕ(pr) = pr−1(p− 1).

2. The element π = 1− ζpr is prime in OK , and (p) = (π)ϕ(pr).

3. OK = Z[ζpr ].

4. disc(OK/Z) = (−1)
ϕ(pr)

2 pp
r−1(pr−r−1). Thus p is the only prime ramifying in Q[ζpr ].

Proof. By Proposition 4.1,

p = 1 +Xpr−1

+ · · ·+X(p−1)pr−1|X=1

= Φpr(1)

=
∏

ζ′ primitive prth root of unity

(1− ζ ′)

=
∏

ζ′ primitive prth root of unity

1− ζ ′

1− ζpr
(1− ζpr)

= u(1− ζ)ϕ(pr)

where u =
∏

ζ′ primitive prth root of unity
1−ζ′

1−ζpr
is a unit by Proposition 2.1. Thus (p) = (π)ϕ(pr).

From the degree equation (Theorem 14.5.2), we get that [Q[ζ] : Q] ≥ ϕ(pr) with strict
inequality when π factors further. On the other hand [Q[ζ] : Q] ≤ ϕ(pr) since the cyclotomic
polynomial has degree ϕ(pr). Hence equality must hold, and π must be prime, giving (1)
and (2).

The degree equation for (p) = (π)ϕ(pr) reads

ϕ(pr) = f((π)/(p)) · ϕ(pr)

so we must have f((π)/(p)) = 1, i.e. the natural map

Z/(p)
∼=−→ OK/(π) (18.1)

is an isomorphism.
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We first calculate disc(Z[ζp]/Z). By Proposition 13.4.4,

disc(Z[ζpr ]/Z) = ±NmQ(ζpr )/Q(Φ′pr(ζ))

Φ′pr(ζ) =

(
Xpr − 1

Xpr−1 − 1

)′∣∣∣∣∣
x=ζ

=
prXpr−1(Xpr−1 − 1)− (Xpr − 1)pr−1Xpr−1−1

(Xpr−1 − 1)2

∣∣∣∣∣
X=ζpr

=
prζp

r−1
pr

ζpr−1 − 1
=
prζ−1

pr

ζp − 1

where we set ζp = ζp
r−1

; this is a primitive pth root of unity. We calculate the norm of each
factor.

1. NmQ(ζp)/Q(pr) = (pr)[Q(ζp):Q] = prp
r−1(p−1).

2. NmQ(ζp)/Q(ζ−1
pr ) = ±1 since ζ−1

pr is a unit.

3. NmQ(ζp)/Q(ζp − 1) = pp
r−1

: The minimal polynomial of ζp − 1 over Q is Φpr(X + 1),

whose constant term is Φp(1) = Xpr−1(p−1) + · · · + Xpr−1
+ 1|X=1 = p. Hence by

Proposition 13.2.3(1c), we have

NmQ(ζp)/Q(ζp − 1) = (±p)[Q(ζpr ):Q(ζp)] = ±p
ϕ(pr)
ϕ(p) = ±ppr−1

.

Combining these we get

disc(Z[ζpr ]/Z) = NmQ(ζpr )/Q
prζ−1

pr

ζp − 1
=
pr(p−1)pr−1 · ±1

±ppr−1 = ±ppr−1(pr−r−1). (18.2)

By Proposition 13.3.2 (fix this a bit), we have

±ppr−1(pr−r−1) = disc(OK/Z) = (OK : Z[ζpr ])
2 disc(Z[ζ]/Z).

Hence both factors are powers of p up to sign. Since (OK : Z[ζpr ]) is a power of p, the
quotient module is annihilated by a power of p, i.e. then

pmOK ⊆ Z[ζpr ] (18.3)

for some m. Note surjectivity in (18.1) gives OK = Z + πOK and hence

OK = Z[ζpr ] + πOK . (18.4)

Suppose OK = Z[ζpr ] + πnOK . Then substitution into (18.4) gives

OK = Z[ζpr ] + πOK = Z[ζpr ] + π(Z[ζpr ] + πnOK) = Z[ζpr ] + πn+1OK .
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Hence by induction, OK = Z[ζpr ] + πnOK for all n. However, (p) = (π)ϕ(pr) so this means
OK = Z[ζpr ]+p

nOK for all n. Taking n = m, (18.3) gives OK = Z[ζpr ], proving (3). Together
with (18.2), this gives (4). The second part of (4) now follows from Theorem 14.6.1 (A prime
ramifies if and only if it divides the discriminant).

All embeddings of Q(ζn) are complex, and there are ϕ(n) = [Q(ζn) : Q] of them. By
Theorem 13.4.6(1), the sign is (−1)ϕ(pr).

Now we prove the analogous result for Q(ζn), for any n ∈ N, by taking compositums of
fields of the form Q(ζpr).

Theorem 2.3: Let n, r ∈ N with n 6≡ 2 (mod 4)1. Let ζn be a primitive nth root of unity.

1. [Q(ζn) : Q] = ϕ(n).

2. OK = Z[ζn].

3.

disc(OK/Z) =
(−1)

ϕ(n)
2 nϕ(n)∏

p|n p
ϕ(n)
p−1

.

Moreover,

1. If p 6= 2, then p ramifies iff p | n.

2. If p = 2, then p ramifies iff 4 | n.

Proof. Let K = Q(ζn). Along with the theorem statement, we will show that if n = prm,
p - m, then

(p) =
(∏

Pi

)ϕ(pr)

(18.5)

for distinct primes Pi.
We induct on the number of prime factors of n. The case when n is a prime power is

treated by Proposition 2.2. Suppose the theorem true for m and p - m; consider n = prm.
Writing ζpr = ζmn and ζm = ζp

r

n , we consider

Q(ζprm)
≤ϕ(pr)

(pOK)ϕ(pr) =
∏

i piOK
≥ϕ(pr)

Q(ζpr) Q[ζm] pϕ(pr)
∏

pi

Q
ϕ(pr) ϕ(n)

(p)

totally ramified unramified

By Proposition 2.2(2), (p) = pϕ(pr) in Q[ζpr ], while by part 2, p splits into disctinct factors.
Matching factorizations in Q[ζprm], we get that each piOK must be a perfect ϕ(pr)th power.

1If n ≡ 2 (mod 4), note Q(ζn) = Q(ζn/2).
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Hence [Q(ζn) : Q] ≥ ϕ(pr), and equality must hold. Then [Q(ζn) : Q] = ϕ(pr)ϕ(m) = ϕ(n)
showing (1).

Item (2) follows from Proposition 13.4.8 since by (3), disc(Q(ζpr)/Q) and disc(Q(ζm)/Q)
are relatively prime. Item (3) follows from Proposition 13.4.8 as well. The factorization
comes from the fact that since [Q(ζprm) : Q(ζm)] = ϕ(pr) and each pi is the ϕ(pr)th power
of an ideal, the degree equation says each pi must actually be the ϕ(pr)th power of a prime
ideal.

We now show a more precise version of (18.5), using Theorem 6.3.

Theorem 2.4: Suppose that n = prm, where p - m. Let

f = ordm(p).

Then the prime factorization of (p) in Q(ζn) is

(p) = (P1 · · ·Pg)
ϕ(pr)

where Pj are distinct primes, each with residue degree f over Q, and g = ϕ(m)
f

.

Proof. (†)2 To use Theorem 6.3, we find the factorization of Φn(X) modulo p. We have

Φn(X) =
∏

j (mod× n)

(X − ζjn) =
∏

j (mod×m)

∏
k (mod× pr)(X − ζjmζkpr). (18.6)

Now note that

X − ζjmζkpr ≡ X − ζjm (mod ζpr − 1).

Hence (18.6) gives

Φn(X) ≡
∏

j (mod×m)

(X − ζjm)ϕ(pr) ≡ Φm(X)ϕ(pr) (mod ζpr − 1).

But both sides are in Z[X] so this congruence holds modulo (ζpr − 1) ∩ Z = (p).

Now consider Φm(X) (mod p). Note that modulo p, P (X) := Xm − 1 has no repeated
factors since it is relatively prime to P ′(X) = mXm−1 6= 0; hence its divisor Φm(X) has
no repeated factors either. Note F×pr consists exactly of elements with xp

r−1 = 1, any root

α of Φm(X) satisfies αm = 1 (but not αm
′

= 1 for 0 < m′ < m). Thus the smallest field
extension Fpr containing α is hence the smallest r such that m | pr − 1, i.e. r = ordm(p).
The irreducible factors of Φm(X) have degree f , so f is the residue degree. The number of

factors equals ϕ(m)
f

, and this is the number of distinct prime divisors of (p).

2For an alternate proof see Example 23.1.6.
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§3 Subfields of cyclotomic extensions

Proposition 3.1: The Galois group of Q(ζn)/Q is

G(Q(ζn)/Q) = (Z/nZ)×.

Proof. The conjugates of ζn over Q are ζkn with k ∈ (Z/nZ)×, the roots of Φn. The Galois
group acts transitively on the conjugates, so for every k ∈ (Z/nZ)×, there is a automorphism
σk sending ζn → ζkn, and these are all the automorphisms (look at the degree). Since ζn
generates Q(ζn), the action of an automorphism on ζn determines it completely. It is clear
that k → σk is an isomorphism (Z/nZ)× → G(Q(ζn)/Q).

Proposition 3.2: The unique quadratic extension of Q contained in Q(ζp) is

Q
(√

(−1)
p−1

2 p

)
.

Proof. By the fundamental theorem of Galois theory, a quadratic extension corresponds to
a subgroup of index 2 in (Z/pZ)× ∼= Z/(p− 1)Z, and there is exactly one such subgroup. If
it equals Q(

√
d), then the only primes ramifying are those dividing d; since the only prime

ramifying in Q(ζp) is p, we must have d = ±p.
To determine the sign, we explicitly find express a generator for Q(

√
d) in terms of ζp.

Define τ by the Gauss sum

τ =

p−1∑
k=1

(
k

p

)
ζkp .

An automorphism σ ∈ G(L/K) is described by σ(ζp) = ζjp for some j; we have

στ =

p−1∑
k=1

(
k

p

)
ζjkp =

p−1∑
k=1

(
j−1k

p

)
ζkp

so στ = τ iff
(
j
k

)
= 1, which happens for exactly half the elements of G(L/K). Hence τ

indeed generates a quadratic field.3

Now, if p ≡ 1 (mod 4), we have
(
−1
p

)
= 1 and we can pair

(
k
p

)
ζkp +

(
−k
p

)
ζ−kp ∈ R, while

if p ≡ 3 (mod 4), we have
(
−1
p

)
= −1 and

(
k
p

)
ζkp +

(
−k
p

)
ζ−kp ∈ Ri. This gives the sign of

d.
Alternatively, we can calculate τ explicitly as in (BLAH).

Proposition 3.3: For n > 2, Q(ζn) is a CM-field with totally real subfield

Q(ζn + ζ−1
n ) = Q

(
cos

2π

n

)
.

Proof.

3This gives motivation for the Gauss sum appearing in the proof of quadratic reciprocity.
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§4 Fermat’s last theorem: Regular primes

Theorem 4.1: Any unit u ∈ Z[ζn] can be written in the form

u = ζknv

where v is totally positive, i.e. σ(v) ∈ R for any embedding σ : Q[ζn]→ C.

Definition 4.2: A prime p is regular if p does not divide the class number of Z[ζp].

Theorem 4.3 (First case of Fermat’s last theorem for regular primes): Suppose that p > 2
is a regular prime. Then any integer solution to

xp + yp = zp

satisfies p | xyz.

Proof. For p = 3, note that any cube must be congruent to 0 or ±1 modulo 9. Hence in
order for x3 + y3 ≡ z3 (mod 9), one of x, y, z is divisible by 3, as needed.

Now assume p > 3. By dividing by gcd(x, y, z) we may assume x, y, z are relatively prime.
Step 1: Factor the equation as

p−1∏
j=0

(x+ ζjpy) = zn. (18.7)

(Note p is odd.) We show that if p - xyz, then the factors on the left are relatively prime.
Take j 6= k and consider a := gcd((x+ ζjpy), ((x+ ζkp y))). We have

a | (x+ ζjpy − x− ζkp y) = (ζjp − ζkp )(y).

Now x, y have no common factor in Z, so (x) and (y) have no common factor in Z[ζp], and
(x+ ζjpy) and (y) have no common factor. This shows

a | (ζjp − ζkp ).

The RHS is prime, so either a = (ζjp − ζkp ) = (1 − p) or a = (1). In the first case, we get

(1− p) |
∏p−1

j=0(x+ ζjpy) = zn so p | zn, contradiction.

Step 2: By uniqueness of ideal factorization, each factor of (18.7) is a perfect pth power.

(x+ ζjpy) = apj

However, p - |C(Z[ζp])| so C(Z[ζp]) has no p-torsion. Since (x + ζjpy) is a principal ideal, aj
must also be a principal ideal (aj). By Theorem 4.1, we can write

aj = ζrjp vj, vj ∈ Q[ζp]
+.
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§5 Exercises

Problems

1.1 Let p be a prime. Prove that any equiangular p-gon with rational side lengths is
regular.

1.2 (Komal) Prove that there exists a positive integer n so that any prime divisor of 2n−1
is smaller that 2

n
1993 − 1.

1.3 Find all rational p ∈ [0, 1] such that cos pπ is...

(a) rational

(b) the root of a quadratic polynomial with rational coefficients

1.4 (China) Prove that there are no solutions to 2 cos pπ =
√
n+ 1 −

√
n for rational p

rational and positive integer n.

1.5 (TST 2007/3) Let θ be an angle in the interval (0, π/2). Given that cos θ is irrational
and that cos kθ and cos[(k + 1)θ] are both rational for some positive integer k, show
that θ = π/6.

2.1 Show that the ring of integers in Q(cos 2π
n

) is Z[cos 2π
n

].

? Show that the class group of Q(ζ23) (is this the right one?) is nontrivial.
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Chapter 19

Valuations and completions

Here is some motivation for considering p-adic fields.

1. One useful tool in arithmetic geometry is the local to global principle, which says that
the existence of solutions modulo all primes tells us something about the existence of
solutions in the original field or ring, such as Q or Z. For example, the Hasse-Minkowski
Theorem. However, it is not enough to check for solutions modulo all powers of p —
because a solution modulo p does not necessarily give a solution modulo powers of p.
The solution is to look for solutions in a field which contains information modulo all
powers of p, a p-adic field.

2. When we take a p-adic fields, the only prime ideal remaining is p; all others primes
become units. This vastly simplifies algebraic number theory; we don’t have to worry
about primes that split. Then we can recover facts about the global field.

§1 Case study: p-adic integers

We first examine how p-adic rationals are defined, before generalizing to other number fields.
Often we look at the integers modulo higher and higher powers of a prime p; for example,

when we were looking at the existence of primitive roots (Theorem 4.5.2) or the structure
of Z/pnZ (Theorem 4.6.1). Hensel’s lemma told us that under certain conditions we can lift
solutions modulo higher and higher powers of p.

Rather than work with powers of p piecemeal, we can devise a structure that holds
information modulo all powers of p at once. To do this, we define the ring p-adic integers Zp
and p-adic rationals Qp, which contain Z and Q, respectively. We will do this in two ways:

1. Define Zp as an inverse limit of the rings Z/pnZ and Qp as the fraction field.

2. Give Q a topology (or even better, a metric) related to divisibility by p, and complete
Q with respect to this topology.

1.1 p-adics as an inverse limit

Definition 1.1: A p-adic integer is a compatible sequence

(xn)n≥1
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where xn ∈ Z/pnZ and such that xn+1 ≡ xn (mod pn) for all n, i.e. xn+1 maps to xn under
the projection map Z/pn+1Z→ Z/pnZ.

The ring structure is defined by componentwise addition and multiplication. The ring of
p-adic integers is denoted by Zp and its fraction field is denoted by

Qp = Frac(Zp).

In light of Theorem 11.7.5, we can phrase this definition in a more abstract way:

Zp = lim←−Z/pnZ

where there are maps ϕmn : Z/pmZ→ Z/pnZ given by projection whenever m ≥ n.

1.2 p-adics as completions

We can give define a topology on Z by decreeing that it be invariant under translation and
that a neighborhood base of 0 be {pnZ, n ≥ 0}. This is the same as the topology induced
by the norm

|a|p = p−v when a =
pvb

c
, p - b, c.

Definition 1.2 (Alternate definition of p-adics): Qp is the completion of Q with respect to
the p-adic norm.

We show the equivalence more generally in ().

1.3 Units in Zp
Proposition 1.3: The group of units in Zp is

Z×p ∼=

{
Zp × Z/(p− 1)Z, p 6= 2

Z2 × Z/2Z× Z/2Z, p = 2.

Proof. Note that
Z×p = lim←−

n≥1

(Z/pnZ)×

because any inverse modulo pn can be lifted to an inverse modulo pn+1.
The proposition follows from taking inverse limits in Theorem 4.6.1.

1.4 Monsky’s Theorem*

We use the 2-adic valuation to prove the following theorem from combinatorial geometry.
Surprisingly, no proof is known that does not use p-adics.

Theorem 1.4: A unit square cannot be cut into an odd number of triangles of equal area.

The idea of the proof is as follows.
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1. Extend the 2-adic valuation to a nonarchimedean valuation on the real numbers.

2. Color each point in the plane one of three colors, based on the 2-adic valuation of
the coordinates. We show that the sides of the square only have two colors, with
the vertices alternating colors, and that a triangle of area 1

m
where m is odd, cannot

contain vertices of al three colors. The last facts depends crucially on the fact that the
area formula for a triangle has a factor of 1

2
in it.

3. By Sperner’s Lemma (from graph theory), the coloring in such a subdivision is incon-
sistent.

Proof. We postpone the proof of the first item.1 Assuming it, color the points of the plane
in three colors depending on which of the following conditions is satisfied.

(A) |x|2 < 1, |y|2 < 1

(B) |x|2 ≥ 1, |x|2 ≥ |y|2

(C) |y|2 ≥ 1, |y|2 > |x|2

First, we show that if (∆x,∆y) has color A, then translating by (∆x,∆y) does not change
the color of A. Indeed, consider 3 cases.

1. (x, y) is of color A. By the nonarchimedean property, we have

|x+ ∆x|2 ≤ max(|x|2, |∆x|2) ≤ 1, |y + ∆y|2 ≤ max(|y|2, |∆y|2) ≤ 1,

so (x+ ∆x, y + ∆y) is again of color A.

2. (x, y) is of color B. Since |x|2 ≥ 1 > |∆x|2, we gave

|x+ ∆x|2 = |x|2 ≥ 1.

Since |x|2
.

≥ |y|2 and 1 > |∆y|2 we have

|y + ∆y|2 ≤ max(|y|2, |∆y|2)
.

≤ |x|2 = |x+ ∆x|2.

Hence (x+ ∆x, y + ∆y) is again of color B.

3. (x, y) is of color C. The proof is the same as above except x, y are interchanged and
there is strict inequality in the dotted inequalities above.

Now suppose that A,B,C are three points of those respective colors. By translation we may
assume that A = O. Let B = (x, y) and C = (x′, y′). We have

|x|2 ≥ |y|2
|y′|2 > |x|2

=⇒ |xy′|2 > |x′y|2.
1There is a way around it; see Proofs from the Book.
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1. A,B,C cannot be collinear, as that would imply xy′ = x′y.

2. We show A,B,C cannot form a triangle of area 1
m

for m odd. The area is ±1
2
(xy′−x′y),

and we have

|1
2

(xy′ − x′y)| =
∣∣∣∣12
∣∣∣∣
2

|x|2|y′|2 > 1,

while
∣∣ 1
m

∣∣ = 1.

Next we establish the following combinatorial lemma.

Lemma 1.5 (Sperner’s lemma): Suppose P is a polygon that has been subdivided into
triangles. Define a vertex or segment to be a vertex or edge of one of these triangles, and
say a segment is of type C1C2 if the endpoints are colored C1 and C2. We say a triangle is
rainbow if it has vertices of all 3 colors.

Suppose every vertex of the subdivision is colored with either A, B, or C, such that the
following hold.

1. No outer edge of P contains vertices of all three colors.

2. There are are an odd number of segments of type AB on the outer edges.

Then P contains a triangle whose vertices are all different colors.

Proof. We count the number of segments of type AB. In a monochromatic triangle the count
is 0, in a two-colored triangle the count is 0 or 2, and in a three-colored triangle the count
is 1. Let n be the sum of the counts over all triangle. Every interior segment of type AB is
counted twice, as it is part of two triangles, so

n = 2i+ e,

where i and e denote the number of interior and exterior segments of type AB. Since e
is odd by assumption, n is also odd. But this can only happen if there is a three-colored
triangle.

Now the points O = (0, 0), X = (1, 0), Y = (1, 1), and Z = (0, 1) are colored with A,
B, B, C, respectively. We’ve shown that each side contains segments of at most 2 colors;
segments of type AB can only appear on side OX and XY ; in the former there must be an
odd number (since O,X are different colors) and in the latter there must be an even number.
Thus the conditions of Sperner’s Lemma are satisfied, and any subdivision must contain a
rainbow triangle, which cannot have area 1

m
for m odd.

§2 Valuations

Definition 2.1: A valuation on a field K is a function | · | : K → R such that

1. |x| ≥ 0 with equality only when x = 0.

2. |xy| = |x||y|.
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3. |x+ y| ≤ |x|+ |y|.

If the stronger condition |x+ y| ≤ max(|x|, |y|) holds, then | · | is nonarchimedean.

Example 2.2: For a number field K, any embedding σ : K ↪→ C gives a valuation on K:

|a| := |σa|.

Example 2.3: The p-adic valuation is

|a|p =

(
1

Np

)vp(a)

.

In the special case K = Q, p = (p), we have

|a|p =

(
1

p

)vp(a)

.

Proposition 2.4: A valuation is nonarchimedean if and only if it is bounded on Z. Hence
if char(K) 6= 0, then K only has nonarchimedean valuations.

Proof. If | · | is archimedean, then |1 + · · ·+ 1| ≤ |1| = 1, so |n| ≤ 1 for any n ∈ Z.
Conversely, suppose that | · | is bounded on Z, say by C. We have

|(a+ b)n| =

∣∣∣∣∣
n∑
k=0

(
n

k

)
akbn−k

∣∣∣∣∣
≤

n∑
k=0

C|a|k|b|n−k

≤ C(n+ 1) max(|a|, |b|)n.

Hence for all n ≥ 1, |a+ b| ≤ (C(n+ 1))
1
n max(|a|, |b|). Taking n→∞ gives the result.

Proposition 2.5 (Relationship between additive and multiplicative valuations): Fix a base
b. There is a correspondence between additive and multiplicative valuations, given by

|x| = b−v(x)

v(x) = − logb(x).

Different values of b give equivalent valuations. If v(K×) is discrete in R, then it is a multiple
of a discrete valuation.

We say | · | is discrete when |K×| is a discrete subgroup of R>0.
Using the above correspondence, we find

1. A := {a ∈ K : |a| ≤ 1} is a subring of K, with

2. U := {a ∈ K : |a| = 1} as its group of units, and
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3. m := {a ∈ K : |a| < 1} as its unique maximal ideal.

The valuation is discrete if and only if m is principal; then A is a DVR.

Proposition 2.6 (Elementary properties of discrete valuations):

1. |a+ b| ≤ max(|a|, |b|) with equality if |a| 6= |b|.

2. (“All triangles are isosceles.”) If d(c, b) < d(c, a) then d(a, c) = d(a, b). (The longer
side is the repeated one.)

3. If a1 + · · ·+ an = 0, then the maximum valuation of the summands must be attained
for at least two of them.

2.1 Equivalent valuations

A valuation on K defines a metric (and hence a topology) on K by

d(a, b) = |a− b|.

For example, high powers of p have small p-adic valuation, so numbers differing by high
powers of p are close together in the p-adic valuation.

Proposition 2.7: Let | · |1, | · |2 be valuations on K, with the first being nontrivial. Then
the following are equivalent.

1. | · |1, | · |2 determine the same topology on K.

2. If |α|1 < 1, then |α|2 < 1.

3. | · |1 = | · |a2 for some a > 0.

We say that | · |1 and | · |2 are equivalent if the above conditions hold.

Proof.
(1) =⇒ (2): Note |α|j < 1 if and only if |αn|j = |α|nj → 0, i.e. αn converges to 0 in the
topology of | · |j. Since the topologies are the same,

|α|1 < 1 ⇐⇒ αn converges to 0 ⇐⇒ |α|2 < 1.

(2) =⇒ (3): Take y so that |y|1 > 1, and let a = |y|2
|y|1 , so that |y|2 = |y|a1. We show that

|x|2 = |x|a1 for all x ∈ K.
Suppose |x|1 = |y|b11 and |x|2 = |y|b22 . We need to show b1 = b2, i.e. so the following

commutes.

|x|1
∧a // |x|2

|y|1

∧b1

OO

∧a // |y|2

∧b2

OO

180



Number Theory, §19.3.

We approximate b1 with rational numbers m
n

. First suppose b1 >
m
n

. Then∣∣∣∣ymxn
∣∣∣∣
1

= |y|m−b1n < 1

so by hypothesis

|y|m−b2n2 =

∣∣∣∣ymxn
∣∣∣∣
2

< 1

giving b2 >
m
n

. Similarly, if b1 <
m
n

, then the above argument with xn

ym
shows b2 <

m
n

. Since
Q is dense in R, we have b1 = b2.

(3) =⇒ (1): The open ball of radius r with respect to | · |1 is the same as the open ball of
radius ra with respect to | · |2.

§3 Places

Definition 3.1: A place is an equivalence class of nontrivial valuations on K.2 We denote
by VK the set of places of K, by V 0

K the set of nonarchimedean places and V ∞K the set of
archimedean places.

We aim to classify all places in a number field K.

Proposition 3.2: Let K/Q be an algebraic extension. Then the places on K are exactly
the p-adic valuations | · |p for p a prime ideal of OK .

Proof. Since K is algebraic over Q, an element α ∈ OK satisfies a monic polynomial equation
with coefficients in Z:

xn + an−1x
n−1 + · · ·+ a0 = 0.

By Proposition 2.4, aj ∈ Z gives |aj| ≤ 1. By the nonarchimedean property,

|α|n = |an−1α
n−1 + · · ·+ a0| ≤ max

0≤m≤n−1
|am||αm| ≤ max

0≤m≤n−1
|α|m.

Hence |α| < 1.
Let B be the ring of integers of | · | and m its maximal ideal. Since m is prime in B,

p := m ∩ A is prime in A. Note p 6= (0) because if so | · | is trivial.
Now suppose vp(y) = n. Let π ∈ p\p2 be a uniformizer. Then (yπ−n) is a fractional

ideal; suppose ideals p1, . . . , pm appear in its factorization with exponents at least −k. Take
b ∈

⋂n
j=1 p

k
j . Then (yπ−nb) is an integral ideal (c) not divisible by p. We have c ∈ A\p.

Writing |π| =
(

1
Np

)a
, we have

|y| =
∣∣∣c
b

∣∣∣ |πn| = ∣∣∣∣ 1

Np

∣∣∣∣n = |y|ap .

Moreover, two equivalent nonarchimedean valuations would have the same maximal ideals
and hence correspond to the same prime p.

2Some books use “prime” instead of “place.” We use the latter term to avoid confusion.
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Theorem 3.3 (Ostrowski): The following is a list of all places on Q.

1. Archimedean: | · |∞.3

2. Nonarchimedean: | · |p, where p ranges over all primes.

Proof. Let | · | be a valuation on Q and m,n be integers greater than 1. To compare |m| and
|n|, we write m in base n:

m = arn
r + · · ·+ a0, 0 ≤ ak ≤ n− 1, ar > 0.

Let N = max{1, |n|}. Then by the triangle inequality,

|m| ≤
r∑

k=0

akN
k.

Since r ≤ lnm
lnn

, we get

|m| ≤
(

1 +
1

N
+

1

N2
+ · · ·

)
nN

lnm
lnn ≤ 2nN

lnm
lnn

Replacing m by mt and taking the tth root gives

|m| ≤ (2n)
1
tN

lnm
lnn .

Taking t→∞ gives

|m| ≤ N
lnm
lnn . (19.1)

Consider two cases.

1. For all integers n > 1, |n| > 1. Then (19.1) gives |m| 1
lnm ≤ |n| 1

lnn . By symmetry, we

get |m| 1
lnm = |n| 1

lnn . Since this is true for all m and n, |n| 1
lnn = c is constant, i.e.

|n| = clnn = n
lnn
ln c

for all n ∈ Z. Since Z generates Q as a group, we get that | · | is equivalent to the
standard archimedean valuation.

2. For some n > 1, |n| ≤ 1. Then (19.1) shows that |m| ≤ 1 for all m > 1. Thus by
Proposition 2.4, | · | is nonarchimedean. The nonarchimedean valuations are given by
Proposition 3.2.

Later on we will return to the question of finding all valuations on an extension of Q
(Theorem ??).

3A stronger version of part 1 is as follows. Let K be complete with respect to an archmimedean norm.
Then K = R or C, and the norm is the normal absolute value raised to a power in (0, 1].
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3.1 Approximation

Theorem 3.4 (Weak approximation theorem): Let v1, . . . , vn be all the places of K, with
valuations | · |1, . . . , | · |n. The map

φ : K →
N∏
j=1

Kvj

induced by the inclusions K ↪→ Kvj has dense image.
In other words, given a1, . . . , an ∈ K, for any ε > 0, there exists a ∈ K such that

|a− aj|j < ε for all j.

Proof. Step 1: We show that there exists a such that

|a|1 > 1. (19.2)

|a|j < 1, i = 2, . . . , n.

We induct on n. For n = 2, note that by Proposition 2.7(2), we can find b, c so that

|b|1 < 1, |b|2 ≥ 1

|c|1 ≥ 1, |c|2 < 1.

Now take a = c
b
.

For the induction step, suppose we’ve found b so that (19.2) holds for n− 1. Choose c so
that

|c|1 > 1, |c|n < 1;

we will use it to “correct” |b|n as necessary. Consider three cases.

1. |b|n < 1: We can let a = b.

2. |b|n = 1: Let a = brc, for large enough r. This works because

lim
r→∞
|brc|j =


∞, j = 1

0, 2 ≤ j ≤ n− 1

|c|n < 1, j = n.

3. |b|n > 1: First note that from 1− |ar| ≤ |1 + ar| ≤ 1 + |ar| we get

lim
r→∞

∣∣∣∣ xr

1 + xr

∣∣∣∣ =

{
0, |x| < 1

1, |x| > 1.
(19.3)

Let a = cbr

1+br
, for large enough r. This works because the above gives

lim
r→∞

∣∣∣∣ cbr

1 + br

∣∣∣∣
j

=


|c|1 > 1, j = 1

0, 2 ≤ j ≤ n− 1

|c|n < 1, j = n.
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Step 2: Now we show that there are points in the image of φ arbitrarily close to (1, 0, . . . , 0).
Indeed, choosing a as in step 1, we have by (19.3) that

lim
r→∞

ϕ

(
ar

1 + ar

)
= (1, 0, . . . , 0).

Step 3: From step 2, choose bj sufficiently close to (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0). Let

a =
n∑
j=1

anbn

to find ϕ(a) can be arbitrarily close to (a1, . . . , an).

Note that if we include only the finite places, then this follows from the Chinese remainder
theorem.

§4 Completion

Definition 4.1: Let K be a field with valuation | · |. The completion of K, denoted K̂ is
the field containing K (i.e. there is a injection K ↪→ K̂ preserving valuation) satisfying the
following properties.

1. K̂ is complete in its topology.

2. (UMP) For any homomorphism ϕ from K to a complete field L, there exists a unique
homomorphism K̂ → L making the following commute.

K̂ // L

K
?�

OO

/�

??

.

I.e., K̂ is the smallest complete field containing K.

Proof of existence. For existence, let K̂ be the set of equivalence classes of Cauchy sequences
in K, and deem two sequences {an} and {bn} equivalent if limn→∞ |an − bn| = 0. Define
K ↪→ K̂ by sending a to (a, a, . . .). Extend the valuation by letting defining the norm of a
{an} to be limn→∞ |an|. See any book on real analysis for the details.

For the second part, given a sequence {an} ∈ K̂, map it to limn→∞ ϕ(an) ∈ L. Uniqueness
follows from the universal property.

4.1 Completions of archimedean fields

Theorem 4.2 (Ostrowski): The only complete archimedean fields, up to isomorphism of
valued fields and equivalence of valuation, are R and C.
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Proof. See Neukirch, p. 124.

We can now finish our classification of places on K/Q.

Theorem 4.3 (Classification of places of K): Let K be a number field. There is exactly
one place of K for each

1. prime ideal p,

2. real imbedding, and

3. conjugate pair of complex embeddings.

The valuations corresponding to prime ideals, i.e. p-adic valuations, are called finite
places, while the those corresponding to real and complex embeddings are called infinite
(real or complex) places.

Proof. The nonarchimedean valuations ofK are given by Proposition ??, while each archimedean
valuation v corresponds to an embedding (respecting valuations)

K ↪→ Kv
∼= R or C,

the isomorphism coming from Theorem 4.2. Note that complex conjugate embeddings give
the same valuation.

Corollary 4.4: Let L/K be extensions of number fields. If v is a place corresponding to a
prime p of K, then the places w | v in L correspond to primes P | p. If v is a place of K
corresponding to an embedding σ : K → R or C, then the places w | v correspond to of σ
to L.

4.2 Completions of nonarchimedean fields

Suppose K is a field with a discrete nonarchimedean valuation | · |. Let π be a local uni-
formizing parameter, i.e. the largest element of K with |π| < 1. Equivalently, π generates
the maximal ideal m in the subring of π-integers.

Since K is dense in K̂ and

|K\{0}| = {|π|m : m ∈ Z}

is discrete in K̂, we get |K| = |K̂|.

Proposition 4.5: Let S be a set of representatives for A/m. Then every element of K̂ has
a unique expression in the form ∑

n≥N

anπ
n.

(More precisely, the sum represents limm→∞
∑m

n=N anπ
n.) The norm is given by∣∣∣∣∣∑

n≥N

anπ
n

∣∣∣∣∣ = |π|−n0 , aN 6= 0.
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In other words, we can write elements of K̂ as “numbers with infinite π-expansions going
off to the left,” as we saw in section 1.

Proof. Let {sn}n≥1 be a Cauchy sequence in K. Let

sn =
∑

m�−∞

an(m)πj;

where an(m) ∈ S; this sum is finite. We have

|sn1 − sn2 | = p−min{m:an1 (m)6=an2 (m)}.

Hence for each m, an(m) eventually stabilizes, say at an. Then

lim
n→∞

sn =
∑

n�−∞

anπ
n.

Thus we have two ways to think of a p-adic valuation.

Proposition 4.6:

K̂ = Frac(lim←−A/m
n).

To connect up the analytic and algebraic definitions of the completion, note that the
completion of a ring A with respect to an ideal m is defined as Â = lim←−n≥0

A/mn, with the

topology given by a neighborhood base at 0 being {mn}n≥0.

Definition 4.7: Define the exponential function as a power series

ex =
∞∑
n=1

xn

n!
= 1 + x+

x2

2!
+ · · · .

We investigate the convergence of ex. Writing a = arp
r + · · · + a0 in base p, we find by

Example 1.1.1 that

ordp(n!) =
n−

∑r
i=0 ai

p− 1
.

Hence

ordp

(
xn

n!

)
= n ordp(x)− n−

∑r
i=0 ai

p− 1
= n

(
ordp(x)− 1

p− 1

)
+ o(n).

Since ex converges if and only if ordp
(
xn

n!

)
→ −∞, we get the following.

Proposition 4.8: ex converges for ordp(x) > 1
p−1

.
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§5 Hensel’s lemma

The following is the first version of Hensel’s lemma for π-adics.

Lemma 5.1 (Hensel’s lemma, I): Let f(X) ∈ A[X], and a0 be a simple root of f(X) modulo
π, i.e. f(a0) ≡ 0 (mod π) and f ′(a0) 6≡ 0 (mod π). Then there exists a unique root a of
f(X) with a ≡ a0 (mod π).

Note this can be generalized as follows: Suppose f(a0) ≡ 0 (mod πn) and vπ(f ′(a0)) =
k < n. Then there is a unique root a of f(X) with a ≡ a0 (mod πn−k). The proof is the
same, and is left to the reader!

Proof. We find zeros of f(X) modulo higher and higher powers of π.
Using induction, we find an satisfying

f(an) ≡ 0 (mod πn+1).

The base case holds by hypothesis. For the induction step, note that by Taylor expansion
of polynomials,

f(an + hπn+1) = f(an) + hπn+1f ′(an) + · · ·
≡ f(an) + hπn+1f ′(an) (mod πn+2).

Since f ′(an) 6≡ 0 (mod π) and f(an) ≡ 0 (mod πn+1), we can choose h so that this is 0

modulo πn+1. (Explicitly, h = −f(an)
πn+1 · 1

f ′(an)
.) We let an+1 = an + hπn+1. By construction,

the sequence an converges; let a be its limit. Since a ≡ an (mod πn), we get f(a) ≡ f(an) ≡ 0
(mod πn+1) for all n, and therefore f(a) = 0.

The first form of Hensel’s lemma tells us about lifting a root a0 of f (f modulo π) to a
root a of f in K. We can think of this as lifting a linear factor x− a0 of f to a linear factor
x − a of f . A stronger form of Hensel’s lemma says that we can in fact lift any factor of f
to one of f .

Theorem 5.2 (Hensel’s lemma, II): Let k be the residue field of A and f be a monic
polynomial. If f = g0h0 where g0 and h0 are monic and relatively prime, then f = gh for
some g and h such that g = g0 and h = h0. (uniqueness)

If f = g1 · · · gn is the complete factorization of f in k[X], then the complete factorization
of f in K[X] is f = f1 · · · fn where fj = gj.

Proof. First we need the following lemma, which tells us that if the reductions of polynomials
are relatively prime, then so are the original polynomials.

Lemma 5.3: Let A be a local ring with residue field k. If g, h ∈ A[X] are such that g and h
are relatively prime, then g and h are relatively prime in A[X] and there exist polynomials
u, v with deg u < deg h and deg v < deg g such that

ug + vh = 1.
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Proof. Since g and h are relatively prime in k[X] = (A/m)[X], (g, h) = A[X]/mA[X] and
(g, h) + mA[X] = A[X]. Since A[X]/mA[X] is finitely generated (on account of g, h being
monic), by Nakayama’s Lemma (g, h) = A[X]. We can choose u, v such that ug + vh = 1;
drop all terms with higher degree.

We proceed as in the proof of Theorem 5.1. Suppose we have found gn and hn such that

f ≡ gnhn (mod πn+1).

We have

(gn + vπn+1)(hn + uπn+1) ≡ gnhn + (ugn + vhn)πn+1 (mod πn+2).

By the lemma we can choose u and v such that the above is congruent to f modulo πn+2.
Again let gn+1 = gn + vπn+1, hn+1 = hn + uπn+1, and take the limit as n→∞.

The second part follows from induction. Note f = f1 · · · fn is the complete factorization
because any factorization of f gives a factorization for f .

Definition 5.4: A henselian field is a field with nonarchimedian valuation v which satisfies
Hensel’s Lemma (with p the maximal ideal corresponding to v).

Hensel’s lemma says that a field that is complete with respect to a discrete valuation is
henselian.

§6 Extending valuations

Theorem 6.1 (Extending discrete valuations): Let K be henselian and let L/K be finite
separable of degree n. Then | · |K extends uniquely to a discrete valuation | · |L on L, given
by

|β|L = |NmL/K β|
1
n
K .

Proof. Neukirch, pg. 131-132.

Definition 6.2: Let K be henselian. Let ord : K× → Z be the corresponding additive
valuation, extended to Kal× → Q. Given a polynomial

f(X) = Xn + an−1X
n−1 + · · ·+ a0 ∈ K[X]

define the Newton polygon of f(X) to be the lower convex hull4 of

Pi := (i, ord(ai)).

Proposition 6.3: Suppose the bottom of the Newton polygon has segments of x-length ni
and slope −si. Then

1. f(X) has exactly ni roots α ∈ Kal with ord(α) = si, and

4draw the convex hull, and remove the segments joining (0, ord a0) and (n, 0) from the top
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2. fi(X) =
∏

ord(αi)=si
(X − αi) has coefficients in K.

Proof. We prove the following statement by induction: if f(X) =
∏

(X − αj) ∈ K[X] and
exactly ni of the roots αj have order equal to si, then the Newton’s polygon of f(X) has a
segment of slope −si and x-length ni.

The case n = 1 follows since the only line segment on the bottom joins (0, ord(αi)) and
(1, 0). Now suppose the claim proved for n. Consider

g(X) = (X − α)f(X) =
n+1∑
k=0

(ak−1 − αak)Xk

(where nonexistent coefficients are set to 0). Let t = ord(α). Let k0 be the point such that
the slopes of the line segments of Newton’s polygon N for k < k0 are s ≤ −t, and such that
the slopes of the line segments of N for k > k0 are greater than s > −t. Let

dk = ord(ak)

`k = y-value of intersection of N with x = k

d′k = ord(ak−1 − αak)

`′k =

{
`k + t, 0 ≤ k ≤ k0

`k−1 k0 < k ≤ n.

Let N ′ be the broken line formed by joining (k, `′k). N ′ consists of segments of the same
slopes as N , plus one more segment of slope −t and x-length 1, in increasing order. It suffices
to show that N ′ is the lower convex hull of the points (k, d′k).

Here is an example with p = 5, f(X) = (X − 5)(X − 10)(X − 15)(X − 125) and α = 25.5

B
B
B
BB
@
@
@
@@

B
B
B
BB
A
A
A
@
@
@
@@

Consider 2 cases. We will use

d′k = ord(ak−1 − αak) ≥ min(ord(ak−1), ord(αak)) = min(dk−1, dk + t),

with equality holding if dk−1 6= dk + t.

1. k ≤ k0: We have

dk−1 ≥ `k−1

(∗)
≥ `k + t = `′k,

dk + t ≥ `k + t = `′k

5Of course, f does not have to split over Q[X] and the valuations don’t have to be integers.
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where in (*) we use the fact that the slope of the segment (k−1, `k−1)(k, `k) is at most
−t. Hence (k, d′k) lies above N ′. Now suppose (k, dk) lies on a corner of L (excluding
k = k0). Then dk = `k and inequality holds in (*):

dk−1 > `k + t = `′k = dk + t

so d′k = `′k and (k, d′k) lies on N ′.

2. k > k0: We have

dk−1 ≥ `k−1 = `′k

dk + t ≥ `k + t
(∗)
> `k−1 = `′k.

where in (*) we use the fact that the slope of the segment (k− 1, `k−1)(k, `k) is greater
than −t. Hence (k, d′k) lies above (k, `′k). Now suppose (k− 1, dk−1) lies on a corner of
L. Then dk−1 = `k−1 so

dk + t ≥ `k + t > dk−1 = `k−1 = `′k,

showing d′k = `′k and (k, d′k) lies on N ′.

§7 Places as Galois orbits

Here is an alternate definition of a place.

Definition 7.1: Let (K, v) be a field with valuation and L/K be an extension. A place on
L over v is a G(Kv/Kv)-orbit on HomK(L,Kv).

Example 7.2: Let K = R, and L a fiinite extension of K. Then the places of L over R are
just HomK(L,R), the real embeddings of L, and the complex places are justG(C/R)\HomK(L,C),
i.e. pairs of complex conjugate embeddings.

We show this is equivalent to our previous definition.

Theorem 7.3: Assume... There is a bijective correspondence between equivalence classes
of valuations w | v, v on K, and G(Kv/Kv)-orbits on HomK(L,Kv):

{w | v : w ∈ML}
∼=−→ G(Kv/Kv)\HomK(L,Kv).

Letting v be the unique extension of v to Kv, the embedding τ : L ↪→ Kv is associated
to the valuation | · |v restricted to L.

§8 Krasner’s lemma and consequences

The following is a surprising result...
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Lemma 8.1 (Krasner’s lemma): Let K be complete with respect to a nonarchimedean
valuation | · |, and extend | · | to an algebraic closure Kal. Let α, β ∈ Kal. If β is separable
over K[α], and

|β − α| < |β′ − β| (19.4)

for any conjugate β′ 6= β of β over K, then β ∈ K[α].

We say that α belongs to β if inequality (19.4) holds.

Proof. By the fixed field theorem, it suffices to show that for all embeddings σ : K(α, β) ↪→
Kal fixing K(α), that σ(β) = β. We have

|σ(β)− α| = |σ(β)− σ(α)| = |β − α|

since | • | = |σ • | and σ(α) = α. Hence

|σ(β)− β| = |(σ(β)− α) + (α− β)| ≤ |β − α|,

the last following since | · | is nonarchimedean. By the minimality assumption we must have
σ(β) = β.

We define a norm on polynomials by setting∥∥∥∥∥
n∑
k=0

ckX
k

∥∥∥∥∥ = max
0≤k≤n

|ck|.

Using Krasner’s Lemma, we show that polynomials that are close together have roots that
are closely related.

Proof. Choose δ so this last quantity is at most mini 6=j |αi − αj|. Then by Krasner’s
Lemma 8.1, α ∈ K[β]. Since β and α both have degree n over K, K(α) = K(β).

In fact, we have the following stronger result. Using Krasner’s Lemma, we show that
polynomials that are close together have roots generating the same extensions.

Theorem 8.2: Given f , there exists ε > 0 such that if ‖f − g‖ < ε, then there is an
ordering of roots α1, . . . , αn and β1, . . . , βn of f and g, respectively, counting multiplicities,
such that K(αj) = K(βj).

Proof. Step 1: First we show that the roots of g approach the roots of f , as ‖f − g‖ → 0.

Lemma 8.3: Keep the hypothesis of the theorem. Suppose ε > 0. Then there exists δ > 0
such that if ‖f − g‖ < δ, then for every root β of g, there exists a root α of f such that
|β − α| < ε.

Proof. First note that the roots of a monic polynomial h are bounded in terms of ‖h‖.
Indeed, letting h(X) =

∑n
k=0 ckX

k, if γ is a root of h, then by Proposition 2.6(3), we must
have ckγ

k ≥ γn for some 0 ≤ k < n, and hence

γ ≤ c
1

n−k
k ≤ max(1, ‖h‖).
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Suppose ‖f − g‖ ≤ δ is small (say, less than 1). Then ‖g‖ ≤ ‖f‖+ δ, which is bounded.
Hence the roots of ‖g‖ are bounded, say by C. Let β be a root of g. On the one hand, we
have

(f − g)(β) ≤ ‖f − g‖max{|β|n, 1} ≤ δmax{Cn, 1} (19.5)

and on the other,

(f − g)(β) = f(β) =
n∏
k=1

(β − αk).

Hence |β − αk| ≤ (δmax{Cn, 1}) 1
n for some n. We can choose δ so this is less than ε.

Step 2: We strengthen the lemma to account for multiplicities.

Lemma 8.4: Keep the hypotheses of the theorem. For every ε > 0 there exists δ > 0
such that whenever ‖f − g‖ < δ, there exist orderings α1, . . . , αn and β1, . . . , βn such that
|βk − αk| < ε for all k.

Proof. By Lemma 8.3, as ‖f − g‖ → 0, the distance from the roots of g to the closest
roots of f approaches 0. Let β1(g), . . . , βn(g) be the roots of g. For each k let αk(g) be
the root of f closest to βk(g). We have maxk |βk(g) − αk(g)| → 0 as g → f . Suppose the
distinct roots α′1, . . . , α

′
m of f have multiplicities r1, . . . , rm, and suppose that they occur with

multiplicities s1, . . . , sm in the αk(g). Suppose by way of contradiction that (s1(g), . . . , sm(g))
is not constantly (r1, . . . , rm) for g close enough to f . Then we can find a sequence gj → f
such that (s1(gj), . . . , sm(gj)) is constant and not equal to (r1, . . . , rm). Then

gj(X) =
n∏
k=1

(X − βk(gj))→
m∏
k=1

(X − α′k(gj))sk 6=
m∏
k=1

(X − α′k)rk = f(X),

contradiction.

Step 3: Take ε = mini 6=j |α′i − α′j| in Lemma 8.4. Then Krasner’s Lemma 8.1 gives the
conclusion.

From this we get that every field extension of Qp can be described by a field extension
of Q, by choosing a close enough approximation to a minimal polynomial.

Corollary 8.5: Let L/Qp be a finite extension. Then there is a finite extension K/Q such
that [K : Q] = [L : Qp] = n and K ·Qp = L.

Proof. Using the primitive element theorem, choose α so that Qp(α) = L. Let g ∈ Qp[X] be
the minimal polynomial of α. By Theorem 8.2, for g close enough to f , there is a root β of
g such that Qp(α) = Qp(β). Take g ∈ Q[X] sufficiently close, and L = K(β). Then

K ·Qp = K(α) = K(β) = L.
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Chapter 20

Local and global fields

§1 Topology of local fields

Definition 1.1: A local field is a field K with a nontrivial valuation | · | such that K is
locally compact.

Note this requires that K is complete.

Proposition 1.2: Let K be complete with respect to a discrete nonarchimedean valuation.
Then A is compact if and only if k := A/m is finite.

Proof. Suppose A is compact. Note m = {x : |x| < 1} is open, and any translate of it is
open. Note A =

⊔
a∈A/m a + m where the union is over representatives in A/m. A finite

number of these cover A, so k is finite.
Conversely, suppose k := A/m is bounded. It suffices to show that A is closed and totally

bounded1.

1. A is closed since A = {x : |x| ≤ |π|}.

2. A is totally bounded: Given ε > 0, choose r so that |π|r+1 < ε. Now every element
is in a ball of radius 1 centered at one of the finite number of points in the form
a0 + a1π + · · ·+ arπ

r.

Proposition 1.3: If K has finite residue field then O×K , pn, and 1 + pn are all compact.

Proof. From Proposition 1.2, A is compact. The above are all closed subsets of A so compact.

Theorem 1.4: The following is a complete classification of local fields, up to isomorphism.

1. R and C with the usual metric.

2. Finite extensions of Qp.

3. Field of formal Laurent series k((T )) over finite field.

1A set is totally bounded if for every r, A can be covered by a finite number of sets with diameter at most
r.
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Proof. Neukirch, p. 135.

1.1 Open sets and continuity

Proposition 1.5: For any local field K and any n, the nth power map is open on K×, i.e.
it takes open subsets of K× to open sets.

Proof. For K = R or C, this is clear.
For K π-adic, this is an easy consequence of Hensel’s Lemma. Let y ∈ K×n. We may

suppose v(y) = 0. Suppose xp0−y = 0. Let k = v(p) and let ε be such that v(ε−y) ≥ 2k+1.
Consider the polynomial f(x) = xn− y. Now f(x0) ≡ 0 (mod π2k+1) so by Hensel’s Lemma
x0 lifts to a solution of f in K. (The version of Hensel in ACIM, p. 14. Add this in.)

Proposition 1.6: For any extension of local fields L/K, any σ ∈ G(L/K) acts as a home-
omorphism, and the norm map NmL/K is continuous and open on K×.

§2 Unramified extensions

Definition 2.1: Let K be a complete field with residue field k; let L be a finite extension
of K with residue field l. We say L/K is unramified if l/k is separable and the prime ideal
p in OK does not ramify in L.

L/K is totally ramified if p ramifies completely; by the degree equation this is equivalent
to l = k.

Note from the residue equation that

p does not ramify ⇐⇒ [L : K] = [l : k]. (20.1)

Our main theorem of this section is Theorem 2.4. We will show that if L/K is unramified,
then l/k is separable. If l/k is separable, though, we need an extra condition to make sure
L/K is unramified; namely that a minimal polynomial for L/K stays a minimal polynomial
for l/k, so that (20.1) holds.

Proposition 2.2: Let K be a complete field with residue field k; let L be a finite extension
of K with residue field l. Suppose L = K(α), and let g(x) ∈ K[x]. The following are
equivalent.

1. L/K is unramified, and g is the minimal polynomial of α.

2. l/k is separable, with l = k(α), g has α as a root, g is the minimal polynomial of α,
and g has no repeated roots.

Proof. Suppose (1) holds. Then g has α as a root. Note L = K(α) gives l = k(α). By (20.1),
α has degree [l : k] = [L : K] over k. Since g has degree [L : K], it must be the minimal
polynomial of α, and have no repeated roots. This shows l/k is separable.
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Suppose (2) holds. We have

[L : K] ≤ deg g = deg g = [l : k],

the last equality following since g is the minimal polynomial of α. But [L : K] ≥ [l : k],
so equality holds and p (the prime ideal of OK) is unramified by (20.1). Thus L/K is
unramified.

For local fields, the property of being unramified behaves well under extensions and
products.

Proposition 2.3:

1. Suppose that K ⊆ L ⊆M are finite extensions. If M/L and L/K are unramified, then
M/K is unramified.

2. Suppose that K ⊆ L,M are finite extensions. If L/K is unramified, then LM/M is
unramified.

3. Suppose that K ⊆ L,M are finite extensions. If L/K and M/K are unramified, then
LM/K is unramified.

M

unram
unram

LM
unram

LM

unramL

unram

L
unram

M L
unram

M

unram

K K K

Proof. Let k, l,m, n be the residue fields of K,L,M,LM , and p, P, and P′ be the prime
ideals of OK , OL, OM , respectively.

1. We have pOM = POL = P′. Separability is transitive, so M/K is unramified.

2. Write L = K(α). By Proposition 2.2, we can find g with α as root such that g is the
minimal polynomial of l = k(α) over k, and is separable. Then the minimal polynomial
for n = m(α) over m divides g, hence is separable. By Proposition 2.2 again, LM/M
is unramified.

3. By part 2, LM/M is unramified. Since M/K is unramified, by part 1 LM/K is
unramified.

Theorem 2.4: Let K be a field; fix an algebraic closure. There is an equivalence of cate-
gories between

• finite unramified extensions L/K, and

• finite separable extensions l/k.
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L1
//

��

L2

��

l1 = L1/p1
// l2 = L2/p2.

Moreover,

1. L ⊆M if and only if l ⊆ m.

2. The residue field of LM is lm.

3. L/K is Galois if and only if l/k is Galois, and

G(L/K)
∼=−→ G(l/k)

by restricting σ ∈ G(L/K) to B = OL and modding out by PB.

Proof. By Proposition 2.2, L does get sent to a separable extension.
First we show the map is surjective. Given l/k separable, choose β so that l = k(β) and

choose f so that f be the minimal polynomial of β. Since β is a simple root of f , by Hensel’s
Lemma 5.1 we can lift it to a root α of f . Then K(α) is mapped to k(β).

Part (2) is clear. For (1), if L ⊆M then clearly l ⊆ m. Conversely, suppose l ⊆ m. Now
LM is also unramified (Proposition 2.3) and has residue field l ·m = m. Hence,

[M : K] = [m : k] = [lm : k] = [LM : K],

showing L ⊆M .
If l = m, then the above shows that L = M . Hence the map is injective. The action on

maps L1 → L2 is self-explanatory.
For (3), note an extension is Galois iff it is the (minimal) splitting field of a separable

polynomial f . Take g to be the minimal polynomial of a primitive element α; note α
generates l/k. Note by Proposition 2.2, g is separable. If L/K is Galois, then g splits over
L so g splits over l. Combining the previous two statements, l/k is Galois. Conversely,
suppose l/k is Galois. Since g splits into nonrepeated linear factors, Hensel’s Lemma 5.2
lifts it to a factorization of g. Hence g splits over K into distinct linear factors, showing
L/K is Galois.

Suppose k is a finite field. In this case, the separable extensions l/k are exactly the
finite extensions. Moreover, we understand what these extensions are; there is one of each
degree, and we can find the corresponding L/K explicitly. Furthermore, by surjectivity in
(3), G(L/K) contains a unique element mapping to the Frobenius element in G(l/k); see
Definition 23.1.1.

Lemma 2.5: Let α be a root of

f(X) := Xn − a = 0

where a is a unit and p - n. Then K(α)/K is unramified.
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Proof. Let g(X) | f(X) be the minimal polynomial of α. Let L = K(α) and l be its residue
field.

Note that f ′(X) = nXn−1 6= 0 has no common factor with f(X) = Xn − a, even when
reduced modulo p, as p - n and a 6∈ p. Hence f(X), and a fortiori g(X), has no repeated
root in k. Any factorization of g(X) in k gives a factorization of g(X) in K by Hensel’s
Lemma. Hence g remains irreducible in k[X]. This shows [l : k] = [L : K]. By the degree
equation, L/K must be unramified.

Theorem 2.6: Let L/K be an extension of complete fields with finite residue fields. Then
there exists a field K ⊆ Lu ⊆ L such that Lu/K is unramified and every unramified extension
of K contained in L is contained in Lu. Moreover,

1. Lu is obtained by adjoining to K all roots of unity in L whose order is relatively prime
to q := char(K).

2. L/Lu is totally ramified.

L

totally ramified

Lu

unramified

K

We call Lu the maximal unramified extension of K contained in L.

Proof. Let Lu be the compositum of all unramified extensions of K contained in L. Then Lu
is unramified by Proposition 2.3, and it contains all unramified extensions of K contained
in L.

For each n not a multiple of p, K(ζn)/K is unramified by Lemma 2.5. Letting q = |k|, the
corresponding extension of residue fields is k(ζn)/k = Fqordq(n)/Fq. We get all finite extensions
l/k in this way, thus all unramified extensions L′/K in this way. Taking the roots of unity
inside L gives the result.

§3 Ramified extensions

Definition 3.1: Let L/K be a ramified extension of local fields, with q := char(k) = pn.
We say

1. L/K is tamely ramified if p - [l : k].

2. L/K is wildly ramified if p | [l : k].

We seek analogues of Lemma 2.5 in for ramified extensions.
For a prime p of a Dedekind domain A (not necessarily corresponding to a local field)

let vp denote the corresponding valuation. (That is, if vp(a) is defined such that pvp(a) is the
highest power of p dividing (a).) Note the following two facts.
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1. If pB = Pe, then
vp(a) = vP(a)e.

2. If a1 + · · ·+ an = 0, then the minimum value of vp(ai) is attained for two indices.

Definition 3.2: An Eisenstein extension relative to p is an extension K(α)/K where the
minimal polynomial of α is of the form

f(x) = xn + an−1x
n−1 + · · ·+ a0

where vpai > 0 and vpa0 = 1.

Theorem 3.3: The prime ideal p totally ramifies in any Eisenstein extension relative to p:

pB = Pe, P = (f(α),P)e.

Proof. Let Pe||p. Note e ≤ n = [L : K]. We calculate the valuation of f(α) with respect to
P.

vP(αn) = nvP(α)

vP(akα
k) = e+ k ord > e, 1 ≤ k ≤ n− 1

vP(a0) = e.

Since f(α) = αn+ · · ·+a0 = 0, the minimum valuation must be attained for two terms. The
only way this is possible is if n ordP(α) = e. Then ordP(α) = 1 and n = e, as needed.

Theorem 3.4: Let K be complete with respect to a nonarchimedean valuation. The totally
ramified extensions of K are exactly those of the form K(α) where α is the root of an
Eisenstein polynomial.

Proof. The forward direction follows directly from Theorem 3.3.
Conversely, let L/K be a totally ramified extension. Take α to be a generator of the

maximal ideal P of OL. Note ord(α) = 1
n

since (α)n = p. Note that for any an−1, . . . , a0, we
have

ord(akα
k) = ord(ak) +

k

n
≡ k

n
(mod 1),

since ord(ak) is an integer. Thus, the nonzero terms akα
k, 0 ≤ k < n, have different orders.

Thus by Proposition 2.6, an−1α
n−1 + · · · + a0 6= 0 unless all coefficients are 0. This shows

that α must have degree n; suppose αn + an−1α
n−1 + · · ·+ a0 = 0. Again by Proposition 2.6,

the minimum order is attained for two terms. We have

ordp(α
n) = n ordp(α) = 1

ordp(akα
k) = k ord(ak) +

k

n
, 0 ≤ k ≤ n− 1.

The only way this can happen is if αn and ord(a0) are the nonzero terms with least order.
This gives ord(a0) = 1, and ord(ak) > 0 for 1 ≤ k ≤ n, i.e. the polynomial is Eisenstein.
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Theorem 3.5: Suppose L/K is a totally and tamely ramified extension of degree n. Then
L = K(α) for some α a root of

Xn − π = 0

for π ∈ p.

Proof. Take β ∈ P. Since L/K is totally ramified, ordp(β
n) = 1. Hence βn = uπ for some

u ∈ B×, and β is a zero of

g(X) := Xn − uπ.

Unfortunately, u may not be in A. However, we show that this polynomial is close enough
to

f(X) := Xn − u′π

for some u′ ∈ A and proceed as in Theorem 8.2 to show that the roots of these two polyno-
mials generate the same extension.

Since L/K is totally ramified, l = k, i.e. A/pA
∼=−→ B/PB. Thus there exists u′ ≡ u

(mod P) with u′ ∈ A. This means |u′−u| < 1. Letting α1, . . . , αn be the roots of f(X) = 0,

|β − α1| · · · |β − αn| = |f(β)| = |uπ − u′π| < |π| = |α1| · · · |αn|

so |β − αj| < |αj| for some j; without loss of generality j = 1.

Since L/K is tamely ramified, p - n and f ′(α1) = nαn−1
1 has valuation |α1|n−1. Hence

|α1|n−1 = |f ′(α1)| = |(α1 − α2) · · · (α1 − αn)|. (20.2)

Note |αj| = |u′π| 1n = |α1|; hence |α1 − αj| ≤ |α1|. By (20.2), equality must hold. Hence
|β − α1| < |α1 − αj| for all j 6= 1, and by Krasner’s Lemma 8.1, K(α1) ⊆ K(β). Since both
extensions are totally ramified of degree n, L = K(β) = K(α1).

The analogues of Proposition 2.3 carry over exactly.

Proposition 3.6:

1. Suppose that K ⊆ L ⊆M are finite extensions. If M/L and L/K are tamely ramified,
then M/K is tamely ramified.

2. Suppose that K ⊆ L,M are finite extensions. If L/K is tamely ramified, then LM/M
is tamely ramified.

3. Suppose that K ⊆ L,M are finite extensions. If L/K and M/K are tamely ramified,
then LM/K is tamely ramified.

Theorem 3.7: Let K be a field with characteristic 0 and finite residue field, and let p be a
prime in OK . Given n, there are only finitely many extensions of Kp with degree at most n.
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Proof. First we show that there are finitely many totally ramified extensions of degree n.
Every such extension is realized by adjoining a root of an Eisenstein polynomial of degree
n. By taking the coefficients, an Eisenstein polynomial can be identified with a point of

p× · · · × p︸ ︷︷ ︸
n−1

×A×π. (20.3)

The topology given by ‖·‖ is exactly the product topology here; this is compact by Proposi-
tion 1.3. Now for each polynomial f , by Theorem 8.2 there exists an open set Uf such that
any g ∈ Uf has roots generating the same extensions as those of f . Since (20.3) is compact,
a finite number of Uf cover f . The roots corresponding to those f generate all the totally
ramified extensions of degree n.

By Theorem 2.6. Any finite extension L of degree n is an totally ramified extension
of degree n

m
of an unramified extension Lu of degree m for some m. By the remark after

Theorem 2.4, there is exactly one unramified extension of degree m; for each Lu by the above
there are a finite number of possibilities for L.

§4 Witt vectors*

We know from Proposition 4.5 that every element of K̂ can be written as
∑

n≥N anπ
n where

the an come from a fixed set of representatives for A/m. Although this allows us to write down
any element, unless the set of representatives is closed under addition and multiplication (i.e.
form a copy of k in A), we cannot simply add and multiply the coefficients. Instead, we find
that addition and multiplication are governed by Witt vectors. We will actually develop this
theory in a more general context.

Definition 4.1: Let p be a prime number. A ring R is a strict p-ring if R is complete and
Hausdorff with respect to the p-adic topology, p is not a zero-divisor in R, and the residue
ring R/(p) is perfect. (A ring of characteristic p is perfect if the map x 7→ xp is bijective.)

We will primarily be interested in the case where R is an unramified extension of Zp.

Theorem 4.2: Let K be a perfect ring of characteristic p.

1. There is a strict p-ring R with residue ring K, unique up to canonical isomorphism.

2. There is a unique system of representatives τ : K → R, called the Teichmüller
representatives, such that

τ(xy) = τ(x)τ(y)

for all x, y ∈ K.

The main example of interest to us is the following.

Example 4.3: Fix f ; then there is a unique unramified extension of Zp with residue field
Fq, q = pf , namely Zp[ζpf−1]. The Teichmuller representatives are the (q − 1)th roots of
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unity µq−1. They are multiplicative, but not additive. The following construction will tell
us how to add them.

Lemma 4.4: Given X = (X0, X1, . . .), define

Wn(X) = Xpn

0 + pXpn−1

1 + · · ·+ pnXn, n ≥ 0.

Then there exist polynomials

S0, S1, . . . ;P0, P1, . . . ∈ Z[X0, X1, . . . , Y0, Y1, . . .]

such that

Wn(S) = Wn(X) +Wn(Y )

Wn(P ) = Wn(X) ·Wn(Y ).

where X = (X0, X1, . . .), Y = (Y0, Y1, . . .), S = (S0, S1, . . .), and P = (P0, P1, . . .).

The motivation for defining these polynomials is that they tell us how to add in strict
p-rings using the base-p represenation with Teichmüller representatives as coefficients.

Theorem 4.5: Let R be a strict p-ring, k its residue ring, and τ : k → R be the system of
Teichmüller representatives. Then

∞∑
n=0

τ(xn)pn +
∞∑
n=0

τ(yn)pn =
∞∑
n=0

τ(Sn(xp
−n

0 , xp
−(n−1)

1 , . . . , xn; yp
−n

0 , yp
−(n−1)

1 , . . . , yn)pn.

Proof of Lemma 4.4. We will abbreviate

W (X) = (W0(X),W1(X), . . .)

R = Z[X0, X1, . . . ;Y0, Y1, . . .].

All comparisons betweenX, Y will be done componentwise, and we defineXn = (Xn
0 , X

n
1 , . . .).

We find the Sm, Pm inductively, with the additional condition that Sm, Pm are polynomials
in X0, . . . , Xm, Y0, . . . , Ym. To begin, note W0(X) = X0 so we set

S0(X, Y ) = X0 + Y0

P0(X, Y ) = X0Y0.

Lemma 4.6: If Fm, Gm ∈ R and Fm ≡ Gm (mod p) for every m, then

Wn(F ) ≡ Wn(G) (mod pn+1).

Proof. First note that for any f, g ∈ R such that f ≡ g (mod p),

fp
j ≡ gp

j

(mod pj+1).
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The proof is by induction, with the induction step following by the binomial theorem: if
fp

j−1
= gp

j−1
+ pjh then

fp
j

= (gp
j−1

+ pjh)p = gp
j

+

(
p

1

)
pj−1︸ ︷︷ ︸
pj

hgp
j−1(p−1) + pj+1k

for some k ∈ R.
This claim gives fp

n−j

j ≡ gp
n−j

j (mod pn−j+1) and hence

pjfp
n−j

j ≡ pjgp
n−j

j (mod pn+1).

Summing these up give the result.

Directly from the definitions, we have

Wn(X) = Wn−1(Xp) + pnXn.

Hence the equations

Wn(S) = Wn(X) +Wn(Y )

Wn(P ) = Wn(X)Wn(Y )

are equivalent to

Wn−1(Sp) + pnSn = Wn−1(Xp) + pnXn +Wn−1(Y p) + pnYn

= Wn−1(S(Xp, Y p)) + pn(Xn + Yn) (20.4)

Wn−1(P p) + pnPn = (Wn−1(Xp) + pnXn)(Wn−1(Y p) + pnYn)

= Wn−1(P (Xp, Y p)) + pn(XnWn−1(Y p) + YnWn−1(Xp) + pnXnYn)
(20.5)

where (20.4) and (20.5) follow from the hypothesis for n − 1. Solving for Sn and Pn, these
are equivalent to

Sn = Xn + Yn +
Wn−1(S(Xp, Y p))−Wn−1(Sp)

pn

Pn = XnWn−1(Y p) + YnWn−1(Xp) + pnXnYn +
Wn−1(P (Xp, Y p))−Wn−1(P p)

pn
.

However, since taking pth powers is a homomorphism modulo p, for any f ∈ R we have
f(X, Y )p ≡ f(Xp, Y p) (mod p). Applying this to f = Sj, Pj, we see the conditions of the
lemma are satisfied, so the numerators are divisible by pn, and we can successfully define Sn
and Pn.

Theorem 4.7: Let A be a commutative ring. For

a = (a0, a1, . . .), b = (b0, b1, . . .), ai, bi ∈ Ai,

the operations

a
W
+ b = S(a, b), a

W· b = P (a, b).

turn the set AN0 into a commutative ring W (A).
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This is called the ring of Witt vectors over A.

Proof. We first prove that associativity, commutativity, and distributivity hold as polynomial
identities in the aj, bj. The result then follows by considering the substitution homomorphism
Z[a0, . . . ; b0, . . .]→ A.

Lemma 4.8: The function W : RN → RN, where R := Z[a0, . . . ; b0, . . .], is injective.

Proof. Suppose X = (X0, X1, . . .) and W (X) = (Y0, Y1, . . .). We show the Xj are determined
by induction. We have X0 = W0(X) = Y0. For the induction step, note

Yn = Wn(X) = Xpn

0 + pXpn−1

1 + · · ·+ pnXn;

since X0, . . . , Xn−1, Yn are determined and multiplication by pn is injective in R, Xn is
determined.

Lemma 4.4 gives

W (X
W
+ Y ) = W (S(X, Y )) = W (X) +W (Y )

W (X
W· Y ) = W (P (X, Y )) = W (X) ·W (Y ).

Hence W : W (A)→ RN is a map that preserves addition and multiplication; moreover, it is
injective. Its image is a subalgebra of R, since it contains 0 and 1:

W (0, 0, . . .) = (0, 0, . . .)

W (1, 0, . . .) = (1, 1, . . .).

Hence
W
+ and

W· turn W (A) into a commutative algebra with unit (we are basically “pulling
back” the algebra structure from RN to W (A) using W ).

4.1 Frobenius and Transfer maps

§5 Extending valuations on global fields

Theorem 5.1: Let |·| be a valuation on K and let K̂ be the completion of K with respect to
| · |. Let L = K(α) be a finite separable extension of K, and let f be the minimal polynomial
of α.

The completions of L with respect to the extensions | · |′ of | · | are exactly K̂[X]/(h) as
h ranges over irreducible factors of f in K̂.

Proof. Suppose we are given an extension | · |′. Let L̂ be the completion of L with respect
to | · |′.

L = K[α] �
�

// L̂ = K̂[α]

K // K̂
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Note K̂[α] contains α and is complete (as it is a finite-dimensional vector space over a
complete field), so L̂ = K̂[α]. Then considering the extension L̂/K̂, α is the root of one of
the irreducible factors of f in K̂[X].

Conversely, given an irreducible factor g of h in K̂[X], consider K̂[α′] = K̂[X]/(g).

L = K(α) �
�

// L̂ = K̂(α′)

K // K̂

The valuation on K̂ extends uniquely to K̂(α′) by Theorem 6.1. Then let K(α) ↪→ K̂(α′)
be the map sending α to α′. (This makes sense as the minimal polynomials of α, α′ over K
are both f .) By the same reason as before, L̂ = K̂(α), as desired.

Theorem 5.2: Let K̂ be the completion of K with respect to a archimedean or discrete
nonarchimedean valuation | · |. Let L/K be a finite separable extension. There are finitely
many extensions of | · | to L; denoting them by | · |i and the respective completions of L be
Li, we have the natural isomorphism

K̂ ⊗K L ∼=
∏
i

Li.

Proof. By the primitive element theorem, we can write L = K(α). Let f be the minimal
polynomial of α. Let f factor into irreducibles in K̂[X] as

f = f1 · · · fn.
Then

K̂ ⊗K L ∼= K̂ ⊗K K[x]/(f) ∼= K̂[x]/(f)
CRT∼=

n∏
i=1

K̂[x]/(fi)
Thm 5.1∼=

n∏
i=1

Li.

Note the map in the theorem sends

a⊗ b 7→ (a1b, . . . , anb),

where ai is the embedding of a into Li. We now have a way to calculate norms and traces
in terms of completed fields.

Corollary 5.3: Keep the same notation as above. Then

1. NmL/K(α) =
∏n

i=1 NmLi/K̂
(α).

2. TrL/K(α) =
∏n

i=1 TrLi/K̂(α).

Proof. Using Proposition 13.2.3(1) and Theorem 5.1, we see

NmL/K(α) =
∏

α′ root of f

α′ =

( ∏
α′ root of f1

α′

)
· · ·

( ∏
α′ root of fn

α′

)
=

n∏
i=1

NmLi/K̂
(α)

TrL/K(α) =
∑

α′ root of f

α′ =

( ∑
α′ root of f1

α′

)
+ · · ·+

( ∑
α′ root of fn

α′

)
=

n∑
i=1

TrLi/K̂(α).
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§6 Product formula

Lemma 6.1: Let L/K be a finite extension of number fields, with normalized nonar-
chimedean valuations w | v, as in Example 2.3. Let | · |′w be w normalized so it extends
v. Then

| · |w = | · |′[Lw:Kv ]
w .

Proof. Easy, see Milne pg. 132.

Theorem 6.2 (Product formula): For any nonzero α ∈ K,∏
v∈VK

|α|v = 1.

Proof.
Step 1: We first show the result for K = Q. Given n ∈ Q, factor it as n = ±

∏∞
i=1 p

ai
i where

pi are all the prime numbers; note only a finite number of the ai are nonzero. Then

|α| =

(
∞∏
i=1

|α|pi

)
|a|∞ =

(
∞∏
i=1

p−aii

)(
∞∏
i=1

paii

)
= 1.

Step 2: We pass to field extensions of Q using the following lemma.

Lemma 6.3 (Extension formula): Let K ⊆ L be number fields and let v be a place of K.
Then ∏

w|v

|α|w =
∣∣NmL/K α

∣∣
v
.

Proof. For a place on L let | · |′w be the valuation normalized so that it extends v. We have∣∣NmL/K α
∣∣
v

=
∏
w|v

∣∣NmLw/Kv(α)
∣∣
v

=
∏
w|v

∣∣NmLw/Kv(α)
∣∣′
w

=
∏
w|v

∣∣NmLw/Kv(α)
∣∣ 1

[L:K]

w
by Lemma 6.1

=
∏
w|v

|α|w by Theorem 19.6.1

Step 3: Since every place on K restricts to a unique place on Q,∏
w∈VK

|α|w =
∏
v∈V

∏
w|v

|α|w =
∏
v∈V

|NmL/K(α)|v
Step 1

= 1,

where we apply step 1 to NmL/K(α).

The product formula will be useful when defining a measure of size independent of scaling
(see Chapter 37).
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§7 Problems

1. Let K be a complete nonarchimedean field whose residue field has characteristic p.
Prove that the maximal tamely ramified (separable) extension of K is

Ktr = Ku

({
π

1
m : p - m

})
.
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Chapter 21

Ramification

We seek to generalize the definition of discriminant over Dedekind domains A which are
not PID’s. To do this we will first define the different, which measure how much we can
enlarge B so that the image of the trace map is still in A, then define the discriminant as
the discrepancy between B and the enlarged B, using χA. We will find that the different is
the (ideal) norm of the discriminant.

We will see that our definition coincides with our previous definition when A is a PID.
Fortunately, we don’t have to prove everything from scratch again: by localization we can
always reduce to the DVR/PID case.

The main use of the discriminant is to measure ramification: The primes dividing the
discriminant are those that ramify. On a deeper level, the exponents measure the degree of
ramification.

§1 Lattices and χ

Definition 1.1: Let A be a Dedekind domain, K = Frac(A), and V a finite dimensional
K-vector space. An A-submodule X ⊆ V is a lattice if it is finitely generated A-module
and spanK(X) = V .

The most basic example of a latice is a fractional ideal of K.
We would like to measure the discrepancy between two lattices—like the norm, but

measured by an ideal instead. To do this, we first need some facts from commutative algebra.

1.1 Filtrations of modules

Definition 1.2: A module is simple if it is nonzero and has no nonzero proper submodule.
A composition series of length m is a chain of submodules

M = M0 ⊃M1 ⊃ · · · ⊃Mm = 0

where Mi−1/Mi is simple for each i. M has finite length if it has a finite composition series.

Proposition 1.3: The simple modules are exactly those in the form R/m where m is a
maximal ideal of R. If M is simple, M = R/m where m = Ann(M).
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The main theorem on filtrations is the following.

Theorem 1.4 (Jordan-Hölder): Suppose M has a composition series.

1. (Existence) Any chain of submodules of M can be refined to a composition series.

2. (Uniqueness) Any composition series of M has the same length; moreover the number
of times R/m appears as a quotient Mi−1/Mi in the filtration is invariant.

We will be applying this when R is a Dedekind domain, so the maximal ideals are simply
the nonzero prime ideals.

We also need the following.

Proposition 1.5: If M/M ′ and M ′ have finite length, then so does M .

1.2 The function χA

Definition 1.6: Let A be a Dedekind domain. Define

χA : {A-module of finite length} → {ideals of A}

as follows: Given M of finite length, with composition series

M = M0 ⊃M1 ⊃ · · · ⊃Mm = 0

and A/pi ∼= Mi−1/Mi, define

χA(M) =
m∏
i=1

pi.

Example 1.7: The primes appearing in the filtration of an ideal a ⊂ A are just the primes
dividing a with multiplicity, so

χA(a) = (a).

Proposition 1.8: If M ′ and M ′′ have finite length and 0 → M ′ → M → M ′′ → 0 exact
sequence of A-modules, then

χA(M) = χA(M ′)χA(M ′′).

Definition 1.9: Let A be a Dedekind domain, K = Frac(A), and X1, X2 ⊆ V be A-lattices.
Choose X3 ⊆ X1 ∩X2 any A-lattice and define

χA(X1, X2) := χA(X1/X3)χA(X2/X3)−1

as fractional ideals of K.

Proof of well-definedness. We show this is independent of choice of X3.
Observe χA(X1, X2)χA(X2, X1) = (1). Note this is independent of choice of X3. It suffices

to show that
χA(X1/X3)χA(X2/X3)−1 = χA(X1/X4)χA(X2/X4)−1
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when X4 ⊆ X3. This follows by the exact sequence

0→ X3/X4 → X1/X4 → X1/X3.

and Proposition 1.8.

1.3 χ and localization

It is easier to study χA when A is local; in this case χA(X) is simply a power of the maximal
ideal. To understand χA (and hence the discriminant) for general A, we thus consider the
localization of A at all primes. The following says that χA is well-behaved under localization.

Proposition 1.10: Let A be a Dedekind domain and p ⊂ A be a nonzero prime. Then

vp(χA(χ1, χ2)) = vpAp(χAp((X1)p, (X2)p)).

Proof. Note Xp = Ap ·X = Ap ⊗A X is an Ap-lattice of V .
Localization is exact, so preserves quotients. Suppose M ⊇ N are adjacent terms in the

filtration of A. If M/N = A/p then

Mp/Np = (M/N)p = (A/p)p = Ap/pAp

while if M/N = A/q, q 6= p, then Mp/Np = 0. Only the quotients with A/p remain; the
result follows.

Proposition 1.11: Let A be a Dedekind domain with fraction field K, X an A-lattice in
V , and σ ∈ AutK(V ). Then

χA(X, σX) = (det σ).

Proof. It suffices to check both sides have the same p-valuation for every prime p of A; by
Proposition 1.10 this is equivalent to

χAp(Xp, σpXp) = (det σp).

Thus we only need to check the proposition for the case where A is a DVR, hence a PID.
For all nonzero α ∈ A,

χ(X,ασX) = αnχ(X, σX) = det[α] · χ(X, σX);

note we used χ(uX, αuX) = αn since X is free over A, and that the matrix of the trans-
formation [α] is simply αI. Thus by choosing α such that ασX ⊆ X we may assume
σ(X) ⊆ X.

By the structure theorem for modules, X/σX ∼= A/α1 × · · · × A/αn for some αj, giving

χA(X, σX) = (α1 · · ·αn) = (det σ).
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1.4 Discriminant of bilinear forms

In this section we will define the discriminant of a bilinear form T on a lattice X over K, the
fraction field of a Dedekind domain A. When we specialize to the case that X is a extension
of A and T = Tr, then we get a generalization of our original definition 13.3.1, in the case
where X is not necessarily free over A.

Definition 1.12: Keep the above assumptions. Let V be a finite-dimensional K-vector
space and T : (V, V ) → K be a nondegenerate K-bilinear form. Thinking of T as a map
V ⊗K V → K, we get a map

∧nT : ∧nV ⊗K ∧nV → K

defined by

∧n T (v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn) =
∑
π∈Sn

(−1)sign(π)T (v1 ∧ wπ(1)) · · ·T (vn ∧ wπ(n)). (21.1)

Note ∧nT ⊗∧nT is a 1-dimensional vector space over K, with lattice ∧nX ⊗K ∧nX. Define
the discriminant of T on X to be

dX,T := χA(∧nT,∧nX ⊗ ∧nX).

The main reason for defining the discriminant as above is because the “∧” construction
is natural and makes it easy to prove a few basic properties.

Proposition 1.13: If X is free over A with basis (e1, . . . , en), then

dX,T = (det(T (ei, ej))).

Proof. Note that X ⊗K X is generated by ∧nT (e1 ∧ · · · ∧ en, e1 ∧ · · · ∧ en). By (21.1), this is
exactly (det(T (ei, ej))).

We now give an alternative characterization of the discriminant, in terms of the dual
lattice.

Definition 1.14: Define the dual of X with respect to T by

X∗T := {y ∈ V : T (x, y) ∈ A for all x ∈ X} .

This is an A-lattice of V .

We first need the following.

Proposition 1.15: If e1, . . . , en is a basis for X over A, and e∗1, . . . , e
∗
n is a dual basis, i.e.

T (ei, e
∗
j) = δij for each j, then e∗1, . . . , e

∗
n is a basis for X∗ over A.

Proof. Note y ∈ X∗ iff T (ej, y) ∈ A for each j. Writing y =
∑n

j=1 aje
∗
j , we find T (ej, y) = aj,

so y ∈ X∗ iff aj ∈ A for each j, i.e. y ∈ spanA(e∗1, . . . , e
∗
n).
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Proposition 1.16: We have

χA(X∗T , X) = dX,T .

Proof. We use the fact that a fractional ideal is determined by its localizations at all primes
(this follows since the exponent of p in a is the same as that of pAp in aAp, Proposition 14.2.5).

By using Proposition 1.10, we may localize at nonzero p ⊂ A. Hence it suffices to prove
may assume A is DVR, i.e. free over A.

Write e1
...
en

 = B

e
∗
1
...
e∗n


where B = (bi,j) is a n× n matrix. Then by Proposition 1.13,

dX,T = (det(T (ei, ej))) = (det(bi,j)) = χ(X∗T , BX
∗
T ) = χ(X∗T , X),

as needed.

§2 Discriminant and different

For the AKLB setup with L/K finite separable, consider the nondegenerate K-bilinear map

Tr : L× L→ K

(x, y) 7→ TrL/K(xy).

Definition 2.1: Define the codifferent

B∗ := B∗Tr = {y ∈ L : Tr(xy) ∈ A for all x ∈ B}

and the different and discriminant by

DB/A = DL/K := (B∗)−1

dB/A = dL/K := dB,Tr.

(These are fractional ideals of K.)
Observe that B ⊆ B∗ (in light of TrL/K(B) ⊆ A) so B ⊇ dB/A.
The following gives the precise relationship between the discriminant and different.

Proposition 2.2: NmL/K(DB/A) = dB/A.

Proof. We have

dB/A = χA(B∗, B) = χA(B∗/B)

and

DB/A = (B∗)−1 = χB(B∗/B).
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The result thus follows from commutativity of the following diagram.

{finite length B-module}χB //

χA

**

IB

NmL/K

��

IK .

We have commutativity since if B/P is a quotient of adjacent terms in the B-filtration of
M , then when we refine it to a A-filtration, since B/P = (A/p)f(P/p) as vector spaces, we
get f(P/p) copies of A/p.

2.1 Basic properties

First, a slightly cleaner characterization of the codifferent.

Lemma 2.3: a ∈ IK and b ∈ IL. Then

TrL/K(b) ⊆ a ⇐⇒ b ⊆ aD−1
B/A.

Proof. We check Tr(a−1b) ⊆ A iff a−1b ⊆ D−1
L/K .

The reverse direction is clear. For the forward direction, note that if x ∈ a−1b and y ∈ B,
then xy ∈ a−1b and hence Tr(xy) ∈ A. This shows x ∈ D−1

B/A.

Proposition 2.4:

1. (Transitivity) Let M/L be a finite separable extension, with C the integral closure of
A in M . Then

DC/A = DC/BDB/A.

2. (Localization) For S ⊆ A a multiplicative subset,

S−1DB/A = DS−1B/S−1A.

3. (Completion)
DB/A · B̂P = DB̂P/Âp

.

Proof. 1. We have

e ∈ D−1
C/BD

−1
B/A

⇐⇒ DB/Ae ⊆ D−1
C/B

⇐⇒ TrM/L(DB/Ae) ⊆ B Lemma 2.3 with M/L

⇐⇒ DB/ATrM/L(e) ⊆ B

⇐⇒ TrM/L(e) ∈ D−1
B/A

⇐⇒ TrL/K(TrM/L(e)) ⊆ A Lemma 2.3 with L/K

⇐⇒ e ∈ D−1
C/A.
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2. Omit.

3. Localize at p. May assume A is a DVR. (B may not be a DVR.) Consider∏
P|p B̂P

∼=
��

� � //
∏

P|p L̂P

∼=
��

B ⊗A Âp
� � / L⊗K K̂p

TrL/K⊗KK̂p

��

Âp
� � / K̂p

The top-to-bottom map on the right is
∑

TrL̂P/K̂p
. Then

d−1
B/A ⊗A Âp

∼= D−1

B⊗AÂp/Âp

∼= D−1∏
P|p B̂P/Âp

∼=
∏
P|p

D−1

B̂P/Âp

∼=
∏
P|p

d−1
B/A ⊗B B̂P

§3 Discriminant and ramification

Recall ordP̂(DB̂P/Âp
= ordP(dB/A). Our goal is to show that eP/p = 1 and κ(P)/κ(p)

separable (i.e. P is unramified over K, iff P - dB/A.
In the CDVR case,

P �
�

// B L

p �
�

// A K

we have B/pB = B/Pe.

Lemma 3.1:
TrL/K(b) mod p = eTrl/k(b).

Proof. For all b ∈ B,

0 = Pe/Pe ⊆ Pe−1/Pe ⊆ · · · ⊆ P/Pe ⊆ B/Pe.

Each adjacent quotient is 1 dimensional over l and hence f -dimensional over k. Choose a
basis {wi}ni=1 (n = ef) for B/Pe as k-vector space, such that

spank({wi}
ef
i=(e−j)f+1) = Pe−j/Pe.
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(The last jf vectors span Pe−j/Pe.) Lift {wi} to wi ∈ B such that wi mod Pe = wi. The
wi are a basis of B over A. Now

TrL/K(b) = TrK(mb)

bwi = (bi,j)(wj)
n
j=1

bwi = (bi,j)(wj).

We have

TrL/K(b) =
n∑
i=1

bii mod p.

Now (bi,j mod p)fk+1≤i,j≤f(k+1) represents the linear map (multiplication by b)

Pk/Pe

Pk+1/Pe
→ Pk/Pe

Pk+1/Pe
.

The trace as a k-linear map is Trl/k(b). There are e such f × f blocks.

Corollary 3.2:
ordP(dB/A) ≥ e− 1.

Proof. It suffices to show
ordp(dB/A) ≥ (e− 1)f.

This is since DB/A = Pc implies dB/A = NmL/K(Pc) = Pcf .
Now

dB/A = (det TrL/K(wiwj))

same as in the previous proof. Now wi ∈ P if f + 1 ≤ i ≤ n = ef , therefore wi ∈ P/Pe.
For all j, TrL/K(wiwj) ∈ P ∩K = p, giving the result.

Now consider the general case.

Theorem 3.3: Suppose A,B are Dedekind. Then

1. ordP(DB/A) ≥ eP/p − 1.

2. P is unramified over K iff P - DL/K .

Serre does this by Eisenstein polys.

Proof. 1. ordP(DB/A) = ordP̂(DB̂P/Âp
). and eP/p = eP̂/p̂. Use the CDVR case.

2. For “⇐”, note ordP(DL/K) implies 0 ≥ eP/p − 1 i.e. eP/p = 1.

For “ =⇒ ”, it suffices to prove p - dB/A. Reduce to the CDVR case. Now

det(TrL/K(wiwj)) mod p = eP/pTrl/k(wiwj) 6= 0

if l/k is separable (Neukirch I.2).
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3.1 Types of ramification

Definition 3.4: P is unramified if eP/p and l/k separable. For P ramified,

1. P is tamely ramified if either char k = 0 or char k - eP/p.

2. P is wildly ramified otherwise.

Theorem 3.5: P is tamely ramified over K iff

ordP(dL/K) = eP/p − 1.

Proof. Reduce to the CDVR case.

Step 1: We show that P is tamely ramified iff TrL/K(B) = A. Observe that TrL/K(B) is an
ideal of A, so the latter is equivalent to TrL/K(B) (mod p) 6= 0. But we know

TrL/K(b) mod p = eP/pTrl/k(b),

and Trl/k(b) 6= 0 (not identically 0). Hence eP/p 6≡ 0 (mod p) iff TrL/K(b) 6≡ 0 (mod p).

Step 2: TrL/K(B) = A ⇐⇒ ordP(DL/K) = eP/p − 1.
We’ve seen

TrL/K(b) ⊆ a ⇐⇒ b ⊆ aD−1
B/A.

Plug in b = B to get, as ideals of B,

A′ := Tr(B) ⊆ a ⇐⇒ B ⊆ aD−1
L/K

⇐⇒ DL/K ⊆ aB

Write A′ = pa. We have pa | D iff pa | A′ for a ∈ Z. (Power can be rational.)
For a ∈ Z, ordp(A

′) ≥ a iff ordp(D) ≥ a.
Thus we get

ordp(A
′) ≤ ordp(DL/K)︸ ︷︷ ︸

ordP(D)

eP/p

< ordp(A
′) + 1.

Thus TrL/K(B) = A iff a = 0 iff ordP(D) = e− 1.
Thus P is tamely ramified iff v(D) = e− 1.

3.2 Computation of different

Proposition 3.6: When A and B are CDVR’s, B is generated by one element over A as
an A-algebra:

B = A[β].

(We say that B is monogenous over A.)
Let L := Frac(A), K := Frac(B). When L/K is totally ramified, then we can choose β

to be any uniformizer πL.
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Proof. Any element of B can be written as
∑

k≥0 akπk where ak are fixed representatives of
l = B/(πL). But we can choose the ak to be representatives of k = A/(πK), since k = l.

Theorem 3.7: (Residue field extension separable.) dB/A = (f ′β(β)) where fβ(x) ∈ A[x] is
the minimal polynomial of β over K.

Proof.

Lemma 3.8:

TrL/K

(
βk

f ′(β)

)
=

{
0, 0 ≤ i ≤ n− 2

1, i = n− 1.

Proof. The eigenvalues of multiplication by β are just the roots β1, . . . , βn of the characteristic
polynomial. Note that if A is a linear operator with eigenvalues λi and P is a polynomial
then P (A) has eigenvalues P (λi). Hence

tr

(
βk

f ′(β)

)
=

n∑
i=1

βki
f ′(βi)

Let D(x1, . . . , xn) =
∑

i<j(xi − xj). Noting f ′(βi) =
∏

j 6=i(βi − βj), the above equals

1

D(x1, . . . , xn)

n∑
i=1

xkiD(x1, . . . , xn)∏
j 6=i(xi − xj)︸ ︷︷ ︸

P (x1,...,xn)

evaluated at (x1, . . . , xn) = (β1, . . . , βn). Consider P . Note P is zero whenever xi = xj for
some i 6= j (All except two terms are 0; those two cancel.). So xi − xj | P , and D | P .

However, P has degree less than (n−1)n
2

when k < n− 1, so must be 0. If k = n− 1 then we
know P is a constant multiple of D, look at the coefficient of any term to see that in fact
P = D.

It suffices to prove

(f ′β(β)−1) = B∗ :=
{
b ∈ L : TrL/K(bb′) ∈ A for all b′ ∈ B

}
.

The condition inside is equivalent to

Tr(bβj) ∈ A, 0 ≤ j ≤ n− 1.

(because B =
⊕

Aβi.) But by the lemma,

Tr

(
n−1∑
i=0

ai
βi+j

f ′(β)

)
= an−1−j + · · · (>).

“Triangular.” Therefore

B∗ =
⊕

A · βi

f ′β(β)
=

(
1

f ′β(β)

)
.
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Good exercise: Compute DQp(ζpn )/Qp . This is tamely ramified only at n = 1. Totally
ramified tower. The first step is (Z/p)×, tame, everything else is p, wild.

(Note G(Q(ζpn)/Q) ∼= (Z/pnZ)× because Dp
∼= G(Qp(ζpn)/Qp).

§4 Ramification groups

Local, CDVR setup.

Definition 4.1: Let i ≥ −1. The ith ramification group is

Gi = {σ ∈ G : b ∈ OL, vL(σ(b)− b) ≥ i+ 1}
= {σ ∈ G : vL(σ(β)− β) ≥ i+ 1} .

Observe G−1 = G, that Gi ⊇ Gj for i ≤ j and
⋂
i≥−1Gi = {1}. Also note for all i, Gi is

a normal subgroup of G because

Gi = ker(G→ Aut(OL/(πi+1
L )).

In particular, Gi/Gi+1 is a group. Furthermore Gi is defined even when i is not an integer;
we have Gi = Gdie.

We will study {Gi}i≥−1. We want

1. A formula for vL(DL/K). If at most tame, equals e− 1, else greater.

2. Look at quotients Gi/Gi+1. Abelian, cyclic, p-group, prime-to-p?

4.1 DL/K and iG

Definition 4.2: Let σ ∈ G(L/K). Define iG : G→ N0 ∪ {∞} by

iG(σ) = min {vL(σ(β)− β) : β ∈ B} .

Note that if B = A[β], then

iG(σ) = vL(σ(β)− β).

Observe

• iG(σ) =∞ iff σ = 1.

• Gi = {σ ∈ G : iG(σ) ≥ i+ 1}, so σ ∈ Gi iff iG(σ) ≥ i+ 1, so doesn’t depend on choice
of generator.

Note
iG(τστ−1) = iG(σ), σ, τ ∈ G.

Because Gi EG. Note
iG(στ) ≥ min(iG(σ), iG(τ)).
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Because

iG(στ) = vL(στβ − β)

≥ min(vL(στ(β)− τ(β)), vL(τ(β)− β))

= min(iG(σ), iG(τ)).

since OL = OK [β] = OK [τβ].

Proposition 4.3:

v(DL/K) =
∑
σ 6=1

iG(σ) =
∑
i≥0

(|Gi| − 1).

(a = (πiL) =⇒ vL(a) = i.)

Proof. Let f(x) be the minimal polynomial for β. Letting n = [L : K],

f(x) =
n∏
i=1

(X − βi).

Now

DL/K = (f ′(β))

=
∏
i>1

(β − βi)

=
∏
σ 6=1

(β − σ(β)).

Take vL for (1).

vL(DL/K) =
∑
σ 6=1

vL(β − σ(β))︸ ︷︷ ︸
iG(σ)

.

For (2), consider multiset ⊔
i≥0

(Gi\{1}).

finite. Note σ ∈ G appears in G0, G1, . . . , GiG(σ)−1, there’s iG(σ). Compute the size of the
multiset in two different ways ∑

i≥0

(|Gi| − 1) =
∑
σ 6=1

iG(σ).

Remark: vL(DL/K) = e− 1 iff G1 = {1} (because |G0| = e, iff L/K is at most tame.
Let’s understand DL/K , iG under sub and quotient group. Consider L/LH/K.
First, sub.
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Proposition 4.4:

iH(σ) = iG(σ) for all σ ∈ H
Hi = H ∩Gi.

Proof. Same generator works for larger ring. OL = OK [β] =⇒ OL = OK′ [β]. Then true by
def.

Corollary 4.5:

vL(DL/K′) =
∑

σ 6=1,σ∈H

iG(σ)︸ ︷︷ ︸
iH(σ)

.

For quotient.

Proposition 4.6: For H EG, G 6= 1 ∈ G/H,

iG/H(σ) =
1

eL/K′

∑
σ∈G, σ mod H=σ

iG(σ).

Corollary 4.7:

vK′/K(DK′/K) =
1

e′L/K

∑
σ 6∈H,σ∈G

iG(σ).

Because by prev.
∑

σ 6=1 iG/H(σ) equals RHS by prop.

Proof. Choose α ∈ OK′ and β ∈ OL such that OK′ = OK [α′] and OL = OK [β]. Then

eL/K′iG/H(σ) = eL/K′vK′(σα
′ − α′)

= vL(σα′ − α′).∑
σ∈G

= iG(σ)

=
∑
τ∈H

iG(στ)︸ ︷︷ ︸
vL(στβ−β)

= vL

(∏
τ∈H

(στ(β)− β)

)
= before.

fixing σ.
It suffices to prove (σα′ − α′) =

∏
τ∈H(στ(β)− β). Call LHS, RHS a, b.

1. a | b: Consider

g(X) =
∏
τ∈H

(X − τ(β)) ∈ OK′ [x].

minimal polynomial of β/K ′.

σg(X) =
∏
τ∈H

(X − στ(β)).
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Observe σα′ − α′ divides coefficients of σg(X) − g(X). Because for all a ∈ OK′ ,
a = a0 + a1α

′, σα = a0 + a1σα
′ + · · · . Note σα′ − α′ | σα′i − α′i. Note g(β) = 0. Take

x = β to get
σα′ − α′ | σg(β)− g(β)︸︷︷︸

0

.

2. b | a. SWITCH f and g below. Cook up a minimal polynomial to show divisibility.
α′ = OK [β] = OL. Write

α′ =
n−1∑
i=0

aiβ
i =: g(β).

ai ∈ OK . g(X) ∈ OK [X]. Consider g(X) − α′ ∈ OK′ [X]. By construction has β as a
root.

Hence plugging in x = β,

f(X) | g(X)− α
σf(X) | σ(f(X))− σ(α′)

σf(β) | f(β)− σ(α′)

giving ±b | ±a.

End of unedited stuff.

4.2 Filtration of ramification groups

We know from (??) that
G−1/G0

∼= G/IL/K ∼= G(l/k).

In particular, if k is finite then G−1/G0 is finite cyclic and if k = k then G−1/G0 is trivial.
From now on assume i ≥ 0.

We aim to study the filtration

G ⊇ G0 ⊇ G1 ⊇ · · · . (21.2)

To do this, we first study the filtration

L× ⊇ U0
L ⊇ U1

L ⊇ · · · (21.3)

where

U i
L =

{
O×L , i = 0

1 + πiLOL, i ≥ 1.

The quotient groups in (21.3) can be understood explicitly (Proposition 4.8). We will relate
the two filtrations by Proposition 4.10.1 From this we get several important corollaries about
the structure of the groups Gs. Understanding conjugates and commutators of elements in
the Gs gives us several more important properties.

1This will be important in local class field theory, which says there is a canonical isomorphism
K×/NmL/K(L×) ∼= G(L/K) if L/K is finite abelian.
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Proposition 4.8: Let K be a complete field with discrete valuation (for instance, a local
field), k its residue field, and m the associated maximal ideal. Then we have isomorphisms

UK/U
(1)
K

∼=−→ k× U
(m)
K /U

(m+1)
K

∼=−→ k+

u 7→ u (mod m) 1 + aπm 7→ a (mod m).

Proof. For the first just note that 1 + m is the multiplicative unit of A/m. For the second,
note (1 + aπm)(1 + bπm) = 1 + (a+ b)πm + · · · .

To construct a map Gi/Gi+1 → U i
L/U

i+1
L , we first need the following characterization of

Gi.

Lemma 4.9: Suppose L/K is a finite Galois extension of local fields, π is a uniformizer of
L, and G = G(L/K). For i ∈ N0 and σ ∈ G0,

σ ∈ Gi ⇐⇒
σ(π)

π
≡ 1 (mod πiL). (21.4)

Proof. The RHS is equivalent to

σ(π)− π ≡ 0 (mod πi+1
L ). (21.5)

We need to show this is equivalent to

σ(β)− β ≡ 0 (mod πi+1
L ) for all β ∈ L. (21.6)

It is clear that (21.6) implies (21.5).
First suppose L/K is totally ramified. Then OL = OK [π] by Proposition 3.6, giving

that (21.5) implies (21.6).
Now consider the general case. We know L/LIL/K is totally ramified (Theorem 14.7.2),

so the theorem holds for L/LIL/K . Now, by Proposition 4.4, Gi(L/L
IL/K ) = Gi ∩ IL/K = Gi.

Furthermore, since πL is the same for L/K and L/LIL/K , the right hand-side of (21.4) does
not change whether we are talking about L/K or L/LIL/K . Hence the theorem for L/LIL/K

implies the theorem for L/K.

Proposition 4.10: There is a well-defined injective group homomorphism

θi : Gi/Gi+1 ↪→ U i
L/U

i+1
L

σ 7→ σ(π)

π

that is independent of the choice of uniformizer π.

Proof. Note that

u ∈ OL, σ ∈ Gi =⇒ σ(u) ≡ u (mod πi+1) =⇒ σ(u)

u
∈ U i+1

L . (21.7)
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First we show θi is a group homomorphism Gi → U i
L/U

i+1
L . We have

στ(π)

π
=
σ(π)

π
· τ(π)

π
·
σ
(
τ(π)
π

)
τ(π)
π

.

Since τ(π)
π
∈ OL and τ ∈ Gi, (21.7) gives

σ( τ(π)
π )

τ(π)
π

∈ U i+1
L .

Lemma 4.9 gives that the kernel is exactly Gi+1, so θi induces an injective map Gi/Gi+1 →
U i
L/U

i+1
L .

Now suppose π′ is another uniformizer. Write π′ = uπ with u ∈ O×L . Then σ ∈ Gi

and (4.9) give
σ(π′)

π′
=
σ(π)

π
· σ(u)

u︸ ︷︷ ︸
∈U i+1

L

.

Corollary 4.11: 1. G0/G1 is finite cyclic.

2. If char(l) = 0 then G1 = {1}; if char(l) = p 6= 0, then for each i ≥ 1,

Gi/Gi+1 = (Z/pZ)ni

for some ni.

Proof. 1. Proposition 4.10 and 4.8 give G0/G1 ↪→ UL/U
1
L
∼= l×. But any finite subgroup

of a finite field must be cyclic.

2. For char(l) = 0, l+ has no finite nontrivial subgroup. For char(l) = p, we have
Gi/Gi+1 ↪→ U i

L/U
i+1
L
∼= l+. Just note l+ is a an abelian p-group.

Corollary 4.12: G0 = IL/K is solvable. If G(l/k) = G−1/G0 is solvable (in particular, if k
is finite) then G is solvable.

Proof. The series
G0 ⊇ G1 ⊇ · · ·

is a solvable series for G.

4.3 First ramification group

Recall that we defined G0 = IL/K so that we can split L/K into two parts: L/LIL/K is
totally ramified while LIL/K/L is unramified. We can further split the extension L/LIL/K

into a wildly ramified and tamely ramified part.

Definition 4.13: Define the wild inertia group and tame inertia group to be

G1 = Iwild
L/K

G0/G1 = Itame
L/K .
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Theorem 4.14: The extension L/LI
wild
L/K is wildly ramified with Galois group G1 = Iwild

L/K and

the extension LI
wild
L/K/LI

tame
L/K is tamely ramified with Galois group G1/G0.

L

Iwild
L/Kwild ramification

LI
wild
L/K

Itame
L/Ktame ramification

LIL/K

G/IL/K=G(l/k)unramified

K

Moreover, G1 is the unique p-Sylow subgroup of G0, and

G0 = G1 oG0/G1.

Proof. Note G0/G1 ↪→ k× while Gj/Gj+1 ↪→ k+ for j ≥ 1; we have p - |k×| while |k| is a
power of p; and |G1| =

∏
1≤j�∞ |Gj/Gj+1|. Hence G1 is a p-SSG of G0; it is unique since

it is normal and all p-SSGs are conjugate. Since the indices of the field extensions are the
orders of the Galois groups, the result on tame and wild ramification follow.

Now we prove the semidirect product. This follows directly from the Schur-Zassenhaus
Lemma: If H is a normal Hall subgroup of a finite group G, then H has a complement, and
hence G = H oG/H. (A Hall subgroup H ⊆ G is a group such that gcd(|H|, [G : H]) = 1.)

The following is an alternate proof. We show the exact sequence

1 // G1
// G0

// G0/G1
// 1

Iwild
L/K IL/K Itame

L/K

splits by showing there exists a right inverse G0/G1 → G0 of the projection G0 → G1.2 Since
G0/G1 is cyclic of order r := |l×|, it suffices to find a lift σ ∈ G0 of the generator σ ∈ G0/G1

with order r. Write |G0| = psr. Let

σ = σ′p
ϕ(r)t

where t is such that ϕ(r)t ≥ s. Note r - p implies pϕ(r)t ≡ 1 (mod r). Since σ′r ∈ G1, this
implies σ is still a lift of σ. Moreover ϕ(r)t ≥ s gives that its order is r, so it is the desired
lift.

Proposition 4.15: For i ≥ 1, σ ∈ G0, τ ∈ Gi/Gi+1,

θi(στσ
−1) = θ0(σ)iθi(τ).

2The image of G0/G1 is a complement Q of G1 in G0; the elements of Q act on G1 by conjugation—this
is what the semidirect product means.

223



Number Theory, §21.4.

(Here θ0(σ)i is thought of as in UL/U
1
L
∼= l×, and θi(τ) ∈ U i

L/U
i+1
L
∼= l+.)

Proof. It is slightly more convenient to work additively rather than multiplicatively, so we
consider

θ′i : Gi/Gi+1 ↪→ U i
L/U

i+1
L
∼= (πi)/(πi+1)

σ 7→ σ(π)

π
7→

{
σ(π)
π
, i = 0

σ(π)
π
− 1, i ≥ 1,

where π is any uniformizer.

Define

π′ = σ−1(π)

and let a ∈ O×L be such that

τ(π′) = π′ + aπ′πi.

Note that

θ′i(τ) =
τ(π′)

π′
= aπi.

Now we calculate, modulo (π)i+1, that

θ′i(στσ
−1) =

στσ−1(π)

π
− 1

=
στ(π′)

π
− 1

=
σ(π′ + aπ′πi)

π
− 1

=
π + σ(aπ′πi)

π
− 1

=
aσ(π′πi)

σ(π′)
since σ(a) ≡ a (mod πi+1)

=

(
σ(π)

π

)i
aπi

= θ′0(σ)iθ′i(τ).

Proposition 4.16: If σ ∈ Gi and τ ∈ Gj, i, j ≥ 1, then

στσ−1τ−1 ∈ Gi+j+1.

Proof.

Corollary 4.17: For i ≥ 1,

στσ−1τ−1 ∈ Gi+1 ⇐⇒ σi ∈ G1 or τ ∈ Gi+1.
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Proof. We have

στσ−1τ−1 ∈ Gi+1 ⇐⇒ στσ−1 = τ in Gi/Gi+1

⇐⇒ θ′i(στσ
−1) = θ′i(τ) in (πi)/(πi+1)

⇐⇒ θ′i(τ)(θ′0(σ)i − 1) = 0 by Proposition 4.15

⇐⇒ θ′i(τ) = 0 or θ′0(σ1) = 1

⇐⇒ τ ∈ Gi+1 or σi ∈ G1.

Corollary 4.18: Suppose G is abelian and |G0/G1| - i. Then Gi = Gi+1.

Proof. Write G0/G1 = 〈σ〉 where r = |G0/G1|. Since r - i, σi 6= 1; for any lift σ ∈ G0 of σ,
σi 6∈ G1. Since G is abelian, we get for all τ ∈ Gi, στσ

−1τ−1 = 1. By the previous corollary,
noting σi 6∈ G1, we must have τ ∈ Gi+1.

Definition 4.19: A jump for L/K is an integer i such that

Gi 6= Gi+1.

Corollary 4.18 tells us that jumps are divisible by |G0/G1|.

§5 Herbrand’s Theorem

5.1 Functions ϕ and ψ

Note that ramification groups behave nicely under taking subgroups (i.e. passing from
M/K to M/L), by Proposition 4.4. However, the indices are screwed up when passing to
quotient groups (i.e. passing from M/K to M/L). We calculate exactly how the index
changes (Herbrand’s Theorem 12.1), and use it to define a different numbering scheme that
is invariant under passing to quotient groups.

It is important to know how ramification groups behave under quotients because this
gives a compatible system that allows us to look at larger and larger field extensions, i.e.
pass to the inverse limit.

Definition 5.1: Define ϕL/K : R≥0 → R≥0 by

ϕL/K(u) =

∫ u

0

1

[G0 : Gt]
dt

(recall Gu = Gdue) and extend ϕL/K to R≥−1 → R≥−1 by

ϕ(u) = u, −1 ≤ u ≤ 0.

This is a piecewise linear increasing function with ϕL/K(−1) = −1 and with derivative
at least 1

|G0| , so it is a bijection.
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Definition 5.2: Define ψL/K : R−1 → R−1 by ψL/K = ϕ−1
L/K . Define the upper numbering

filtration by
Gv := GψL/K(v), v ≥ −1.

5.2 Transitivity of ϕ and ψ

The function ϕL/K gives the reindexing when we pass to the quotient Galois group.

Theorem 5.3 (Herbrand’s Theorem): Let L/K ′/K be finite Galois extension with separable
residue field extension. For all u ≥ −1,

GuH/H = (G/H)ϕL/K′ (u).

Here, Gu is the ramification group of L/K and (G/H)ϕL/K′ (u) is the ramification group

of K ′/K.
We will need several lemmas. First we relate the function iG/H(σ) and iG evaluated at

the lifts of σ in G.

Lemma 5.4: For σ ∈ G/H, j(σ) = maxσ∈σH iG(σ),

iG/H(σ)− 1 = ϕL/K′(j(σ)− 1).

Thus applying ϕL/K has the effect of “turning” iG into iG/H . By writing out the criterion
for σ ∈ Gu or (G/H)u in terms of iG and iG/H , respectively, we will get Herbrand’s Theorem.

Proof. Pick σ0 ∈ G mapping to σ such that iG(σ0) = j(σ). Then by Proposition 4.6,

iG/H(σ) =
1

eL/K′

∑
σ∈σH

iG(σ) =
1

eL/K′

∑
τ∈H

iG(σ0τ). (21.8)

We claim that

iG(σ0τ) = min(iG(σ0), iG(τ)) = min(j(σ), iG(τ))

for all τ ∈ H. Indeed, by the nonarchimedean inequality,

iG(σ0τ) = vL(σ0τ(β)− β) ≥ min(vL(σ0τ(β)− τ(β)), vL(τ(β)− β)) = min(iG(σ0), iG(τ)).

Consider two cases.

1. iG(τ) = iH(τ) ≥ iG(σ0). The above gives

iG(σ0τ) ≥ min(iG(σ0), iG(τ)) ≥ iG(σ0).

Equality holds by the maximality assumption on σ0.

2. iG(τ) < iG(σ0). Then

iG(σ0τ) = min(iG(σ0), iG(τ)) = iG(τ).
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The RHS of (21.8) then equals 1
eL/K′

∑
τ∈H min(iG(σ0), iG(τ)); the result then follows from

the next lemma.

Lemma 5.5:

ϕL/K(u) =
1

eL/K

∑
σ∈G

min(j(σ), u+ 1)− 1.

Proof. Since both sides are piecewise linear functions, and both sides equal u for −1 ≤ u ≤ 0,
it suffices to show their derivatives (slopes) are equal for u > 0.

If i − 1 < u < i where i ∈ N, then the slope of the LHS is 1
[G:Gi]

. For the RHS, since

iG(σ) is an integer, each term is either iG(σ) or u+ 1; each term where u+ 1 is the minimum
contributes to the slope. Hence the slope on the RHS is

1

eL/K
|{σ ∈ G : u+ 1 < iG(σ)}| = 1

eL/K
|{σ ∈ G : iG(σ) ≥ i+ 1}| = |Gi|

eL/K
=

1

[G0 : Gi]
,

as needed.

Proof of Theorem 5.3. We have the following string of equivalences.

1. σ ∈ GuH/H = Gu/Gu ∩H

2. There is σ ∈ G lifting σ so that σ ∈ Gu.

3. jG(σ)− 1 ≥ u.

4. ϕL/K′(jG(σ)− 1) ≥ ϕL/K′(u).

5. iG/H(σ)− 1 ≥ ϕL/K′(u).

6. σ ∈ (G/H)ϕL/K′ (u).

We have (3) ⇐⇒ (4) because ϕL/K′ is monotonically increasing and (4) ⇐⇒ (5) by
Lemma 5.4.

Now we prove transitivity for ϕ and ψ.

Proposition 5.6:

ϕL/K = ϕK′/K ◦ ϕL/K′
ψL/K = ψL/K′ ◦ ψK′/K .

Proof. It suffices to prove the first equation; the first implies the second since ϕ and ψ are
inverse. For −1 ≤ u ≤ 0 both sides equal u. Thus it suffices to show the derivatives of both
sides are equal for u ≥ 0. For u 6∈ Z, the derivative on the LHS is

ϕ′L/K(u) =
1

[G0 : Gu]
.
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By the chain rule, the slope on the RHS is

ϕ′K′/K(ϕL/K′(u))ϕ′L/K′(u) =
|(G/H)ϕL/K′ (u)|
|(G/H)0|

|Hu|
|H0|

=
|GuH/H||Hu|
eK′/KeL/K′

by Herbrand’s Theorem 12.1

=
|Gu/H ∩Gu||Hu|

eL/K

=
|Gu|
|G0|

using H ∩Gu = Hu (Proposition 4.4) and multiplicativity of ramification index. The deriva-
tives are equal, as needed.

Finally, we prove the most important consequence of Herbrand’s Theorem: namely, by
using the upper numbering (i.e. numbering using the inverse of ϕL/K), quotients of ramifi-
cation groups are preserved.

Proposition 5.7: For all v ≥ −1,

GvH/H = (G/H)v.

Proof. By Herbrand’s Theorem 12.1 and transitivity of ψ (Proposition 5.6) (ψL/K = ψL/K′ ◦
ψK′/K), we get

GvH/H = GψL/K(v)H/H

= (G/H)ϕL/K′ (ψL/K(v)) = (G/H)ψK′/K(v) = (G/H)v.

We can now define upper numbering for infinite algebraic extensions L/K.

Definition 5.8: Define

G(L/K)v := lim←−
K′/K finite Galois

G(K ′/K)v.

§6 Hasse-Arf Theorem

We have two different filtrations, the lower numbering filtration {Gu}u≥−1 and {Gv}v≥−1.

Definition 6.1: A jump is u such that Gu 6= Gu+ε or v such that Gv 6= Gv+ε.

They are the x and y-coordinates of jump points, i.e. where the slope of ϕ changes.
Note a jump u ∈ Z since Gu = Gdue. Moreover, u is a jump for the lower numbering iff

v = ϕL/K(u) is a upper numbering, because ϕ, ψ are monotonically increasing.

Theorem 6.2 (Hasse-Arf Theorem): If G is finite abelian, then the jumps v are integers.
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In the cyclotomic case, G was abelian.

Remark 6.3: There is a nonabelian example where v 6∈ Z. (See HW.)

We postpone the proof. Applications.

1. Used in local class field theory.

2. “Conductor of Galois representations” are in Z, not just in Q. Finite L/K, G(L/K)→
GLn(C).
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Chapter 22

Geometric algebraic number theory

In this chapter we answer the following two questions.

1. Suppose, for every place v, we are given positive reals av, all but finitely many of them
equal to 1. How many elements of x ∈ K satisfy

|x|v ≤ av

for every v?

2. Given a generalized ideal class K (to be defined) and a number L, how many ideals
a ∈ K satisfy Na ≤ L? (What are the asymptotics as L → ∞?) In particular, how
many integral ideals satisfy Na ≤ L?

The first question is known as the Riemann-Roch problem for number fields, because it is
analogous to the Riemann-Roch problem in algebraic geometry1: Given a curve C, and an
integer aP for every point (all but finitely many equal to 0), what is the dimension of the
space of functions f with

ordv(f) ≥ −aP

for every P? (ordv(P ) is the “order” of the zero of f at P .)

The second question is important because the answer will appear again when we define
L-functions (because L-functions involve a sum over all ideals). This will allow us to get
“explicit” formulas for quantities of interest (class number, regulator). And because it’s not
much of a detour, we might as well answer the first question as well.

Our technique will be similar to that used in Chapters 15 and 17.

§1 Generalized ideal classes

Also talk about adeles and stuff.

1We will not attempt to draw a parallel in our discussion. The reader interested in seeing the correspon-
dence should consult Neukirch [25]. We follow Lang [18], Chapter 6.
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Proposition 1.1: We have the following diagram

I(c) // I

K(c) // P (c) // P

U // UKc
// Pc

Uc
// Kc

where each square

A
ϕ
// B

C // D

means C = ϕ−1(D) and A/C ∼= B/D.

Proposition 1.2: The group of c-ideal classes has order

hc =
h2r(c)

∏
p|c0 Npm(p)

(
1− 1

Np

)
[U : Uc]

where r(c) is the number of real places dividing c.

We will define the totient function by ϕ(c) = 2r(c)
∏

p|c0 Npm(p)
(

1− 1
Np

)
.

§2 Counting lattice points

Definition 2.1: A subset T ⊆ RN is k-Lipschitz parametrizable if there exist a finite number
of Lipschitz maps ϕj : [0, 1]k → T whose images cover T .

Theorem 2.2: Let L ⊂ RN a lattice with fundamental domain F and D ⊂ RN a subset
whose boundary is (N − 1)-Lipschitz parametrizable. Then

| {x ∈ L : x ∈ tD} | = Vol(D)Vol(F )tN +O(tN−1).

§3 Riemann-Roch problem

§4 Asymptotics of generalized ideal classes

Definition 4.1: For a generalized ideal class K ∈ I(c)/Pc, let

j(K, t) = {a ∈ K : Na ≤ t} .
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Theorem 4.2:

j(K, t) =
2r(2π)sRc

wc

√
dkNc

.
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Chapter 23

Class Field Theory: Introduction

We give the main theorems of class field theory, deferring the proofs to the next five chapters.
In this chapter we’ll focus on the motivation and intuition behind the theorems. The reader
may find it helpful to read this chapter along with Chapter 28, Applications.

In Section 1 we’ll introduce the Frobenius map, which we need before we can state the
theorems of class field theory. In Section 2 we state the theorems of local class field theory.
We state two formulations of global class field theory: using ideals in Section 4 and using
ideles in Section 6, after giving the relevant background on ray class groups and ideles. The
formulation using ideals is less sophisticated to understand, but the formulation using ideles
is more useful theoretically. We’ll compare the two formulations in Section 6.1. Finally,
we’ll present a proof of the Kronecker-Weber Theorem using class field theory in Section 7.
Throughout, we’ll refer back to the cyclotomic case, because class field theory is easy to
understand in this case, and it already shows much of what’s at play.

§1 Frobenius elements

In order to define the Artin map and state the main theorems of class field theory, we first
need to understand the Frobenius map. This map takes prime ideals inside a field K to
automorphisms in a Galois group G(L/K). One reason for studying the Frobenius map is
that FrobL/K(p) gives information on how the prime ideal p splits in a Galois extension.
First, we’ll define the Frobenius element and explain what it tells us about the splitting
of primes. Next, we’ll look at the example of a cyclotomic extension, which suggests that
something deeper is going on with the Frobenius map, which we’ll attempt to explain with
class field theory.

The reader may wish to review Section 14.7, on the decomposition and inertia groups.
The results in this section will apply to both local and global fields.

Definition 1.1: Let L/K be a Galois extension with Galois group G, and assume that the
residue field k is finite.

1. Let P be an unramified prime of L. Define the Frobenius element

FrobL/K(P) = (P, L/K)

to be the element σ ∈ DL/K(P) ⊆ G(L/K) that acts as the Frobenius automorphism
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on the residue field l = OL/P fixing k = OK/p. In other words, letting k = Fq,

σα = αq for all α ∈ l.

2. Let p be an unramified prime of K. Let P be any prime dividing p, and define
FrobL/K(p) = (p, L/K) to be the conjugacy class of (P, L/K). Equivalently (see
lemma 1.2),

FrobL/K(p) = (p, L/K) := {(P, L/K) | P|p}.

In the local case, when there is only one prime, we will simply write FrobL/K .

Proof of existence of (P, L/K). When p is unramified in L, I(P) = 1 so from Corollary 14.7.6,
the map DL/K(P)→ G(l/k) is an isomorphism. Thus there is a unique element of DL/K(P)
whose image is the Frobenius element.

To show the above definition is valid, we need to show that changing the prime above p
corresponds to conjugating the Frobenius element.

Lemma 1.2: Let τ ∈ G(L/K). Then

D(τP) = τD(P)τ−1

(τP, L/K) = τ(P, L/K)τ−1.

Therefore (since G(L/K) operates transitively on the primes dividing p), the conjugacy class
of (P, L/K) is equal to {(P, L/K) | P|p}.

Proof. The first statement follows from the fact that if G acts on S and G is the stabilizer
of s ∈ S, then tGt−1 is the stabilizer of ts. Recall that the decomposition group D(P) is
defined as the stabilizer of P.

For the second statement, let q = |k| and note that τ , as an automorphism, preserves
qth powers. Hence for all b ∈ OL,

(τ(P, L/K)τ−1)(b) ≡ τ(τ−1(a)q) ≡ aq (mod τ(P)).

Note that if G is abelian, then the conjugacy classes are just elements, so we can think
of (P, L/K) as an element of G(L/K).

One of the most basic applications of the Frobenius map is to the splitting of primes in
an extension.

Proposition 1.3: Let L/K be an extension of degree n, unramified at P | p. Then p splits
into n

|〈(P,L/K)〉| factors, where 〈(P, L/K)〉 is the subgroup of G generated by (P, L/K).

In particular, p splits completely iff (p, L/K) = 1.

Proof. Let l and k be the residue fields.
The Frobenius element generates the decomposition group D(P), since it acts as the

Frobenius automorphism on l/k and D(P) ∼= G(l/k). Hence |D(P)| = |〈(p, L/K)〉|. Since

238



Number Theory, §23.1.

p is unramified in L, e(P/p) = 1 and f(P/p) = |D(P)| = |〈(p, L/K)〉|. Hence, letting g be
the number of primes above p, we have

n = [L : K] = e(P/p)︸ ︷︷ ︸
1

f(P/p)︸ ︷︷ ︸
|〈(P,L/K)〉|

g.

Then
g =

n

|〈(P, L/K)〉|
,

as needed.
In particular, p splits completely iff g = n, iff |〈(P, L/K)〉| = 1, iff |〈(p, L/K)〉| = 1, i.e.

the Frobenius element (p, L/K) is trivial.

Next, we’ll need a result of how the Frobenius element changes as we change the base
field.

Proposition 1.4: Suppose that L/K is an unramified Galois extension, K ⊆ K ′ ⊆ L, and
p is a prime of K ′. Let k, k′ be the residue fields of K and K ′. Then

FrobL/K′(p) = FrobL/K(p)[k′:k]

Note by taking the [k′ : k]th power we mean that if FrobL/K(p) is the conjugacy class of
σ, then FrobL/K(p)[k′:k] is the conjugacy class of σ[k′:k].

Proof. By definition, the left hand side induces the |k′|th power map on l, while the right
hand side induces the |k| · [k′ : k]th power map on l. Hence they are equal.

1.1 Examples

We calculate the Frobenius map explicitly in two examples. First, a warm-up.

Example 1.5: For the field extension Q(i)/Q,

(p,Q(i)/Q) =

{
complex conjugation, p ≡ 3 (mod 4),

1, p ≡ 1 (mod 4).

Proof. If p ≡ 3 (mod 4), then p remains prime in Q(i). The residue fields are

l = Z[i]/pZ[i] = Fp2

k = Z/pZ = Fp.

Now (p,Q(i)/Q) must induce the pth power map on ` = Fp2 . Since this is not the identity,
it must be the only element of G(Q(i)/Q) that is not the identity, i.e. complex conjugation.
(This does act as the pth power, since recalling p ≡ 3 (mod 4), (a+ bi)p ≡ ap + bpip ≡ a− bi
(mod p).)
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If p ≡ 1 (mod 4), then p splits in Q[i], say into P1 and P2 where P1,P2 are complex
conjugate. Then Z[i]/P1 = Z[i]/P2 = Z/pZ = Fp so the extension of residue fields is
trivial and the Frobenius automorphism is trivial. It is induced by the identity map, so
(p,Q(i)/Q) = 1. (Note that in this case the decomposition group is trivial and does not
contain complex conjugation.)

We generalize the above example to cyclotomic extensions.

Example 1.6: Let K = Q(ζn) where ζn is a primitive nth root of unity. Then G(K/Q) ∼=
(Z/nZ)× by identifying k ∈ (Z/nZ)× with the automorphism sending ζn to ζkn (Proposi-
tion 3.1).

Suppose σ := (p, L/K) is the map ζn 7→ ζkn. By definition σ reduces to the pth power
map on the residue fields, so σ(ζn) ≡ ζpn (mod pOK). Hence

ζpn ≡ ζkn (mod pOK).

But since p - n, the nth roots of unity are distinct modulo p. (More precisely, they are
distinct elements of Fpm where m is such that pm ≡ 1 (mod n).) Hence we must have p ≡ k
(mod n), i.e. σ is the pth power map.

This shows that for a prime p - n, under the identification G(K/Q) ∼= (Z/nZ)×, we have

(p,Q(ζn)/Q) = p mod n.

This calculation of the Frobenius elements gives a complete characterization of how
primes split in cyclotomic extensions. We obtain a simple proof of Theorem 18.2.4, which
we restate here.

Theorem 1.7: Suppose that n = prm, where p - m. Let

f = ordm(p).

Then the prime factorization of (p) in Q(ζn) is

(p) = (P1 · · ·Pg)
ϕ(pr)

where Pj are distinct primes, each with residue degree f over Q, and g = ϕ(m)
f

.

In particular,

(p) splits completely in Q(ζn) iff p ≡ 1 (mod n).

Proof. For r = 0, i.e. n = m, the automorphism ζn 7→ ζpn has order ordm(p), so the result
follows from Example 1.6 and Proposition 1.3. For r > 0, note that (p) totally ramifies in
Q(ζpr) by Proposition 18.2.2, and Q(ζn) is the compositum Q(ζpr)Q(ζm).
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1.2 The Frobenius map is a nice homomorphism

Because we’ve defined the Frobenius map on prime ideals p unramified in L, and the prime
ideals are a free basis for the ideal group, we can extend the Frobenius map to the subgroup
of ideals generated by unramified primes. Denoting this subgroup by ISK , we have a map

FrobL/K : ISK → G(L/K). (23.1)

What is nice about this map? Look back to the cyclotomic case, Example 1.6. The Frobenius
map didn’t map the primes arbitrarily; it sent p to p (mod n). What’s to note here is that
(p,Q(ζn)/Q) only depends on p (mod n), information about p intrinsic to Q, even though
(p,Q(ζn)/Q) tells us about the field extension Q(ζn)/Q. Thus (23.1) factors:

ISQ
FrobL/Q

//

��

G(L/Q)

ISQ/IQ(1,∞n).

∼=
77

(23.2)

Here, ISQ denotes the prime ideals relatively prime to n and IQ(1,∞n) denotes the subgroup
of ideals generated by (p) with p ≡ 1 (mod n) and positive.

Something like this in fact happens in general: global class field theory tells us that for all
abelian extensions, the Frobenius map “factors through a modulus,” that (p, L/K) depends
only on what p is modulo a nice subgroup of ideals in K. Our example essentially proves
class field theory for cyclotomic extensions of Q, by using the roots of unity to “keep book”
on the action of Frobenius. Don’t be deceived, though, the general case is much harder.

Before we look at global class field theory, we first study local class field theory. Since
there’s only one prime in a local field, rather than consider a map from the (rather boring)
ideal group, we consider a map from the field itself.

§2 Local reciprocity

When K is a nonarchimedean local field, there is a single prime ideal p = (π). For every
abelian unramified extension, the previous section gives an element of G(L/K) corresponding
to p, which we can think of as corresponding to π.

The main theorem of local class field theory is that we can extend this map to all elements
of K×, and get elements in lim←−finite abelian L/K

G(L/K) = G(Kab/K). We will also show that

this map behaves well under restricting to subextensions L/K.

Theorem 2.1 (Local reciprocity law): For any nonarchimedean local field K, there exists
a unique homomorphism

φK : K× → G(Kab/K),

called the local Artin (reciprocity) map with the following properties.

1. (Relationship with Frobenius map) For any prime element π of K and any finite un-
ramified extension L of K, φK(π) acts on L as FrobL/K(π).
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2. (Isomorphism) Let pL be the projection G(Kab/K)→ G(L/K). For any finite abelian
extension L/K, φK induces an isomorphism φL/K : K×/NmL/K(L×)→ G(L/K) mak-
ing the following commute:

K×
φK //

��

G(Kab/K)

pL

��

K×/NmL/K(L×)
φL/K

∼=
// G(L/K).

3. (Compatibility with norm map) For any K ⊆ K ′, the following diagram commutes.

K ′×
φK′ //

NmK′/K
��

G(K ′ab/K ′)

•|
Kab

��

K×
φK // G(Kab/K)

We can also say something about this map topologically.

Definition 2.2: A norm group is a subgroup of K× of the form NmL/K(L×) for some
finite extension L/K.

Let Frob denote the Frobenius element of l/k. The Weil group W (L/K) of an extension
L/K is equal to the inverse image of FrobZ under the map G(L/K)→ G(l/k). The topology
on W (L/K) is the topology from considering it as a disjoint union of cosets I(L/K)σn, where
σn is any lift of Frobn.

Note that the topology on W (Kab/K) as defined above is strictly finer than the topology
it inherits from G(Kab/K) (see exercise 2.1).

Theorem 2.3 (Local existence theorem): Let K be a nonarchimedean local field. The norm
groups of K are exactly the open subgroups of finite index.

Theorem 2.4 (Topological isomorphism for LCFT): The image of the Artin map is the
Weil group W (L/K), and φK gives an isomorphism of topological groups K× → W (L/K).
It restricts to an isomorphism UK → I(L/K).

Combining Theorems 2.1 and 2.3 gives the following bijective correspondence.

Theorem 2.5: Let K be a nonarchimedean local field. Then there is a bijective correspon-
dence between finite abelian extensions of K and the set of open subgroups of finite index
of K×, given by

L 7→ NmL/K(L×).

Furthermore, this is an inclusion-reserving bijection that takes intersections to products and

242



Number Theory, §23.3.

products to intersections:

L ⊆M ⇐⇒ NmL/K(L×) ⊇ NmM/K(M×)

NmL·L′/K((L · L′)×) = NmL/K(L×) ∩ NmL′/K(L′×)

NmL∩L′/K((L ∩ L′)×) = NmL/K(L×) · NmL′/K(L′×).

Finally, every subgroup of K× containing a norm group is a norm group.

The following gives a sort-of converse statement: nonabelian extensions cannot be de-
scribed by norm groups.

Theorem 2.6 (Norm limitation theorem): Let L be a finite extension of a local field K,
and K ′ be the largest abelian extension of K contained in L. Then

NmL/K(L×) = NmK′/K(K ′×).

§3 Ray class groups

In order to define the Frobenius element of a prime we need the extension to be unramified.
However, when K is a global field, we cannot as easily say an extension L/K is “unramified,”
because OK has many prime ideals. Requiring that L/K to be unramified at all primes of
K is too restrictive, because most fields L do not satisfy this condition.

Thus, we instead focus on a set of primes S and consider extensions L/K that are
unramified outside of S. When we define Frobenius elements, we have to exclude S, and
when we define a reciprocity map we have to exclude the subgroup that these primes generate.
(Note that unlike in local reciprocity, we will not define φK with domain K×, but rather
with domain a subgroup of the ideal group IK .)

Letting S range over all finite subsets, we will account for all finite abelian extensions
L/K, because each extension is ramified at only finitely many primes (Theorem 14.6.1).

This motivates the following definition.

Definition 3.1: Let IK be the group of fractional ideals of K. Define ISK to be the subgroup
of IK generated by prime ideals not in S.

Let L/K be an extension of K. Define ISL := IS
′

L , where S ′ is the set of prime ideals lying
above a prime ideal in S.

Note that if S ⊆ T then ISK ⊇ ITK .
Similar to Theorem 2.1, global class field theory will tell us there is a map

ISK/NmL/K(ISL)→ G(L/K)

when S contains the primes that ramify in L. However, this is not an isomorphism until we
take a further quotient, namely, the quotient with a subgroup of principal ideals PK(1,m),
which we will define. First we need the following.

Definition 3.2: A modulus m is a formal product of places of K, where
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1. Finite primes have exponents in N0, and only finitely many exponents are nonzero.

2. Infinite real places have exponents 0 or 1.

3. Infinite complex places do not appear.

We say a place divides m if it appears with positive exponent. We write

m =
∏

p finite

pm(p)

︸ ︷︷ ︸
m0

∏
v real

vm(v)

︸ ︷︷ ︸
m∞

.

In other words, a modulus is the product of a proper ideal with some number of real
places.

Definition 3.3: Let S(m) denote the set of finite primes dividing m.
Define K(1,m) (“elements of K that are 1 modulo m”) to be the subgroup of elements

of K× satisfying the following.{
ordp(a− 1) ≥ m(p), finite p | m
av > 0, real v | m.

Let i : K× → IK be the map sending a to (a), and let

PK(1,m) := i(K(1,m)).

Define the ray class group of m to be

CK(m) = I
S(m)
K /PK(1,m).

Note that PK(1,m) ∈ IS(m)
K because if a ∈ K(1,m) and p ∈ S(m), then ordp(a − 1) ≥ 1

and ordp(a) = 0, i.e. p - (a). We will often abbreviate IS(m) as Im.

Example 3.4: If m = 1 then PK(1,m) is the subgroup of principal ideals and CK(m) is just
the ideal class group.

If m =
∏

v real v, then

CK(m) = IK/ {(a) ∈ IK : av > 0 for all real v}

is called the narrow class group. We are only modding out by the “totally positive”
principal ideals, so it is larger than the class group.

Definition 3.5: A congruence subgroup for K modulo m is a subgroup H such that

PK(1,m) ⊆ H ⊆ I
S(m)
K .

The corresponding generalized ideal class group is I
S(m)
K /H.
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We will show that generalized ideal class groups are exactly the Galois groups of abelian
extensions of K.

Finally, in preparation for the global reciprocity theorem, we say what it means exactly
for a map to only depend on modulo conditions, like the Frobenius map we considered in
Section 1.2.

Definition 3.6: A homomorphism ψ : IS → G admits a modulus if there exists a modulus
m with S(m) = m such that ψ factors through IS/PK(1,m). In other words, there exists a
modulus m with S(m) = S such that

ψ(PK(1,m)) = 0.

§4 Global reciprocity

In this section K is a global field.

Theorem 4.1 (Global reciprocity theorem): Let L/K be a finite abelian extension. Let S
be the set of primes ramifying in L. There is a unique map ψL/K such that for a prime ideal
p 6∈ S, ψL/K(p) acts on L as FrobL/K(p). Moreover, ψL/K satisfies the following properties.

1. (Isomorphism) ψL/K admits a modulus m with S(m) = S and ψL/K induces an isomor-
phism

ψL/K : ISK/(PK(1,m) · NmL/K(ISL))
∼=−→ G(L/K).

2. (Compatibility over all extensions) Suppose S ⊆ T , and L/K, M/K are finite abelian
extensions such that L ⊆M and such that the set of primes ramifying in L,M are con-
tained in S, T , respectively. Then the following commutes, where pL is the projection
map.

ITK
ψM/K
//

� _

��

G(M/K)

pL

��

ISK
ψL/K
// G(L/K).

3. (Compatibility with norm map) For K ⊆ K ′ ⊆ L, the following diagram commutes.

ISK′
ψL/K′
//

NmK′/K
��

G(L/K ′)� _

��

ISK
ψL/K
// G(L/K)

Remark 4.2: The uniqueness of ψL/K is clear from the fact that ISK is freely generated by
prime ideals. Part 2 follows immediately from the definition of ψL/K and ψM/K , and part 3
follows immediately from the existence of ψL/K and ψL/K′ , as we show below. The crux of
the theorem is part 1.
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For part 2, since primes generate ISK , it suffices to show that for any prime p ∈ ISK ,

ψL/K(p) = pL(ψM/K(p)).

But by definition, the left-hand side is FrobL/K(p) and the right-hand side is pL(FrobM/K(p)).
Now pL induces the map G(m/k) → G(l/k), so both sides act on k as the |k|th power
Frobenius, and are equal.

For part 3, we need to show for any prime p ∈ ISK′ ,

ψL/K′(p) = ψL/K(NmK′/K(p)).

But by definition, the left-hand side is FrobL/K′(p) and the right-hand side is ψL/K(p[k′:k]) =
FrobL/K(p)[k′:k]. The result now follows from Proposition 1.4.

Example 4.3 (Cyclotomic extensions): In Section 1.2, we showed that the global reciprocity
theorem (part 1 above) holds for a cyclotomic extension Q(ζn)/Q. Indeed, letting m be n∞,

we have that ImK/PK(1,m)
∼=−→ G(Q(ζn)/Q) as in (23.2). (Note that NmL/K(ISL) ⊆ PK(1,m)

will follow from the first inequality 27.2.1.)

Note the modulus in Theorem 4.1 has to be divisible by all primes ramifying in L, and
the primes have to have large enough exponents for ker(ψL/K) to be a congruence subgroup
modulo m. There is a canonical choice for m, namely the modulus with least exponents. It
is called the conductor of the extension L/K, and denoted by f(L/K).

We have the following analogue of Theorem 2.3.

Theorem 4.4 (Existence theorem): Let H be a congruence subgroup modulo m. Then
there exists an abelian extension L/K such that

H = PK(1,m) · NmL/K(ImL ) = ker(ψL/K).

In particular, this applies when H = PK(1,m).

Definition 4.5: For each modulus m there is a field Km, called the ray class field of K
modulo m such that ψKm/K defines an isomorphism

CK(m)
∼=−→ G(Km/K).

Example 4.6: Since ∞(n) is the smallest modulus such that ψQ(ζn)/Q factors through
ImK/PK(1,m), ∞(n) is the conductor of Q(ζn). Since we actually have an isomorphism

CK(∞n) = I∞nK /PK(1,∞n)
∼=−→ G(Q(ζn)/Q),

Q(ζn) is in fact the ray class field of ∞(n).
We have that Q(ζn + ζ−1

n ) is the ray class field of (n) (see exercise 1.2).

Putting this all together, if we fix a modulus m we have the following bijection between
extensions and subgroups.
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Theorem 4.7: Fix a modulus m and a global field K. The map L 7→ NmL/K(CL(m)) is a
bijection between

1. the set of abelian extensions of K in the ray class field Km and

2. the set of subgroups of CK(m).

Moreover, it reverses inclusions and switches products and intersections:

L ⊆M ⇐⇒ NmL/K(CL(m)) ⊇ NmM/K(CM(m))

NmL1·L2/K(CL1·L2,m) = NmL1/K(CL1(m)) ∩ NmL2/K(CL2(m))

NmL1∩L2/K(CL1∩L2(m)) = NmL1/K(CL1(m)) · Nm(CL2(m)).

Note Theorem 4.1 is like Theorem 2.1 except that we’re only working with finite exten-
sions L/K instead of putting them together into Kab/K. We cannot combine the maps ψL/K
because they are defined on different groups. Hence we now take a different approach, using
ideles.

§5 Ideles

In this section we give an alternate statement of the main theorems of global class field
theory.

In local class field theory, we had isomorphisms K×/NmL/K(L×) ∼= G(L/K). For this to
be true, NmL/K(L×) must have finite index in K×. However, this is no longer true when K
is a global field. (If K is local, it is complete with respect to a valuation, and NmL/K(x) = y
has solutions in y for many x, in the same way that Hensel’s lemma often gives solutions
over complete fields.)

We want to work with complete fields but K comes with a bunch of different places. The
solution is to complete K at every place at once and combine the information into the adele
ring and idele group. Then we will get statements for global class field theory that resemble
local class field theory, with K× replaced by CK , a group related to the idele group (to be
defined).

Definition 5.1: Abbreviate Ov = OKv . The adele ring of K is

AK =

{
(av) ∈

∏
v∈VK

Kv : av ∈ Ov for all but finitely many v

}
.

We write this as
∏′

v∈VK (Kv,Ov). Equip it with a topology by letting a basis for open sets
be
∏

v Uv, where Uv is open in Kv for all v and Uv = Ov for almost all v. In other words, it
is the unique topology from which

∏
vOv inherits the product topology and is open.

The idele group of K is the group of units of the above:

IK = A×K =
∏
v∈VK

′
(K×v ,O×v ) =

{
(av) ∈

∏
v∈VK

K×v : av ∈ O×v for all but finitely many v

}
.
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Equip it with a topology by letting a basis for open sets be
∏

v Uv, where Uv is open in K×v
for all v and Uv = O×v for almost all v. In other words, it is the unique topology from which∏

vO×v inherits the product topology and is open.

Be careful: the topology of the idele group is not the subspace topology induced from
the adele ring.

Definition 5.2: For a finite set S containing all infinite places, let ISK =
∏

v∈SK
×
v ×∏

v 6∈S O×v . In other words, ISK contains those ideles that are units away from S. Give ISK the
subspace topology inherited from IK .

Note the topology on ISK is just the product topology, and that I =
⋃
S ISK .

Proposition 5.3: ISK is locally compact.

Proof.
∏

v∈SK
×
v is a finite product of locally compact spaces;

∏
v 6∈S O×v is a product of

compact spaces (Proposition 20.1.3) so compact by Tychonoff’s Theorem. Since a finite
product of locally compact spaces is compact, the result follows.

Think of the ideles as a thickening of ideals: it includes factors for infinite places, and
includes units at finite primes. We can embed K× via the diagonal map, and K×v via the
inclusion map.

Definition 5.4: Define i : K ↪→ AK by the diagonal map i(a) = (a, a, . . .) and iv : Kv ↪→ AK

by the inclusion map iv(a) = (1, . . . , 1, av︸︷︷︸
v

, 1, . . . , 1). Also denote by i, iv the maps restricted

to K× ↪→ IK and iv : Kv ↪→ IK .

Proposition 5.5: i(K×) is discrete in IK .

Proof. Given a ∈ K×, let S be set of places contining the infinite places and the finite places
where v(a) 6= 0. Consider the open set

U = {x ∈ IK : |xv − a|v < ε for v ∈ S, xv ∈ Uv for v 6∈ S}

containing i(a). If i(b) ∈ U with a 6= b, then∏
v

|b− a|v < ε|S| < 1,

contradicting the product formula 20.30.1. Hence i(K×) ∩ U = {i(a)}.

Definition 5.6: The idele class group is defined to be

CK = IK/K×,

where K× is thought of as a subgroup of IK by the diagonal map i.
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We define a norm on adeles by defining it componentwise.

Definition 5.7: The norm, from L to K is the function NmL/K : AL → AK defined by

NmL/K ((xw)w∈VL) =

∏
w|v

NmLw/Kv(xw)


v∈VK

.

This descends to a function NmL/K : IL → IK .

5.1 Ray class groups vs. ideles

We will need the following to go between the interpretations of global class field theory via
ray class groups and via ideles. The statement in terms of ray class groups is easier for
concrete applications, but the statement in terms of ideles is better abstractly, and more
convenient to prove. (But to complicate things more, certain parts of the proof will be easier
to think of in terms of ray class groups.)

We can go from IK → IK easily, via the map

p(a) =
∏

v=vp finite

pv(av) (23.3)

(also denoted simply (a)). However, if we want the image to be in I
S(m)
K , we need to focus our

attention on a subset of ideles IK(1,m) (defined below). Taking the map IK(1,m) → I
S(m)
K

and modding out by appropriate groups then makes it a bijection. We also need to check
that we don’t lose anything when we consider only ideles of the form IK(1,m); that is, that
the inclusion IK(1,m) ↪→ IK is a bijection, again after modding out by appropriate groups.
This is Proposition 5.9 below.

Definition 5.8: For a place v | m, define

I(m)v =

{
R>0, v real

1 + pm(p), v = vp finite.

Let O×v be the group of units of Kv. (For v infinite, O×v := K×v ). Define

IK(1,m) =
∏
v|m

I(m)v ×
∏
v-m

′
(K×v ,O×v ) (23.4)

UK(1,m) =
∏
v|m

I(m)v ×
∏
v-m

O×v

K(1,m) = i(K×) ∩ IK(1,m).

Let UK := UK(1, 1).

Compare (23.4) to the definition of PK(1,m).
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Proposition 5.9: We have the following maps.

IK(1,m)/K(1,m)
∼= //

��

IK/K× = CK

IK(1,m)/K(1,m)UK(1,m)
∼= // CK(m).

The bottom map is induced by the map p : IK → ImK and the top map is induced by inclusion.
Moreover, for any finite Galois L/K such that

UK(1,m) ⊆ NmL/K(IL),

this diagram induces isomorphisms

IK(1,m)/[K×NmL/K IL ∩ IK(1,m)]
∼= //

∼=

,,

IK/K×NmL/K IL

ImK/(PK(1,m) · NmL/K(ImL )).

Proof. For the bottom map, consider the exact sequence

0→ K× ∩ IK(1,m) = K(1,m)
i−→ IK(1,m)

p−→ IS(m) → 0.

We have that IK(1,m)/K(1,m) = coker i, so we use the kernel-cokernel sequence.1 We have
ker p = UK(1,m), and coker p ◦ i = IS(m)/p(K(1,m)) = IS(m)/PK(1,m) = CK(m), so this
gives the exact sequence

UK(1,m)→ IK(1,m)/K(1,m)→ CK(m)→ 1,

which gives the bottom isomorphism.
The top map is clearly injective. For surjectivity, take a ∈ IK . By the weak approximation

theorem 19.3.4, there exists b so that av
bv
∈ pm(p) + 1 for every v = vp dividing m. Then

a
b
∈ IK(1,m), and its image varies in IK from a by the constant factor b ∈ K×.

Now we show the second diagram. (Warning: this proof is not very enlightening.) Let
p and p′ denote the maps IK → IK and IK(1,m) → ISK , respectively. Note that the first
diagram gives isomorphisms

IK(1,m)/((K×NmL/K IL) ∩ IK(1,m))
∼= //

��

IK/K×NmL/K IL

IK(1,m)/K(1,m)UK(1,m)p′−1(NmL/K(ImL ))
∼= // ImK/(PK(1,m) · NmL/K(ImL )).

1Given A
f−→ B

g−→ C, there is an exact sequence

0→ ker f → ker g ◦ f → ker g → coker f → coker g ◦ f → coker g → 0.

This is proven using the snake lemma.
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We have that

K(1,m)UK(1,m)p′
−1

(NmL/K(ISL)) (23.5)

= K(1,m)UK(1,m)p′
−1

(〈pf(w/v) | w | v 6∈ S〉), fv = residue degree (23.6)

= K(1,m)UK(1,m)(IK(1,m) ∩ UK NmL/K(IL)) (23.7)

= UK(1,m)(IK(1,m) ∩ (K×NmL/K IL)) (23.8)

= (K×NmL/K IL) ∩ IK(1,m). (23.9)

(23.6) follows from the fact that if P | p, then NmL/K(P) = pf(P/p). To go between (23.6)
and (23.7), note that pf(w/v) = p(NmL/K(1, . . . , 1, πw︸︷︷︸

w

, 1, . . . , 1)), and that ker(p) = UK .

Now we go between (23.7) and (23.8). For “⊆,” suppose a ∈ UK and b ∈ NmL/K(IL) such
that aNmL/K b ∈ IK(1,m). Suppose c agrees with a for every v | m, and is 1 everywhere
else. Then ac−1 ∈ UK(1,m) ⊆ IK(1,m). Since aNmL/K b ∈ IK(1,m) as well and IK(1,m) is
a group, we must have cNmL/K b ∈ IK(1,m). Hence

aNmL/K b = ac−1︸︷︷︸
∈UK(1,m)

cNmL/K b︸ ︷︷ ︸
∈IK(1,m)∩(K× NmL/K IL)

,

as needed. Furthermore note K(1,m) ⊆ IK(1,m)∩K×NmL/K IL. For “⊇,” suppose a ∈ K×
and b ∈ NmL/K(IL) such that aNmL/K b ∈ IK(1,m). By weak approximation, take c ∈ K×
sufficiently close to 1

bv
with respect to v, for every v ∈ m, so that NmL/K(cb) ∈ IK(1,m).

Then aNmL/K(c−1) ∈ IK(1,m) as well, and in fact in K(1,m). Then

aNmL/K b = aNmL/K(c−1)︸ ︷︷ ︸
∈K(1,m)

NmL/K cb︸ ︷︷ ︸
∈IK(1,m)∩NmL/K IL

,

as needed.
The last step (23.9) follows from the assumption on m.

Example 5.10: Recall how we realized the class group and narrow class group as ray class
groups in Example 3.4. We now realize them as quotients of the idele class group.

Take m to be 1. Then the bottom map gives an isomorphism

IK/K×UK
∼= CK

where CK is just the class group of K. This realizes the class group of K as a quotient of
the idele class group.

In general, for any modulus m,

IK/K×UK(1,m) ∼= IK(1,m)/K(1,m)UK(1,m) ∼= CK(m).

This realizes the ray class group modulo m as a quotient of the idele class group.
In particular, m = 1 was the case above. Taking m =

∏
v real v, PK(1,m) is the group

of principal ideals generated by totally positive elements (also written P+
K ) and UK(1,m) =∏

v real R>0 ×
∏

vO×v . This realizes the narrow class group of K as a quotient of the idele
class group.
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Remark 5.11: The condition on m in Proposition 5.9 was that UK(1,m) ⊆ NmL/K(IL).
We claim that we can always choose such m, such that S(m) consists of exactly the primes
ramifying in L/K.

The condition UK(1,m) ⊆ NmL/K(IL) says that O×v ⊆ NmLv/Kv(L
v) for all v - m and

I(m)v ⊆ NmLv/Kv(L
v) for all v | m. Now note the following.

1. If L/K is unramified at v, i.e. Lv/Kv is unramified, then

NmLv/Kv(L
v×) = π[Lv :Kv ]Z

v O×v ⊇ O×v .

This is a consequence of local class field theory (Example 26.5.1).

2. NmLv/Kv(L
v) is an open subgroup of Kv (this is the easy direction in Theorem 2.3)

and U
(n)
v := 1 + πnvOv is a neighborhood base of 1 in Kv.

By item 1, m doesn’t need to include the places where L/K is unramified, and by item 2, for

all ramified v we can choose the power of v in m large enough to force U
(n)
v ⊆ NmLv/Kv(L

v×).
Then we will have UK(1,m) ⊆ NmL/K(IL).

§6 Global reciprocity via ideles

We now state global reciprocity in terms of ideles.

Theorem 6.1 (Global reciprocity, ideles): Given a finite abelian extension L/K, there is a
unique continuous2 homomorphism φL/K that is compatible with the local Artin maps, i.e.
the following diagram commutes3:

IK
φL/K

// G(L/K)

K×v
φv
// //

?�

iv

OO

G(Lv/Kv).
?�

OO

Moreover, φL/K satisfies the following properties.

1. (Isomorphism) For every finite abelian extension L/K, φK defines an isomorphism

φL/K : CK/NmL/K(CL) = IK/(K× · NmL/K(IL))
∼=−→ G(L/K).

2. (Compatibility over all extensions) For L ⊆M , L,M both finite abelian extensions of
K, the following commutes:

G(M/K)

pL
��

IK

φM/K
::

φL/K
// G(L/K)

Thus we can define φK := lim←−L/K abelian
φL/K as a map IK → G(Kab/K).

2G(L/K) is given the discrete topology.
3This implies that if v = vp is unramified in L, then φL/K(iv(πv)) = FrobL/K(p). Global reciprocity is

sometimes phrased in this way, though the phrasing using the local map gives a bit more information.
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3. (Compatibility with norm map) φK is a continuous homomorphism IK → G(Kab/K),
and the following commutes.

IL
φL //

NmL/K

��

G(Lab/L)

•|
Kab

��

IK
φK // G(Kab/K)

Note that in the local reciprocity theorem 2.1, the “compatibility over all extensions”
was automatic when we declared the existence of φK : K× → G(Kab/K). We stated the
global reciprocity theorem a bit differently, in the above fashion for easy comparison with
global reciprocity in terms of ideals 4.1.

Remark 6.2: Uniqueness and existence of φL/K is easy, and parts 2 and 3 are easy given
the existence of φL. The crux of the theorem is again part 1.

For uniqueness, note that the φL/K is determined by its action on K×v , since for x = (xv),
we must have

φL/K(x) =
∏
v∈VK

φv(xv).

(The product is Cauchy in the topology of IK .) This does define a continuous map on IK
because φv(xv) = 1 whenever xv ∈ O×v and v is unramified, and this happens for all but
finitely many v.

Parts 2 and 3 follow from the corresponding statements for local class field theory (see
Theorem 2.1 and the paragraph above this remark), by how φ is defined to be compatible
with the local maps.

The idele version of global reciprocity allows us to recast the Existence Theorem 4.4 in
a format more similar to the Existence Theorem in 2.3.

Theorem 6.3 (Existence theorem): For every subgroup N ⊆ CK of finite index, there exists
a unique abelian extension L/K such that NmL/K CL = N .

Combining the two theorems, we can recast the bijective correspondence in Theorem 4.7
in a format more similar to local class field theory 2.5.

Theorem 6.4: The map L 7→ NmL/K(CL) is an inclusion-reversing bijection between the
set of finite abelian extensions of K and the open subgroups of finite index in CK , that
switches intersections and products:

L ⊆M ⇐⇒ NmL/K(CL) ⊇ NmM/K(CM)

NmL1L2/K(CL1L2) = NmL1/K(CL1) ∩ NmL2/K(CL2)

NmL1∩L2/K(CL1∩L2) = NmL1/K(CL1) · NmL2/K(CL2).

Similar to Theorem 2.4, we have the following topological isomorphism for global class
field theory.
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Theorem 6.5 (Topological isomorphism for GCFT): Let K be a number field. Let

(K×∞)0 :=
∏
v real

R>0 ×
∏

v complex

C×
∏
v∈V 0

K

1.

The Artin map φK is surjective and induces a topological isomorphism

IK/K×(K×∞)0 ∼= G(Kab/K).

6.1 Connecting the two formulations

We now show that the two formulations of global class field theory are equivalent, in the
following sense.

Theorem 6.6: We have the following implications.

1. (Global reciprocity, ideles =⇒ ideals) If Theorem 6.1(1) holds for a given L/K, then
Theorem 4.1(1) holds for L/K. If Theorem 6.1 holds for all L/K over a specified
basefield (e.g. Q), then Theorem 4.1 holds for all such L/K.

2. (Global reciprocity, ideals =⇒ (ideles)−ε) If Theorem 6.1(1)-(2) holds for a fixed K
and a family {L/K} such that the compositum of the Lv contains Kur

v for every finite
place v, then Theorem 6.1(1)-(2) holds for the same K and {L/K}, except that the
resulting map φL/K may not be compatible with φv when v is archimedean.

3. (Global existence) Given Theorem 6.1, Theorems 4.4 and 6.3 are equivalent.

4. (Bijective correspondence) Given Theorem 6.1, Theorems 4.7 and 6.4 are equivalent.

Proof. For parts 1 and 2, we note that by Proposition 5.9,

CK/NmL/K CL = IK/K×NmL/K IL ∼= ISK/PK(1,m) NmL/K(ISL), (23.10)

where by Remark 5.11, we can choose m to some modulus containing only ramified primes,
and S = S(m). Thus any one of the dotted isomophisms below gives the other isomorphism.

IK/K×NmL/K(IL)

∼=p

��

∼=
φL/K ))

G(L/K)

ISK/PK(1,m) NmL/K(ISL)

∼=

ψL/K
55

(23.11)

For part 1, given φL/K , we define ψL/K with the above diagram. Then, supposing p corre-
sponds to the uniformizer πv ∈ Kp,

ψL/K(p) = ψL/K(p(i(πv))) = φL/K(i(πv)) = φv(πv) = FrobLv/Kv((πv)) = FrobL/K(p),
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as needed. Part 2 is a more complicated; we’ll give the proof below after a lemma. The “−ε”
comes from the fact that the formulation in Theorem 6.1 says nothing about archimedean
primes.

Parts 3 and 4 now result directly from the fact that (23.10) gives a bijective correspon-
dence between subgroups of two groups.

Lemma 6.7: Suppose that K is a nonarchimedean local field, Kur is the maximal abelian
unramified extension of K, and L is an abelian extension containing Kur. Let f : K× →
G(L/K) be a homomorphism satisfying (1) and either (2) or (2)′:

1. The composition K×
f−→ G(L/K)→ G(Kur/K) takes α to FrobKur/K(π)v(α).

2. For any uniformizer π ∈ K, f(π)|Kπ = 1, where

Kπ := LφK(π).

2’. For any finite subextension K ′/K of Kπ, we have

f(NmK′/K(K ′
×

))|K′ = {1}.

Then f equals the reciprocity map φK .

For the proof, see Section 26.8.1.

Proof of Theorem 6.6, Part 2. Given ψL/K we define φL/K using (23.11). The ψL/K are
compatible by Remark (4.2), so the φL/K are compatible (details omitted) and we can define
φK = lim←−L/K φL/K where the limit is over L/K in the given family. Let L′ be the compositum

of the fields L.

We check the hypotheses 1 and 2′ of Lemma 6.7. Let

fv = φK ◦ iv : K×v → G(L′
v
/Kv).

Item 1 is clear as (23.11) gives letting v = vp, we have

φK(iv(α))|Kur
v

= ψK(pv(α))|Kur
v

= FrobKur
v /Kv(α)v(α).

Item 2′ follows from part 3 of Theorem 4.1 applied to K ′/K (see Remark 4.2): we get
ψL/K(NmK′/K(ISK′))|K′ = 1 which translates into φK(iv(NmK′v/Kv(K

′
v
×)))|K′v = 1. Thus

fv = φv for all finite places, as needed.

We have proved the ideal version of global class field theory for cyclotomic extensions
of Q. Our plan of attack will be to show transfer this to the idele version for cyclotomic
extension of Q, then work on proving the idele version. Then we will be done by Theorem 6.6.
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§7 Kronecker-Weber Theorem

As a first application of class field theory, we explicitly describe the maximal abelian exten-
sions of Qp and Q.

Theorem 7.1 (Local Kronecker-Weber theorem): Every abelian extension of Qp is included
in a cyclotomic extension, i.e. an extension Qp(ζn), ζn a primitive nth root of unity, for some
n. In other words,

Qab
p = Qp(ζn | n ∈ N).

Theorem 7.2 (Kronecker-Weber theorem): Every abelian extension of Q is included in a
cyclotomic extension Q(ζn). In other words,

Qab = Q(ζn | n ∈ N).

Proof of Theorem 7.1. Consider Qp(ζk) where p - k. Let U denote the group of units. As
Qp(ζk) is unramified, local class field theory tells us

NmQp(ζk)/Qp(Qp(ζk)
×) ∼= π[Qp(ζk):Qp]ZU.

Consider Qp(ζpm), which is totally ramified of degree pm−1(p− 1) over Qp. Local reciprocity
gives

Q×p /NmQp(ζpm )/Qp(Qp(ζpm)×)
∼=−→ G(Qp(ζpm)/Qp).

Thus both sides have the same order, pm−1(p− 1), and we must have

NmQp(ζpm )/Qp(Qp(ζpm)×) = U (m) := pZ(1 + (pm)).

Suppose L/Qp is an abelian extension. Its corresponding norm group N is open of finite
index in Qp, so contains

pnZ(1 + (pm))

for some n,m. Choosing k large enough we may suppose n | [Qp(ζk) : Qp]. Then using
Theorem 2.54,

N ⊇ Nm(Qp(ζn)×) ∩ Nm(Qp(ζpm)×) = Nm(Qp(ζnpm)×).

By Theorem 2.5, we get that Qp(ζnpm) ⊇ L.

Proof of Theorem 7.2. Given an abelian extension K/Q, choose a modulus m so that the
Artin map is defined. Every modulus for Q divides ∞(n) for some integer n. The ray class
field of∞(n) is Q(ζn). If m divides∞(n), then K is contained in Q(ζn). Hence the maximal
abelian extension is the union of all the Q(ζn).

We can similarly ask how to characterize abelian extensions of other number fields K.
This is Hilbert’s Twelfth Problem and Kronecker’s Jugendtraum. Note that another way to
phrase this theorem is the following:

4omitting the subscripts on norms to avoid clutter
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1. Qab is generated by the torsion points of Q× under multiplication.

2. Let f(z) = e2πiz. Then Qab is generated by f(Q):

Qab = Q(f(Q)).

We can ask: for given K, can we get Kab by adjoining torsion points of some algebraic
variety, and does there exist a nice function g(z) parameterizing this variety, so that

Kab ≈ K(g(K))?

It turns out that the answer is affirmative for quadratic extensions: roughly speaking, the
maximal abelian extension is generated by torsion points of elliptic curves with complex
multiplication. We will give a complete solution to this problem in Chapter 39.

§8 Problems

1.1 Why can’t we define Frobp ∈ G(L/K) when p is a prime in K that is ramified in L?

1.2 Fix n ∈ N.

(a) For which primes p ∈ Z does (p) split completely in Z[ζn + ζ−1
n ]? (Be careful with

p = 2.)

(b) Show that the ray class field of (n) is Q(ζn + ζ−1
n ).

1.3 (IberoAmerican Olympiad for University Students, 2010/6) Prove that, for all integers
a > 1, the prime divisors of 5a4 − 5a2 + 1 have the form 20k ± 1.

1.4 Consider the field extension Q( 3
√
d, ζ3)/Q where d ∈ Z is not a perfect cube. Let p be

a prime relatively prime to 3d. Prove that a prime p splits into n factors in Q( 3
√
d, ζ3),

where

n =


2, p ≡ 1 (mod 3) and d is a cube modulo p

3, p ≡ 1 (mod 3) and d is not a cube modulo p

6, p ≡ 2 (mod 3).

2.1 Recall that G(K/K) has profinite (Krull) topology. Topologically W (K/K) is a Z-
disjoint union of G(K/K)0-cosets G(K/K)0σn, where σn is any lift of Frobnq , n ∈
Z, where each G(K/K)0σn is given the same topology as the profinite topology on
G(K/K)0 via translation by σn.

(a) Show that the natural inclusion ι : W (K/K) → G(K/K) is continuous and has
dense image.

(b) Show that ι is not a topological isomorphism onto ι(W (K/K)), where the latter
is equipped with the topology induced by that of G(K/K).
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Chapter 24

Group homology and cohomology

In this chapter we introduce the theory of group homology and cohomology. In the next
chapter we’ll specialize to the case of Galois groups, and then we’ll use Galois cohomology to
prove the theorems of class field theory. Some results in this chapter will be given without
proof; for detailed proofs see Rotman [27]. We assume knowledge of some basic terminol-
ogy and facts from category theory and commutative algebra (covariant and contravariant
functors, natural transformations, left and right exactness).

The idea of homology and cohomology—used in many different areas of mathematics—is
that after applying a functor, a short exact sequence of modules may no longer be exact.
Instead, we get the long exact sequence in (co)homology, with the (co)homology groups
measuring the deviation from exactness.

Exactly what functors are we applying? In group cohomology (Section 6), we apply
HomG(Z, •), turning a short exact sequence of G-modules

0→ A→ B → C → 0

into

0→ AG → BG → CG → H1(G,A)→ · · · (24.1)

where AG is the submodule of A fixed by G. In the next chapter we will take A,B,C to be a
multiplicative or additive subgroup of a field L, and G = G(L/K). Then AG is just A ∩K.
Thus we see that the sequence (24.1) gives information about the relationship between a
field K and an extension field. For example, in Kummer Theory 25.2, we take C = L×n;
then CG = L×n ∩K, and we can characterize G(L/K) and hence L/K in terms of the nth
powers of L appearing in K. This is representative a general trend in class field theory:
characterize extensions of K in terms of information intrinsic to K.

We also get a sequence in group homology (Section 8), and we can splice the sequences
for homology and cohomology together to get the Tate groups (Section 9). Norm groups will
make their appearance here—which is how, in class field theory, we get a correspondence
between norm groups and field extensions.

Finally, we assemble a toolbox of other constructions from group cohomology and ho-
mology, including cup products (Section 10), changes of group (Section 11), the corestriction
map (Section 11.5), results on cyclic groups and the Herbrand quotient (Section 12), and
Tate’s theorem (Section 13). We include generalizations of cohomology to profinite groups
(Section 14) and nonabelian groups (Section 15).
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§1 Projectives and injectives

Let A be an abelian category.1 The reader unfamiliar with category theory may assume that
A is the class of R-modules, since we will be primarily working with modules throughout.

Definition 1.1: Let A be an abelian category.

1. An object P ∈ A is projective if for every surjection p : M � N and morphism
f : P → N , there exists a unique morphism g : P →M such that f = p ◦ g:

P
g

~~

f
��

M p
// // N

Equivalently, Hom(P, •) is exact (or equivalently, right exact as it is always left exact).2

2. An object I ∈ A is injective if for every injection i : M ↪→ N and morphism f : M →
I, there exists a unique morphism g : N → I, such that f = g ◦ i:

M

f
��

� � i // N

g
~~

I

Equivalently, Hom(•, I) is exact (or equivalently, just right exact).

Example 1.2: A free R-module (a direct sum of copies of R) is projective.

Definition 1.3: An abelian category A . . .
1. has enough injectives if for every object A ∈ A there exists an injective object E

with a monic (injective) morphism A ↪→ E.

2. has enough projectives if for every object A ∈ A there exists a projective object P
with an epic (surjective) morphism P � A.

Definition 1.4: A projective resolution of A is an exact sequence

P : · · · → P2
d2−→ P1

d1−→ P0
ε−→ A→ 0

where each Pn is projective.
An injective resolution of A is an exact sequence

E : 0→ A
η−→ E0 d0

−→ E1 d1

−→ E2 → · · ·

where each En is injective.

1A category is an abelian category if it is an additive category such that every morphism has a kernel
and cokernel, every monomorphism (injection) is a kernel, and every epimorphism (surjection) is a cokernel.

2The diagram is equivalent to saying that if p : M � N is surjective, then so is the map

Hom(P,M)
Hom(•,p)−−−−−−→ Hom(P,N), i.e. Hom(P, •) is right exact.
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Proposition 1.5: If A is an abelian category with enough projectives (injectives), then
every object has a projective (injective) resolution. In particular, every R-module has a
projective (injective) resolution.

Proof. Build the resolution step-by-step. See Rotman [27], Proposition 6.2-5. For the second
part, note that the category of R-modules has enough projectives and enough injectives.

§2 Complexes

Definition 2.1: A complex in an abelian category (for example, the category of R-modules
or abelian groups) is a sequence of morphisms

C : · · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → · · ·

such that the composition of any two adjacent morphisms is 0:

dndn+1 = 0.

We often work with complexes only going off to the left or right (positive and negative
complexes, respectively), and label them

· · · → Cn
dn−→ Cn−1 → · · · → C0 → 0

0→ C0 → · · · → Cn−1 dn−1

−−−→ Cn → · · ·

We will want to work with complexes like they are single objects.

Theorem 2.2: The class of complexes in A can be made into an abelian category, Comp(A)
as follows: The objects are the complexes and the morphisms are chain maps f = (fn) :
C→ C′, i.e. a sequence of maps making the following commute.

// Cn+1
dn+1

//

fn+1

��

Cn
dn //

fn
��

Cn−1
dn−1

//

fn−1

��

// C ′n+1

d′n+1
// C ′n

d′n // C ′n−1

d′n−1
//

Proof. See Rotman [27], Proposition 5.100.

We will be interested in cohomology and homology modules associated to chain com-
plexes. For this, we have the following notion of what it means for chain maps to be “the
same” (See Theorem 3.2).

Definition 2.3: Two chain maps f, g : C → C′ are homotopic if there exist a family of
morphisms sn : Cn → C ′n+1 such that

fn − gn = d′n+1sn + sn−1dn.
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In Section 4 we will define the homology modules and cohomology modules from projec-
tive and injective resolutions. To show this does not depend on the choice of projective or
injective resolution, we need the following theorem.

Theorem 2.4 (Comparison Theorem): Let A be an abelian category, and suppose we have
two complexes C : · · · → P1 → P0 → A → 0 and C′ : · · ·P ′1 → P ′0 → A′ → 0 and a map
g : A→ A′. Then there exists a chain map f extending g:

· · · // P1

f1

��

// P0
//

f0

��

A //

g

��

0

· · · // P ′1 // P ′0 // A′ // 0.

Moreover, f is unique up to homotopy.
The same is true of complexes going off to the right (reverse the arrows above).

Proof. Rotman [27], Theorem 6.16.

§3 Homology and cohomology

Definition 3.1: Given a complex C, define

Zn(C) = ker(dn)

Bn(C) = im(dn+1)

Hn(C) = Zn(C)/Bn(C).

Hn is called the nth homology module. For upper indexing, we let Zn(C) = ker(dn),
Bn(C) = im(dn−1), and Hn(C) = Zn(C)/Bn(C), and call Hn the nth cohomology mod-
ule.

Think of Hn as measuring how far the complex is from being exact at Cn.

Theorem 3.2: Let A be an abelian category. For every integer n, Hn is an additive functor
from Comp(A)→ A. Moreover, homotopic chain maps induce the same map in homology.

Proof. See Rotman [27], Proposition 6.8.

Theorem 3.3 (Long exact sequence): A short exact sequence of chain complexes

0 // C′ i // C
p
// C′′ // 0

induces a long exact sequence of homology modules

· · · // H ′n
in // Hn

pn
// H ′′n

∂n // H ′n−1
// · · ·

The map ∂n is defined by

∂n[c′′n] = [i−1
n−1dn−1p

−1
n c′′n] ∈ C ′n−1.
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Proof. Let Hn = Hn(C), Bn = im(dn+1), and Zn = ker(dn) for the complex C, and define
H ′n, H ′′n, and so forth similarly. By the Snake Lemma, the gray sequence below is exact.

H ′n Hn H ′′n

C ′n/B
′
n Cn/Bn C ′′n/B

′′
n 0

0 Z ′n−1 Zn−1 Z ′′n−1

H ′n−1 Hn−1 H ′′n−1

in pn

d′n−1 dn−1 d′′n−1

in−1 pn−1

∂n

Note that the connecting homomorphism is exactly that in the Snake Lemma.

§4 Derived functors

4.1 Right derived functors and Ext

Covariant case

Given an injective resolution of B,

EB : 0→ B
η−→ E0 d0

−→ E1 d1

−→ E2
d2

−→ · · · ,

applying a (covariant) functor T gives (after deleting TB)

0→ TE0 Td0

−−→ TE1 Td1

−−→ TE2
Td2

−−→ · · · . (24.2)

We will primarily be concerned with the case where T = HomR(A, •), so the above becomes

0→ Hom(A,E0)
Hom(A,d0)−−−−−−→ Hom(A,E1)

Hom(A,d1)−−−−−−→ Hom(A,E2)
Hom(A,d2)−−−−−−→ · · · . (24.3)

Definition 4.1: Let T be a covariant functor. The nth (covariant) right derived functor
of T is

(RnT )B := Hn(TEB) =
ker(Tdn)

im(Tdn−1)
,

i.e. it is the nth cohomology module of (24.2).
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For a R-module E, define

ExtnR(A,B) := (Rn HomR(A, •))B = Hn(HomR(A,EB)),

i.e. it is the nth cohomology module of (24.3).

Here d−1 is the trivial map 0→ E0. We need to show that this definition does not depend
on the injective resolution chosen.

Proof of well-definedness. Suppose we have two injective resolutions of B:

0 // B
η
// E0 d0

//

f0
��

E1 d1
//

f1
��

· · ·

0 // B
η′
// E ′0 d′0 // E ′1 d′1 // · · ·

Let (RnT )B = ker(Tdn)
im(Tdn−1)

and (R′nT )B = ker(Td′n)

im(Td′n−1)
.

By the Comparison Theorem 2.4, there is a unique chain map f between the two reso-
lutions, up to homotopy (the dotted lines above). Apply T to this diagram to get a chain
map Tfn : TEn → TE ′n. As Hn is a functor by Theorem 3.2, Tf induces a map on the
cohomology modules (RnT )B → (R′nT )B. Since we can construct a chain map g from the
second to the first resolution as well, (RnT )B → (R′nT )B must be an isomorphism.

For the details, see [27], Proposition 6.20. (The argument there is written for left derived
functors, but the idea is the same.)

Contravariant case

We can define a companion functor extnR that is contravariant instead of covariant. Given
an projective resolution of A

PA : · · · d2−→ P2
d1−→ P1

d0−→ P0
ε−→ A→ 0,

applying a contravariant functor T gives

0
Td−1=0−−−−→ TP0

Td0−−→ TP1
Td1−−→ TP2

Td2−−→ · · · . (24.4)

To define ext, let T = HomR(•, B).

Definition 4.2: Let T be a contravariant functor. The nth (contravariant) right derived
functor of T is

(RnT )A := Hn(TPA) =
ker(Tdn)

im(Tdn−1)
,

i.e. it is the nth cohomology module of (24.4).
For R-modules A,B, define

extnR(A,B) := (Rn HomR(•, B))A = Hn(HomR(PA, B))
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Theorem 4.3: For R-modules A,B,

ExtnR(A,B) = extnR(A,B).

This theorem says that we have two choices when we need to calculate ExtnR(A,B),
namely,

1. Find a injective resolution of B and apply Hom(A, •) (the Ext perspective), or

2. Find a projective (e.g. free) resolution of A and apply Hom(•, B) (the ext perspective).

Proof. See Rotman [27], Theorem 6.67.

4.2 Left derived functors and Tor

Next we define left derived functors and Tor analogously. Given a projective resolution of A

PA : · · · d2−→ P2
d1−→ P1

d0−→ P0
ε−→ A→ 0,

applying a covariant functor T gives

· · · Td2−−→ TP2
Td1−−→ TP1

Td0−−→ TP0
Td−1−−−→ 0.

To define Tor, let T = • ⊗R B.

Definition 4.4: The nth left derived functor of T is

(LnT )B := Hn(TPA) =
ker(Tdn−1)

im(Tdn)
.

For A an R-module, define

TorRn (A,B) := (Ln(• ⊗R B))A = Hn(PA ⊗R B)

torRn (A,B) := (Ln(A⊗R •))A = Hn(A⊗R PB).

(Note TorRn (A,B) = torRn (B,A).)

Note unlike the case with Ext, we need only consider covariant derived functors: HomR

is contravariant in the first entry and covariant in the second, while ⊗R is covariant in both
entries. Similar to Theorem 4.3, we have the following.

Theorem 4.5: For A,B R-modules,

TorRn (A,B) = torRn (A,B).

Proof. See Rotman [27], Theorem 6.32.
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4.3 Long exact sequences

The most important property of the derived functors is that they repair “loss of exactness”
after applying the functor.

Theorem 4.6 (Long exact sequence): Let 0→ A→ B → C → 0 be a short exact sequence
of G-modules.

1. Let T be a left exact covariant functor. Then there is a long exact sequence

0 // (R0T )A // (R0T )B // (R0T )C ∂0
// (R1T )A // · · ·

TA TB TC

2. Let T be a right exact covariant functor. Then there is a long exact sequence

· · · // (L1T )C
∂1 // (L0T )A // (L0T )B // (L0T )C // 0

TA TB TC

The maps ∂n are given by the snake lemma.

Proof. The long exact sequences exist by Theorem 3.3. (Note that the complexes only go
off to the right/left in the two cases, respectively.) It remains to show the equalities. Take
a projective resolution of A,

· · · d2−→ P2
d1−→ P1

d0−→ P0
ε−→ A→ 0.

By right exactness of T , the following is exact:

TP1
Td1 // TP0

Tε // // TA // 0.

Hence (L0T )A = TP0/im(TP1) ∼= TA.
The second part is similar.

Corollary 4.7: We have the long exact sequences

0 // Ext0
R(M,A) // Ext0

R(M,B) // Ext0
R(M,C) ∂0

// Ext1
R(M,A) // · · ·

HomR(M,A) HomR(M,B) HomR(M,C)

and

· · · // TorR1 (C,M)
∂1 // TorR0 (A,M) // TorR0 (B,M) // TorR0 (C,M) // 0

M ⊗R A M ⊗R B M ⊗R C
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Proof. HomR(A, •) is left exact and • ⊗R B is right exact.

Example 4.8: We have the following.

B injective =⇒ ExtnR(A,B) = 0 for all A, n ≥ 1

A projective =⇒ TornR(A,B) = 0 for all B, n ≥ 1.

Indeed, recall that Ext is defined by taking an injective resolution of B and Tor is defined
by taking a projective resolution of A, and in these cases we can take the trivial resolutions
0→ B → B → 0 and 0→ A→ A→ 0.

Example 4.9: Take R = Z. Then a R-module is just an abelian group. Every group H has
a free resolution of length 2:

0→ F1 → F0 → H → 0.

Thus extnZ(H,G) = 0 and TorZn(H,G) = 0 for n ≥ 2.

§5 Homological and cohomological functors

This section is more abstract and may be skipped.
As we saw in Corollary 4.7 and Example 4.8, the key properties of ExtnR are roughly the

following:

1. ExtnR(A,B) = 0 when B is injective and n ≥ 1.

2. Short exact sequences give rise to long exact sequences.

3. In dimension 0, Ext0
R(A,B) = HomR(A,B).

We have a similar description for TorRn .
We abstract the definition for Ext and Tor, by defining homological and cohomological

functors. There are several reasons for doing this:

1. We want to talk about natural transformations between cohomological functors.

2. In the last section we showed the existence of Ext satisfying the above properties (and
similarly for Tor). It turns out that these properties characterize it uniquely. Thus we
can just “remember” these properties and forget the details of the construction.

There are similarly other (co)homological functors, and we sometimes want to show
they are equal. To do this, it turns out we can just construct an isomorphism in
dimension 0, and the rest works out by abstract nonsense. (See Theorem 5.2.)

Note in the above characterization of Ext we said ExtRn (A,B) = 0 for n ≥ 1 when B is
injective. This is useful because every R-module has an injective resolution. In general,
though, we may want to work with a general class of objects, say χ (which in our case is the
class of injective modules). The key property is that for every module A there is an injective
module E and an injective morphism A → E, i.e. the category of R-modules has enough
injectives.
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Definition 5.1: Let (T n : A → B)n≥0 be a set of additive functors on abelian categories,
and let χ be a class of objects in A. We say A has enough χ-objects is every object in A
can be embedded in an object in χ.

Supposing A has enough χ-objects, (T n)n≥0 is a cohomological ∂-functor if the fol-
lowing hold.

1. (T n)n≥0 is χ-coeffaceable: T n(X) = 0 for all X ∈ χ and n ≥ 1.

2. For every short exact sequence 0→ A→ B → C → 0 there is a long exact sequence

0→ T 0(A)→ · · · → T n(A)→ T n(B)→ T n(C)
∂n−→ T n+1(A)→ · · ·

such that the diagonal morphisms ∂n are natural (with respect to maps between two
short exact sequences).

A morphism of cohomological ∂-functors is a natural transformation τn : T n → Hn com-
muting with the diagonal maps ∂n.

There is a similar definition for effaceability and homological ∂-functors. We can also
consider (T n)n∈Z, that is ∂-functors extending infinitely in both directions, replacing the long
exact sequence with an infinite exact sequence extending in both directions.

The following theorem gives existence and uniqueness of (co)homological ∂-functors.

Theorem 5.2: 1. Suppose τ 0 : T 0 → T ′0 is a natural transformation of cohomological ∂-
functors in degree 0. Then there exists a unique morphism of cohomological ∂-functors
τ : T → T ′ extending τ 0.

2. Suppose T n, T ′n : A → B are two cohomological functors, and there is a natural
isomorphism T 0 ∼= T ′0. Then T n ∼= T ′n.

The same is true of homological ∂-functors, and ∂-functors extending in both directions.

Proof. See Rotman [27], 6.35.

For example, ExtR is characterized completely by the 3 properties we gave: it is a coho-
mological ∂-functor by items 1 and 2, and uniqueness comes from knowing it in dimension
0 (item 3). Ditto for TorR.

§6 Group cohomology

To apply homology to groups, we will turn a group G into a ring, and consider modules over
that ring.

Definition 6.1: Let R be a ring. The group ring R[G] or RG is the ring

R⊕G =

{∑
g∈G

agg : ag ∈ R

}
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with multiplication given by(∑
g∈G

agg

)(∑
h∈G

bhh

)
=
∑
g,h∈G

agbhgh.

We will always work with R = Z.
Note that any action of G on a Z-module makes the module into a ZG-module. We often

just abbreviate “ZG-module” as “G-module.”

Definition 6.2: Let G be a group and A,B be left ZG-modules.

1. The diagonal action of G on HomZ(A,B) is given by

(gϕ)(a) = g(ϕ(g−1a)).

2. The diagonal action of G on A⊗ZG B is given by

g(a⊗ b) = (ga)⊗ (gb).

We now apply cohomology as follows.

Definition 6.3: Let M be a G-module. Equip Z with the trivial G-module structure. The
cohomology groups of G with coefficients in M are defined by

Hn(G,M) = ExtnZG(Z,M) = Hn(HomZG(Z, EM))

= extnZG(Z,M) = Hn(HomZG(PZ,M)).

Note from Theorem 4.3, we have two choices in finding Hn(G,M): find a ZG-injective
resolution of M , or a ZG-projective resolution of Z.

There is a nice interpretation of H0(G,M).

Definition 6.4: Let L,M be G-modules and ϕ be a map L→M . Define the fixed point
functor by the following.

1. Action on modules:

MG = {m ∈M : gm = m for all g ∈ G} .

2. Action on maps: Since ϕ(LG) ⊆MG we can define

ϕG = ϕ|LG .

Proposition 6.5: As functors,

H0(G, •) = HomZG(Z, •) = •G.

In particular, the fixed point functor is left exact since HomZG(Z, •) is.
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Proof. Z is equipped with the trivial G-action. A G-homomorphism ϕ from Z to M is
determined by ϕ(1), and ϕ(1) must be a fixed point. Hence HomZG(Z,M) = MG via the
map ϕ 7→ ϕ(1).

Remark 6.6: This gives us another way to think about group cohomology. Given M , take
an injective resolution 0→M → E0 → E1 → · · · . Applying HomZG(Z, •) to this resolution
is the same as applying •G, so we get 0 → (E0)G → (E1)G → · · · . Then Hn(G,M) is the
nth cohomology group of this complex.

We will need the fact that cohomology preserves products.

Proposition 6.7: Let G be a group and Mi be G-modules. Then

Hn

(
G,
∏
i∈I

Mi

)
∼=
∏
i∈I

Hn(G,Mi).

Proof. First note that the product of injective modules is an injective module: By definition
a R-module I is injective iff HomR(•, I) is exact. Thus, the statement follows from the fact
that HomR (•,

∏
i Ii) =

∏
i HomR(•, Ii), and the fact that a product of exact sequences is

exact.
Thus if EMi is an injective resolution for Mi, then

∏
iE

Mi is an injective resolution for∏
iMi, and we get

Hn

(
G,
∏
i∈I

Mi

)
= Hn

(
HomZG

(
Z, E

∏
i∈IMi

))
= Hn

(
HomZG

(
Z,
∏
i∈I

EMi

))
=
∏
i∈I

Hn(G,Mi).

§7 Bar resolutions

We now describe the cohomology groups, by working with an explicit presentation of Z. (We
use the ext approach.) This will give practical interpretations of H1(G,M) and H2(G,M).
For proofs, see Rotman [27], Section 9.3.

Definition 7.1: Define the bar resolution B(G) to be the exact sequence

· · · d3 // B2
d2 // B1

d1 // B0
d0=ε

// Z // 0

where
Bn
∼= ZG⊕Gn

is the free abelian group with basis elements denoted by [x1| · · · |xn], and

dn([x1| · · · |xn]) = x1[x2| · · · |xn] +
n−1∑
i=1

(−1)i[x1| · · · |xixi+1︸ ︷︷ ︸
i

| · · · |xn] + (−1)n[x1| · · · |xn−1].

(24.5)
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Let Un ⊆ Bn be the submodule generated by [x1| · · · |xn] where at least one of the xi
equals 1, and define the normalized bar resolution to be the quotient complex B∗(G) :=
B(G)/U(G).

Note in particular

d3[x|y|z] = x[y|z]− [xy|z] + [x|yz]− [x|y]

d2[x|y] = x[y]− [xy] + [x]

d1[x] = x[]− []

d0[] = 1.

We have HomG(Bn,M) = HomG(ZG
⊕
Gn ,M), so it can be identified with the set of functions

Gn →M . Working out the kernels and images, we get the following.

Theorem 7.2: We have the following descriptions of H1(G,M) and H2(G,M).

1. Define a derivation (or crossed homomorphism) of G to be a function G → M such
that

d(xy) = d(x) + xd(y)

and a principal derivation to be one in the form

d(x) = a− xa, for some a ∈M.

Denote the set of derivations and principal derivations by Der(G,M) and PDer(G,M).
Then

H1(G,M) ∼= Der(G,M)/PDer(G,M).

2. We have

H2(G,M) ∼=
{f : G×G→M : f(x, y) + f(xy, z) = xf(y, z) + f(x, yz), f(x, 1) = f(1, y) = 0}
{g : G×G→M : g(x, y) = xh(y)− h(xy) + h(x) for some h : G→M}

.

The elements in the top set are called factor sets.

A particularly important case is the following.

Corollary 7.3: Suppose G acts trivially on M . Then

H1(G,M) ∼= HomZ(G,M).

(On the RHS, G and M are thought of as groups.)

Proof. Because the action is trivial, a derivation is just a function with d(xy) = d(x) + d(y),
i.e. a homomorphism. Moreover, any principal derivation is trivial.
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§8 Group homology

Definition 8.1: Let A be a G-module. Equip Z with the trivial G-module structure. The
homology groups of G with coefficients in Z are defined by

Hn(G,A) = TorZGn (Z, A) = Hn(PZ ⊗ZG A)

= torZGn (Z, A) = Hn(Z⊗ZG PA).

There is similarly a nice interpretation of H0(G,M), as well as of H1(G,Z). Given a

group G, define the map ε : ZG→ Z by ε
(∑

g∈G agg
)

=
∑

g∈G ag, and define

IG := ker(ε) =

{∑
g∈G

agg :
∑
g∈G

ag = 0

}
.

Proposition 8.2: As functors,
H0(G, •) = •/IG•;

i.e. there is a natural isomorphism

H0(G,A) = Z⊗G A→ A/IGA

m⊗ a 7→ ma+ IGA.

Proof. The short exact sequence 0→ IG → ZG ε−→ Z gives exactness of

IG ⊗G A→ ZG⊗G A→ Z⊗G A→ 0

since tensoring is right exact. (G acts trivially on the Z on the right.) Thus,

H0(G,A) = Z⊗G A = (ZG⊗G A)/(IG ⊗G A) = A/IGA.

Proposition 8.3: There are canonical homomorphisms H1(G,Z) ∼= IG/I
2
G
∼= Gab.

Here Gab denotes the abelianization of G, i.e. G/G′, where G′ is the derived subgroup,
the (normal) subgroup generated by the commutators aba−1b−1.

Proof. The long exact sequence in homology for 0→ IG → ZG ε−→ Z→ 0 is

H1(G,ZG) // H1(G,Z)
∂1 // H0(G, IG) // H0(G,ZG) // // H0(G,Z) // 0

0 IG/I
2
G Z Z

The left term is 0 by Example 4.8 since ZG is free, hence projective. Thus ∂1 is injective.
From Proposition 8.2, we get the middle two inequalities (since H0(G,ZG) = ZG/IGZG =
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Z). Surjectivity of the map Z → Z gives that it is actually an isomorphism, so exactness
gives ∂1 is an isomorphism. It remains to show

IG/I
2
G
∼= G/G′. (24.6)

Define a map f : G → IG/I
2
G by letting f(x) = (x − 1) mod I2

G. This is a homomorphism
because

f(xy) = xy − 1 mod I2
G

= (x− 1) + (y − 1) mod I2
G (x− 1)(y − 1) ∈ I2

G

= f(x)f(y).

Now G′ ∈ ker f since IG/I
2
G is abelian (ZG, as an additive group, is abelian), so we get a

map f : G/G′ → IG/I
2
G.

Now define g : IG → G/G′ by g(x− 1) = xG′. (Note x− 1, x ∈ G\{1}, is a free basis for
G.) We have

g

 ∑
x∈G\{1}

mx(x− 1)
∑

y∈G\{1}

my(y − 1)

 = g

 ∑
x,y∈G\{1}

mxny((xy − 1)− (x− 1)− (y − 1))


=

∏
x,y∈G\{1}

(xyx−1y−1)mxnxG′ = G′

so g induces g : IG/I
2
G → G/G′.

Now f and g are inverse, showing (24.6).

8.1 Shapiro’s lemma

Shapiro’s lemma will be helpful in computing (co)homology groups, especially in the guise
of Corollary 8.8.

Definition 8.4: Let S ⊆ G be a subgroup of finite index. Define the induced and coin-
duced modules to be3

IndGS (A) = A⊗ZS ZG.
CoindGS (A) = HomZS(ZG,A).

If S = {1} we simply write IndG(A) or CoindG(A). An induced module ofG is a module
in the form IndG(A); a coinduced module of G is a module in the form CoindG(A).

Remark 8.5: If G is finite, the induced and coinduced modules are canonically isomorphic
via the below map, so there is no need to distinguish between them.

HomS(ZG,A)→ A⊗ZS ZG

ϕ 7→
∑
g∈G/S

ϕ(g−1)⊗ZS g.

3Be careful; in some books the definitions are reversed. We follow Serre’s definition, which is the opposite
of Milne’s definitions.
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Proposition 8.6: If M is a coinduced G-module, and H ⊆ G is a subgroup, then M is a
coinduced H-module.

Proof. Write M = HomZ(Z[G], A); we can write Z[G] = Z[H]⊗B; then we have by adjoint
associativity4 that M = Hom(Z[H]⊗M,A) = Hom(Z[H],Hom(M,A)).

The cohomology of coinduced modules and the homology of induced modules are easy to
calculate.

Lemma 8.7 (Shapiro’s lemma): The following hold.

Hn(G,CoindGS (A)) = Hn(S,A)

Hn(G, IndGS (A)) = Hn(S,A).

Proof. Let PZ be a ZG-projective resolution of Z. Note it is also a ZS-projective resolution,
as any ZG-projective module is ZS-projective.

By definition of cohomology group,

Hn(G,CoindGS (A)) = Hn(HomZG(PZ,HomZS(ZG,A)))

(∗)
= Hn(HomZS(PZ ⊗ZG ZG,A)) = Hn(HomZS(PZ, A)) = Hn(S,A).

In (∗) we used adjoint associativity.
By the definition of homology group,

Hn(G, IndGS (A)) = Hn(PZ ⊗ZG (ZG⊗ZS A)) = Hn(PZ ⊗ZS A) = Hn(S,A).

Corollary 8.8: Suppose that A =
⊕

i∈I Ai, S = Stab(Aj) (defined as {g ∈ G : gAj = Aj}),
and G permutes the submodules Ai transitively. Then

Hn(G,A) = Hn(S,Aj).

If G is finite, then
Hn(G,A) = Hn(S,Aj).

Proof. We have A = IndGS Aj. If G is finite then A ∼= CoindGS Aj as well.

Corollary 8.9: If M is an coinduced G-module, then Hn(G,M) = 0 for all n ≥ 1.
If M is an induced G-module, then Hn(G,M) = 0 for all n ≥ 1.

Proof. By Shapiro’s lemma 8.7,

M = CoindG(A) =⇒ Hn(G,M) = Hn(1,M) = 0

M = IndG(A) =⇒ Hn(G,M) = Hn(1,M) = 0.

We used the fact that Z is Z[{1}]-projective.

4If R,R′ are rings, M is a R-module, N is a (R,R′)-bimodule, and P is a R′-module, then there is a
canonical (R,R′)-isomorphism HomR(M,HomR′(N,P )) ∼= HomR′(M ⊗R N,P ).

274



Number Theory, §24.9.

§9 Tate groups

By Corollary 4.7, given a short exact sequence of G-modules we get a long exact sequence
in homology and cohomology. We splice these sequences together using the Snake Lemma
to obtain a long exact sequence extending in both directions.

Definition 9.1: Let G be a group, S be a subgroup of finite index, and A be a G-module.
Define the norm NG/S : AS → AG by

NG/S(a) =
n∑
j=1

tja,

where {t1, . . . , tn} is a left transversal (i.e. coset representatives) of S in G. In particular,
for S = {1} the norm map is

NG(a) = N(a) =

(∑
g∈G

g

)
a.

Definition 9.2: Suppose G is a finite group and A is a G-module. Define the Tate groups
by

Hq
T (G,A) =


Hq(G,A), q ≥ 1

AG/NA, q = 0

NA/IGA, q = −1

H−q−1(G,A), q ≤ −2.

Here NA denotes {a ∈ A : Na = 0}.

Theorem 9.3: If G is a finite group and 0 → A → B → C → 0 is an exact sequence of
G-modules, then there is a long exact sequence

· · · → Hq
T (G,A)→ Hq

T (G,B)→ Hq
T (G,C)→ Hq−1

T (G,A)→ · · ·

Proof. It suffices to prove exactness for q = −1 and q = 0. We apply to the snake lemma to
obtain the following (the top and bottom rows in the middle are the long exact sequence in
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homology and cohomology, respectively).

kerNA kerNB kerNC

H1(G,C) H0(G,A) H0(G,B) H0(G,C) 0

0 H0(G,A) H0(G,B) H0(G,C) H1(G,A)

coker(NA) coker(NB) coker(NC)

NA NB NC

∂1

∂0

The maps NA, NB, NC are the norm maps on A, B, and C after associating H0 and H0 with
their descriptions in Propositions 6.5 and 8.2:

NA/IGA NB/IGB NC/IGC

H1(G,C) A/IGA B/IGB C/IGC 0

0 AG BG CG H1(G,A)

AG/NA BG/NB CG/NC

NA NB NC

∂1

∂0

9.1 Complete resolution*

5 The description of Tate groups in the last section is somewhat unwieldy (because you can
see the glue marks...). We give a different interpretation here, where the Tate groups at 0
and −1 are less distinguished. Then we use the technique of “dimension shifting” to extend
results for cohomology (or homology) groups to results for Tate groups.

5This section will not be used and can be omitted.
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Definition 9.4: A complete resolution of a group G is an exact sequence X

· · · // X1
// X0

d0 //

ε
    

X−1
// X−2

// · · ·

Z
. �

η

==

where each Xq is a finitely generated G-free module, ε is surjective, and η is injective.

Proposition 9.5: Every finite group G has a complete resolution X.

Proof. Take a G-free resolution of Z and its dual (A∗ = HomZ(A,Z)), and splice them
together.

· · · // P1
// P0

''

// // Z // 0

0 // Z � � // P ∗0 // P ∗1 // · · ·

Proposition 9.6: Let G be a finite group, A a G-module, and X a complete resolution.
Then the Tate groups are exactly the cohomology groups

Hn
T (G,A) = Hn(HomG(X, A)).

Proof. Since any two resolutions are chain-homotopic (going both ways) by the Compar-
ison Theorem 2.4, it suffices to prove this for one resolution. We take a resolution as in
Proposition 9.5 and apply HomG(•, A) to it. We obtain the following.

−2 −1 0 1

· · · // HomG(P ∗1 , A)

∼=
��

// HomG(P ∗0 , A)

∼=
��

// HomG(P0, A) // HomG(P1, A) // · · ·

// P1 ⊗ZG A
d−2

//

((

P0 ⊗ZG A
d−1
//

ε⊗•
����

HomG(P0, A) d0
// HomG(P1, A) //

Z⊗G A
NA // HomG(Z, A)

?�
ε∗

OO 66

A/IGA AG

The isomorphisms on the left are given by the natural isomorphism

M ⊗ZG A→ HomG(M∗, A)

m⊗ a 7→ (f 7→ f(m)a).

The bent complex along the bottom is the complex for Tate cohomology; some diagram
chasing gives that these groups are isomorphic to the cohomology groups in the middle
complex.
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9.2 Dimension shifting

Given a result or construction in dimension n, we can get the result in dimensions n± 1 by
utilizing the long exact sequence 9.3 and the two propositions.

Proposition 9.7: Let G be a finite group. If M is an induced module then

Hn
T (G,M) = 0

for all n.

Proof. Since G is finite, induced and coinduced modules are the same. The statement for
homology and cohomology is Corollary 8.9; this takes care of all n 6= 0,−1. For n = 0,−1
we calculate Hn

T (G,M) directly. Writing M = A⊗Z ZG, we see that every element of m can
be uniquely written as

∑
g∈G ag ⊗ g. We find that

MG =

{
a⊗

∑
g∈G

g : a ∈ A

}
= N(M)

NM =

{∑
g∈G

ag ⊗ g :
∑
g∈G

ag = 0

}
= IGM

so H0
T (G,M) = H−1

T (G,M) = 0.

Proposition 9.8: Let M be a module. Then there exist (canonical) short exact sequences

0→M →M∗ →M∗/M → 0

0→M ′ →M∗ →M → 0

such that M∗ is coinduced and M∗ is induced, and these sequences are split as abelian groups
(i.e. as Z-modules, but not necessarily as ZG-modules).

Proof. The desired maps are

M ↪→ CoindG{1}(M)

m→ ϕm(g) = gm.

Z[G]⊗Z M �M

g ⊗m 7→ gm

Splitness follows from the fact that these maps have left and right inverses, respectively:
ϕ 7→ ϕ(1) and m 7→ 1 ⊗ m. (They are only Z-homomorphisms, not necessarily ZG-
homomorphisms.)

Now suppose G is finite; then coinduced and induced modules coincide. Taking the long
exact sequence 9.3 of the above short exact sequences and using Proposition 9.7 gives

Hn
T (G,M) ∼= Hn−1

T (G,M∗/M)

Hn
T (G,M) ∼= Hn+1

T (G,M ′).

Thus we reduce a problem about cohomology in degree n to a problem about cohomology
in degree n+ 1 or degree n− 1.
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§10 Cup products

There is a natural product defined in Tate cohomology.
Define A⊗B to be A⊗ZB with the structure of a G-module given by g(a⊗ b) = ga⊗ gb

(the diagonal action).

Theorem 10.1: Let G be a finite group and A,B be G-modules. There exists a unique
family of bilinear maps indexed by (p, q) ∈ Z2, together called the cup product,

∪ : Hp
T (G,A)×Hq

T (G,B)→ Hp+q
T (G,A⊗B),

satisfying the following four properties.

1. The homomorphisms are functorial in A and B.

2. For p = q = 0, the cup product is induced by the map

AG ⊗BG → (A⊗B)G.

3. If

0→ A′ → A→ A′′ → 0

0→ A′ ⊗B → A⊗B → A′′ ⊗B → 0

are exact6, and a′′ ∈ Hp
T (G,A′′), b ∈ Hq

T (G,B), then

(δa′′) ∪ b = δ(a′′ ∪ b)

in Hp+q+1
T (G,A′ ⊗B). (δ is the map in the corresponding long exact sequence.)

4. If

0→ B′ → B → B′′ → 0

0→ A⊗B′ → A⊗B → A⊗B′′ → 0

are exact, and a ∈ Hp
T (G,A), b′′ ∈ Hq

T (G,B′′), then

a ∪ (δb′′) = (−1)pδ(a ∪ b′′)

in Hp+q+1
T (G,A⊗B′).

Proof. We first define the cup product for cohomology groups and then use dimension shifting
to define it for Tate groups.

We use the bar resolution7, so that n-chains are functions Gn → A. For p, q ≥ 0, define

∪ : Cp(G,A)× Cq(G,B)→ Cp+q(G,A⊗B)

6Recall • ⊗B is right exact, so the content is in left exactness.
7We can also use the standard resolution (not defined here); in that case the map is (f∪g)(x0, . . . , xp+q) =

f(x0, . . . , xp)⊗ g(xp, . . . , xp+q).
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by
(f ∪ g)[x1| · · · |xp+q] = f([x1| · · · |xp])⊗ g([xp+1| · · · |xp+q]).

For n = 0, we have (f ∪ g)[] = f [] ⊗ g[] which shows property 2 is satisfied. We8 can
laboriously verify with (24.5) that

d(f ∪ g) = (df) ∪ g + (−1)pf ∪ (dg).

From this we get a well-defined map

∪ : Hp(G,A)×Hq(G,B)→ Hp+q(G,A⊗B).

We can verify properties 3 and 4 by calculation.
Now we extend this definition by dimension shifting. Suppose the product is defined for

(p+ 1, q), we define it for (p, q) as follows. Write A (canonically) as a quotient of a induced
module as in Proposition 9.8, 0→ A′ → A∗ → A→ 0. Since this is split, so is

0→ A′ ⊗B → A∗ ⊗B → A⊗B → 0.

Since A∗ is induced, so is A∗ ⊗ B (be slightly careful about the G-action here). Thus by
Theorem 9.3, we get Hp

T (A) ∼= Hp+1
T (A′) and Hp+q

T (A) ∼= Hp+q+1
T (A′ ⊗ B) (naturally), and

thus we can define the cup product

Hp
T (A)×Hq

T (B)

∼=
��

∪ // Hp+q
T (A⊗B)

Hp+1
T (A′)×Hq

T (B) ∪ // Hp+q+1
T (A′ ⊗B)

∼=

OO

Similarly define it for (p, q) given (p, q+1), but this time introduce a factor of (−1)p (in order
to make the second condition hold). Note this is consistent with our defintions for p, q ≥ 0,
by conditions 3 and 4. It is not hard to verify that these maps are well-defined, and that
conditions 3 and 4 continue to be satisfied. By the way we defined the maps, it also doesn’t
matter what order we define the maps in (so going from (p+ 1, q + 1)→ (p, q + 1)→ (p, q)
is the same as going from (p+ 1, q + 1)→ (p+ 1, q)→ (p, q), for instance).

Given the map for (p, q), conditions 3 and 4 basically force us to define the map for
(p− 1, q) and (p, q− 1) as above. Similarly we can dimension-shift in the opposite direction,
and we get uniqueness for all (p, q).

Cup products are rather nasty to work with when they aren’t purely in cohomology, so
if we need to do cup product computation, we work in cohomology whenever possible.

Proposition 10.2: The following hold:

1. Cup product is associative: For x ∈ Hm(G,M), y ∈ Hn(G,N), and z ∈ Hp(G,P ),
(x ∪ y) ∪ z = x ∪ (y ∪ z) (viewing the equation in Hm+n+p(G,M ⊗N ⊗ P ).

2. Cup product is anticommutative: For x ∈ Hm(G,M) and y ∈ Hn(G,N), x ∪ y =
(−1)mny ∪ x.

Proof. Omitted. The idea is to verify the formula in degree 0 and then dimension-shift to
get the general case.

8i.e. you
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10.1 Cup product calculations

To compute the Artin map in class field theory, we will need to calculate the cup product
of things in dimensions −2 and 2. We will get there incrementally using dimension shifting
and properties 3–4 of the cup product, first calculating the cup product on dimensions (0, n)
(especially (0, 1)), then on (−1, 1), and then finally on (−2, 1).

Theorem 10.3: Let G be a finite group and A,B G-modules. If a ∈ AG, let a0 denote its
image in H0

T (G,A), and if Na = 0, let a0 denote its image in H−1
T (G,A). For g ∈ G let g

denote its image in G/G′ = H−2
T (G,Z).

1. (0, n). Suppose n ≥ 0, a ∈ AG, and x ∈ Hn
T (G,B). Let fa : B → A ⊗ B be the map

sending y to a⊗ y; it induces a map Hn
T (G,A)→ Hn

T (G,A⊗B). Then

a0︸︷︷︸
∈H0

T (G,A)

∪ x︸︷︷︸
∈Hn

T (G,B)

= fa(x) ∈ Hn
T (G,A⊗B).

2. (−1, 1). Suppose Na = 0, and [f ] ∈ H1(G,B) is represented by a cocycle f : G→ B.
Then

a0︸︷︷︸
∈H−1

T (G,B)

∪ [f ]︸︷︷︸
∈H1

T (G,B)

=

(
−
∑
t∈G

ta⊗ f(t)

)0

.

3. (−2, 1). Let s ∈ G and [f ] ∈ H1(G,B). Then

s︸︷︷︸
∈H−2

T (G,Z)

∪ f︸︷︷︸
∈H1

T (G,B)

= f(s)0 ∈ H
−1
T (G,B).

Proof. We omit details of the calculations. See Serre [29], pg. 176-178.

1. For n = 0, this follows from definition of cup product. Now use dimension shifting,
with the exact sequence 0→ B → B∗ → B∗/B → 0, B∗ coinduced.

2. Dimension shift from part 1 with 0→ B → B∗ → B∗/B → 0: suppose b′′ ∈ (B∗/B)G

is sent to f under the diagonal morphism. Write a0 ∪ f = a0 ∪ d(b′′
0
) = −d(a0 ∪ b′′

0
)

and use part 1.

3. Show that

d(s ∪ [f ]) = d(f(s)0).

Evaluate the LHS using property 3 and part 2.
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§11 Change of group

We would like to be able to connect (co)homology groups corresponding to different groups
G, G′ and different modules over G, G′. This will allow us, for example, to define maps

Resn :Hn(G,A)→ Hn(S,A)

Corn :Hn(S,A)→ Hn(G,A)

Infn :Hn(G/S,AS)→ Hn(G,A) S E G.

11.1 Construction of maps

For there to be a map Hn(G,A) → Hn(G′, A′) we need there to be a map G′ → G, with
some compatibility condition on the modules A, A′.

Definition 11.1: Let G,G′ be groups, let A be a G-module and A′ be a G′-module. A
cocompatible pair is a pair (α, f) where α : G′ → G is a group homomorphism and
f : A→ A′ is a Z-homomorphism such that

f((αx′)a) = x′f(a)

for all x′ ∈ G′ and a ∈ A.
G′

α // G

A′ A
f
oo

Let ((Pairs*)) denote the category whose objects are pairs (G,A) and whose morphisms are
cocompatible (α, f).

Define a compatible pair to be a pair (α, f) where α : G→ G′ is a group homomorphism
and g : A→ A′ is a Z-homomorphism such that

f(xa) = (αx)f(a)

for all x ∈ G.
G

α // G′

A
f
// A′

Let ((Pairs)) denote the category whose objects are ordered pairs (G,A) and whose mor-
phisms are compatible (α, f).

Given a cocompatible pair, let P ′ be a G′-projective resolution of Z and P be a G-
projective resolution of Z. By the Comparison Theorem 2.4 there is a chain map τ(α) :
P ′ → P induced by the map 1Z : Z→ Z and α, unique up to homotopy. Define

Cn(G,A) = HomZG(Pn, A)→ HomZG(P ′n, A
′) = Cn(G′, A′)

ϕ 7→ f ◦ ϕ ◦ τ(α)n.

282



Number Theory, §24.11.

Similarly, for a compatible pair, there is a chain map τ(α) : P → P ′ induced by 1Z : Z→ Z
and α; we get a map

τ(α)n ⊗ f : Cn(G,A) = Pn ⊗ZG A→ P ′n ⊗ZG′ A
′ = Cn(G′, A′)

These maps descend to cohomology and homology, respectively.

Definition 11.2: Define the maps below using the (co)compatible pairs shown.

Name Map on G Map on M Map

Restriction i : S → G M
∼=←−M ResnG/S : Hn(G,M)→ Hn(S,M)

Corestriction i : S → G M
∼=−→M CornS/G : Hn(S,M)→ Hn(G,M)

Inflation q : G→ G/S M ←↩ MS InfnS/G : Hn(G/S,MS)→ Hn(G,M)

Conjugation σ 7→ gσg−1 g−1m← [ m Hn(G,M)→ Hn(G,M)

For inflation, we require that S E G (S be a normal subgroup of G).

Proposition 11.3: The conjugation map Hn(G,M)→ Hn(G,M) is the identity.

This is important because when we are defining maps between different cohomology
groups, we can be assured that conjugation won’t change it, i.e. we have a canonical map.

Proof. For n = 0 this is the identity map MG → MG. Since the conjugation Hn(G,M) →
Hn(G,M) is a map of cohomological functors, and the identity map Hn(G,M)→ Hn(G,M)
is also a map of cohomological functors, and they agree for n = 0, by Theorem 5.2(2) they
must be equal for all n.

Alternatively, use dimension shifting.

11.2 Extending maps to Tate cohomology

Right now Resn is only defined on cohomology and Corn is only defined on homology. We
would like to define them on Tate cohomology.

Proposition 11.4: Let G be a finite group. The maps Resn and Corn can be defined on
Tate cohomology, such that the definitions for Hn

T agree with the original definitions on
cohomology and homology for n ≥ 0 and n ≤ −1, respectively, and such that Res and Cor
are natural transformations compatible with forming the long exact sequence in homology
and cohomology from a short exact sequence. Moreover, Resn and Corn satisfy the following
properties.

1. Cor0
S/G : H0

T (S,M)→ H0
T (G,M) is the map NG/S : MS/NSM →MG/NGM .

2. Res−1
G/S : H−1

T (G,M)→ H−1
T (S,M) is the map CG/S : NGM/IGM → NSM/ISM , where

CG/S is the conorm map defined by

CG/S(a) :=
∑
i

t−1
i a
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where {ti} is a left transversal of G/S. (Equivalently, let {ti} be a right transversal
and let CG/S(a) :=

∑
i tia.9)

3. Cor−2
S/G : H−2

T (S,M) → H−2
T (G,M) is the natural map Sab → Gab. (See Proposi-

tion 8.3.)

Proof. First, the construction. We will use Theorem 5.2. Let χ be the class of coinduced
ZG-modules. Note that the category of ZG-modules has enough coinduced ZG-modules, by
Proposition 9.8. Note that {Hn

T (S, •S)} and {Hn
T (G, •)} are cohomological ∂-functors on the

category of ZG-modules, with respect to χ (by MS, we mean think of M as a S-module).
Indeed, any coinduced module for G is coinduced for S by Proposition 8.6.10 Since

Res0
G/S : MG/NGM →MS/NSM, Cor

S/G
0 : NSM/ISM → NGM/IGM

are natural transformations, Theorem 5.2(1) applies to give unique morphisms Res and Cor
extending NG/S. (They agree in cohomology and homology with the original definitions by
uniqueness in Theorem 5.2(1)).

Alternatively, we can extend the definitions of Res and Cor using dimension shifting
(which is simpler, really).11

We now calculate the maps using dimension shifting.

1. Use the short exact sequence 0 → M ′ → M∗ = ZG ⊗Z M → M → 0 from Proposi-
tion 9.8 to get the vertical isomorphisms in the diagram on the left below. (Note as
before that M∗ is both G and S-(co)induced.)

H−1
T (S,M)

∼=δ
��

Cor−1
S/G
// H−1

T (G,M)

∼=δ
��

H0
T (S,M ′)

Cor0
S/G
// H0

T (G,M).

NSM/ISM

∼=NS(1⊗•)
��

//
NGM/IGM

∼=NG(1⊗•)
��

H0
T (S,M ′) ? // H0

T (G,M).

The left-hand diagram gives the right-hand diagram, after noting that δ is the map in
the snake lemma in the proof of Theorem 9.3. From the right-hand diagram it is clear
that the bottom map has to be NG/S, because NG/S ◦NS = NG.

2. From 0→M →M∗ f−→M∗/M → 0 we get the commutative diagrams

H−1
T (G,M∗/M)

∼=δ
��

Res−1
G/S
// H−1

T (S,M∗/M)

∼=δ
��

H0
T (G,M)

Res0
G/S

// H0
T (S,M).

H−1
T (G,M∗/M)

∼=NG◦f−1

��

? // H−1
T (S,M∗/M)

∼=NS◦f−1

��

MG/NGM //MS/NSM.

9To see this, note t1S = t2S iff t−1
1 t2 ∈ S, iff St−1

1 = St−1
2 .

10Note this would fail if we take χ to be the class of ZG-injective modules, as ZG-injective modules are
not necessarily ZS-injective.

11Alternatively, we can construct Corn explicitly as the map

Hn(S,M)
Shapiro∼= Hn(G,CoindGS M)→ Hn(G,M)

where the last map is the change of group map induced by G ∼= G and CoindGS M → M given by φ 7→∑
i tiϕ(t−1

i ), for some transversal {ti} for S in G. This is just the norm map in dimension 0.
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From NG = NS ◦ CG/S, the top map has to be CG/S.

3. Recall the isomorphism H1(Gab,Z) ∼= Gab was defined using the horizontal maps below.

H1(S,Z)

Cor1

��

∂1

∼=
// H0(S, IS)

Cor0

��

IS/I
2
S

// S/S ′

��

H1(G,Z)
∂1

∼=
// H0(G, IG) IG/I

2
G

// G/G′

The left square commutes by functoriality of Cor and the right rectangle commutes by
tracing the map in Proposition 8.3.

11.3 Further properties

Theorem 11.5: Suppose H is a subgroup of G of finite index. Then Corn ◦Resn is multi-
plication by [G : H].

Proof. In degree 0, we have Cor0 ◦Res0 = [G : H] because NG/H is just multiplication by
[G : H] on MG. As in the proof of Proposition 11.3, the general case then follows from either
Theorem 5.2 or dimension shifting.

Corollary 11.6:

1. If G is finite, then |G|Hn(G,M) = 1 for any n > 0.

2. If G is finite and M is finitely generated as an abelian group, then Hn(G,M) is finite.

Proof.

1. By Theorem 11.5,

Hn(G,M)
Res−−→ Hn(1,M)

Cor−−→ Hn(G,M)

is multiplication by |G|. But Hn(1,M) = 0.

2. By the explicit description of Hn(G,M) using the bar resolution, Hn(G,M) is finitely
generated. By item 1 it has finite exponent, so it must be finite.

Corollary 11.7: Let G be a finite group and Gp its p-SSG. For any G-module M , the map

Resn : Hn(G,M)→ Hn(Gp,M)

is injective on the p-primary component.

Proof. Suppose that x ∈ ker(Res). Then [G : Gp]x = Cor ◦Res(x) = 0. Since the order of x
is a power of p but p - [G : Gp], we get that x = 0.

Corollary 11.8: If Hn
T (Gp, A) = 0 for all primes p then Hn

T (G,A) = 0.
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We will also need to know how restriction and corestriction affect cup products.

Proposition 11.9: The following hold.

1. Res(x ∪ y) = Res(x) ∪ Res(y).

2. Cor(x ∪ Res(y)) = Cor(x) ∪ y.

Proof. See Cartan-Eilenberg [?], Chapter 12, or Atiyah-Wall in Cassels-Frohlich [8], p. 107.

11.4 Inflation-restriction exact sequence

Proposition 11.10: Suppose H E G, A is a G-module, and n > 0. If H i(H,A) = 0 for all
i with 0 < i < r, then

0→ Hr(G/H,AH)
Inf−→ Hr(G,A)

Res−−→ Hr(H,A)

is exact.

Proof. We first prove the case r = 1. We show the following.

1. Res ◦ Inf = 0: Change of group is functorial (easy to see from the definition), so
Res ◦ Inf is induced by the maps G/H ← G←↩ H and MH ↪→M ∼= M . The first map
is 0 so Res ◦ Inf = 0.

2. Inf is injective: Suppose f : G/H → AH is a cocycle such that Inf([f ]) = 0. Note
Inf([f ]) = [f◦p] where p : G→ G/H is the projection. Inf([f ]) = 0 means f(s) = sa−a
for some a ∈ A. Since f is constant on cosets, sa − a = sta − a for all t ∈ H, giving
ta = a, and a ∈ AH . Thus [f ] = 0 in H1(G/H,AH) = 0.

3. ker(Res) ⊆ im(Inf): Suppose f : G → A is a cocycle such that [f ] ∈ ker(Res). Since
Res[f ] = [f ◦ i], this means f(t) = ta − a for some a ∈ A and all t ∈ H. Define the
coboundary g : G→ A by g(s) = sa−a for all s ∈ G; let f1 = f−g; we have [f1] = [f ].

Now f1 = 0 on H, and by definition of cocycle,

f1(st) = f1(s) + sf1(t).

Letting t range over H, we get that f1(st) = f1(s), i.e. f is constant on cosets of H.
Letting s ∈ H we have f(st) = sf(t), so im(f) is invariant under H. Thus f descends
to f : G/H → AH , i.e. f ∈ im(Inf).

Now we proceed by induction. Suppose the proposition holds for r−1. By dimension-shifting
(Proposition 9.8), the exact sequence

0→ A→ A∗ → A∗/A→ 0 (24.7)
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with A∗ coinduced gives ∂n−1 : Hr−1
T (G,A∗/A)

∼=−→ Hr
T (G,A). We now show there is a

commutative diagram

0 // Hr−1(G/H, (A∗/A)H) Infr−1
//

∂n−1

��

Hr−1(G,A∗/A) Resr−1
//

∂n−1

��

Hr−1(H,A∗/A)

∂n−1

��

0 // Hr(G/H,AH) Infr // Hr(G,A) Resr // Hr(H,A).

where all the vertical arrows are isomorphisms. We already know this for the middle arrow.

Since A∗ is G-coinduced, it is H-coinduced (Proposition 8.6), so the right vertical arrow
is an isomorphism.

Since H1(H,A) = 0, taking cohomology of (24.7) gives the exact sequence

0→ AH → (A∗)H → (A∗/A)H → 0.

Recall A∗ = Hom(Z[G], A), so (A∗)H = Hom(Z[G/H], A) is G/H-coinduced. Thus we get
the left vertical arrow is an isomorphism.

By (cohomological) functoriality of Inf and Res, the diagram commutes.

11.5 Transfer

Especially important for our purposes will be the restriction map on the first homology
group.

Definition 11.11: The map VG→S defined by the diagram below

H1(G,Z)

Res1

��

G/G′

VG→S
��

H1(S,Z) S/S ′

is called the transfer or Verlagerung.

(The map Res defined on Tate cohomology in Section 11.2 also gives a map on homology.)

Proposition 11.12: Let G be a group and S be a subgroup of finite index. The transfer is
given by the following: Let {l1, . . . , ln} be a left transversal of S in G. Then

Res1(g) =
n∏
i=1

giS
′

where the gi ∈ S are such that gli = lπ(i)gπ(i) for some permutation π ∈ Sn.
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Proof. By functoriality of Res we have the commutative diagram (cf. Proposition 8.3)

H1(G,Z)

Res1

��

∂1

∼=
// H0(G, IG)

Res0=CG/S
��

IG/I
2
G

CG/S
��

H1(S,Z)
∂1 //

∂1

∼=
&&

H0(S, IG) IG/ISIG

H0(S, IS)

OO

IS/I
2
S

?�

OO

where the top two ∂1’s are from the exact sequence 0→ IG → ZG→ Z→ 0, the bottom ∂1

is from the exact sequence 0 → IH → ZH → Z → 0, and the lower right square is induced
by the inclusion IH ↪→ IG. Replacing H1 with Gab, we get

G/G′

VG→S
��

∼= // IG/I
2
G

CG/S
��

S/S ′ //

∼=

%%

IG/ISIG

IS/I
2
S

?�

OO

Given g ∈ G/G′, it maps to g − 1 in IG/I
2
G. We have

CG/S(g−1) =
n∑
i=1

l−1
i (g−1) =

n∑
i=1

gil
−1
π−1(i)−l

−1
i =

n∑
i=1

i(gi−1)l−1
π−1(i) ≡

n∑
i=1

(gi−1) (mod ISIG).

The inverse image of this in S/S ′ is
∏n

i=1 giS
′, as needed.

Theorem 11.13: Let G be a finite group. Then the transfer map

V : Gab → (G′)ab

is zero.

Proof. See Neukirch, [25, VI.7.6]. The proof uses the computation in Proposition 11.12.

This will be important when we study the Hilbert class field.

§12 Cohomology of cyclic groups

The cohomology of cyclic groups is especially easy to understand, and will be very useful to
us: when L/K is an unramified extension of local fields, the Galois group G(L/K) = G(l/k)
is cyclic.
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Theorem 12.1: Let G be a cyclic group and x a generator. Let χx ∈ Hom(G,Q/Z) =
H1
T (G,Q/Z) be the homomorphism sending x to 1

|G| . Let δ : H1
T (G,Q/Z) → H2

T (G,Z) be

the diagonal map from the exact sequence 0→ Z→ Q→ Q/Z→ 0. The map • ∪ δχx gives
an isomorphism

Hr
T (G,M)

∼=−→ Hr+2
T (G,M)

for all G-modules M and r ∈ Z.
Hence for all n ∈ Z,

H2n−1
T (G,A) = NA/DA

H2n
T (G,A) = AG/NA.

where D is multiplication by x− 1 .

Proof. Since Q is a divisible group, so is Hn(G,Q), by looking at the description of Hn in
terms of cocycles (Section 7). Hence δ : H1

T (G,Q/Z) → H2
T (G,Z) is an isomorphism and

δχx is a generator of H2
T (G,Z).

The short exact sequence 0→ IG → ZG→ Z→ 0 splits because G is cyclic:

0 GGGBFGGG IG GGGBFGGG

D
ZG

ε
GGGBFGGG Z GGGBFGGG 0

where ε
(∑

g∈G agg
)

=
∑

g∈G ag. Now ZG has trivial Tate cohomology by Proposition 9.7,

so the diagonal maps in either direction are isomorphisms:

H0
T (G,Z) δ0

∼=
// H1

T (G, IG) δ1

∼=
// H2

T (G,Z).

Thus we can write δχx = δ0δ1c for a generator c of H0
T (G,Z) = Z/|G|Z. Then by Theo-

rem 10.1(4),
b ∪ δχx = b ∪ δ0δ1c = δ0δ1(b ∪ c).

It suffices to show that the mapHr
T (G,M)

•∪c−−→ Hr
T (G,M) is an isomorphism. But this map is

just multiplication by c for r = 0, so it is multiplication by c for all r. Now by Proposition 11.6
(true for r > 0 and hence true for all r by dimension-shifting) |G|Hr

T (G,M) = 0. As c is a
generator of Z/|G|Z it is relatively prime to |G|; hence multiplication by c is an isomorphism

on Hr
T (G,M). This shows the isomorphism Hr

T (G,M)
∼=−→ Hr+2

T (G,M).
For the second part, note H−1

T (G,A) = NA/DA and H0
T (G,A) = AG/NA.

Corollary 12.2: Let G be a finite cyclic group. Suppose that 1→ A→ B → C → 1 is an
exact sequence of G-modules. Then there is an exact hexagon

H0
T (G,A)

f1
// H0

T (G,B)
f2

&&

H1
T (G,C)

f6

88

H0
T (G,C)

f3xx

H1
T (G,B)

f5

ff

H1
T (G,A)

f4

oo

(24.8)
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Proof. We have H2
T (G,A) ∼= H0

T (G,A).

12.1 Herbrand quotient

Definition 12.3: Let G be a finite cyclic group and A a finite G-module. Define the
Herbrand quotient to be

h(A) = h(G,A) =
|H2n

T (G,A)|
|H2n−1

T (G,A)|

for any n.

This is well-defined by Theorem 12.1.
The following key properties of the Herbrand quotient will help us in computations.

Proposition 12.4: Let G be a finite cyclic group. The Herbrand quotient satisfies the
following.

1. If A is a finite G-module, then h(G,A) = 1.

2. (h is an Euler-Poincaré function) If 1 → A → B → C → 1 is an exact sequence of
G-modules, then

h(G,B) = h(G,A)h(G,C).

(If two of these are defined then the other is defined.)

3. If G acts trivially on Z, then h(G,Z) = |G|.

4. If f : A→ B has finite kernel and cokernel, then h(A) = h(B).

Proof. 1. We use Theorem 12.1 to calculate the quotient. We have the exact sequences

0 //
NA // A N // NA // 0 0 // kerD // A // DA // 0.

AG

Hence
|NA||NA| = |A| = |AG||DA|,

giving
|H1(G,A)| = |NA/DA| = |AG/NA| = |H2(G,A)|.

2. Keeping the notation in the hexagon 24.8, we have

H0(G,A) = | ker f1| ·
|H0(G,A)|
| ker f1|

= |imf6||imf1|.

We can similarly calculate the other quantities to get the result.
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3. Let |G| = n, and [n] denote multiplication by n. We have

h(G,Z) =
|H0

T (G,Z)|
|H−1

T (G,Z)|
=
|ZG/NZ|
|NZ/IGZ|

=
|Z/nZ|
| ker[n]|

=
|G|
1

= |G|.

4. The exact sequence 1 → ker f → A → B → coker f → 1 gives h(G, ker f)h(G,B) =
h(G,A)h(G, coker f) (split the exact sequence into 2 short exact sequences and use
part 2). The result now follows from part 1.

§13 Tate’s Theorem

Theorem 13.1 (Tate’s Theorem): Let G be a finite group and M be a G-module. Suppose
that for all subgroups H ⊆ G,

1. H1(H,M) = 0 and

2. H2(H,M) is cyclic of order |H|.

Then given a generator u ∈ H2(G,M), there is an isomorphism

Hr
T (G,Z)

•∪u−−→ Hr+2
T (G,M)

for all r.

This is the main application of group cohomology to class field theory, as this will be the
inverse of the Artin map: for instance, in local class field theory we have

H−2
T (G(L/K),Z) = G(L/K)ab

H0
T (G(L/K), L×) = (L×)G(L/K)/NmL/K(L×) = K×/NmL/K(L×).

The conditions of Tate’s Theorem may seem unmotivated, but keep in mind that they are
basically the key conditions satisfied in the number-theoretic setting, when G is taken to be
a Galois group and M is taken to be a field (or idele group).

Class field theory was initially proved without group cohomology, but group cohomology
gives a much nicer way to organize and abstract the proof. This theorem is a key part
of that abstraction: isolating the key number-theoretic conditions that result in the Artin
isomorphism. In proving both local and global class field theory, we will spend significant
time showing that the hypothesis of Tate’s Theorem holds. (The key difference in local and
global class field theory is that we put in different things for M .)

Proof. Serre [29], Section IX.8.
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§14 Profinite groups

In this section we study the cohomology groups when G is a profinite group. In this case
topology becomes important. We will apply the results when G is an infinite Galois group.

We find that we have two ways of interpreting the resulting cohomology groups:

1. Imitate the previous construction but work in the category of topological G-modules
instead. I.e. feed in “category of topological groups” into our cohomology functor.

2. Take the direct limit over finite quotients of G.

Definition 14.1: A topological G-module is a G-module that is a topological group, and
such that the map

ϕ : G×M →M

(g,m) 7→ gm

is continuous.

We will always give M the discrete topology, so this is equivalent to the following condition:

M =
⋃

H open subgroup of G

MH .

Indeed, because M has the discrete topology, for the action to be continuous, πG(ϕ−1(m))
must be open, where πG : G ×M → G is the projection. This is just the stabilizer of m,
so the stabilizer of m must contain an open subgroup of G. Hence, every m ∈ M must be
contained in some MH .

We define Hn(G,M) as before, but now in the category of topological G-modules, i.e.
we replace every instance of HomG with Homcont

G , since in this category the morphisms are
continuous G-homomorphisms. Note that the category of discrete G-modules has enough
injectives.

Theorem 14.2: Let G be a profinite group. We have

Hn(G,M) = lim−→Hn(G/S,MS)

where the limit is over open normal subgroups S and the maps are the inflation maps

Infn : Hn(G/S,MS)→ Hn(G/T,MT ), S ⊇ T.

Proof. Milne [21], II.4.2.

We have a similar result if we take the limit over M .

Proposition 14.3: Let G be a profinite group and suppose M = lim−→Hr(G,Mi) is a discrete
G-module, and each Mi injects into M . Then

Hn(G,M) = lim−→Hn(G,Mi).

Proof. Milne [21], II.4.4.
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§15 Nonabelian cohomology

In this section we define cohomology Hn(G,A) when A is non-abelian. (It was okay for
G to be non-abelian because we saw it in the guise of ZG, but we needed A to be in an
abelian category.) The cohomological construction fails and we instead imitate the results of
Theorem 7.2. (The description of H1 and H2 in Theorem 7.2 are useful because derivations
and factor sets are used to classify a lot of things.)

We will only be able to get a “piece” of the long exact sequence. Cohomology also lacks
a lot of structure: we speak not of cohomology groups, because they are now only pointed
sets. We write A multiplicatively, as is the convention for nonabelian groups.

Definition 15.1: The category of pointed sets is the category whose objects are pairs
(A, a), where A is a set and a ∈ A, and such that a morphism (A, a)→ (B, b) is a function
A→ B taking a to b.

The kernel of f : (A, a) → (B, b) is f−1(b). Thus we can define an exact sequence of
pointed sets.

We now define the cohomology (pointed) sets. These will coincide with the definition in
the abelian case by Theorem 7.2, except we only retain the structure of a pointed set.

Definition 15.2: Let G be a group and A a group with G-action.

1. Define
H0(G,A) = AG := {a ∈ A : sa = a for all s ∈ G} .

The distinguished element is 1.

2. Define a 1-cocycle to be a map d : G→ A such that

d(xy) = d(x) · xd(y)

and let Der(G,A) be the set of 1-cocycles. Two cocycles d1, d2 are cohomologous if
there exists a ∈ A so that12

d2(x) = a−1 · d1(x) · xa.

Note this is an equivalence relation; define H1(G,A) to be the pointed set of 1-cocycles
modulo equivalence. The distinguished element is the unit cocycle d(x) ≡ 1.

For an exact sequence of non-abelian G-modules

1→ A
i−→ B

p−→ C → 1

with i(A) E B, define the coboundary operator δ : H0(G,C) → H1(G,A) as follows:
given c ∈ GG, choose any b ∈ p−1(c) and set

δ(c) = d where d(s) = i−1(b−1s(b)).

12The analogue in the abelian case was d2(x) = −a+ d1(x) + xa.
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If furthermore i(A) is in the center of B (so A is abelian), define ∆ : H1(G,C) →
H2(G,A) as follows: for dc ∈ H1(G,C), choose db such that p∗db = dc, and set

[∆(d)](x, y) = db(s) · s(db(t)) · db(st)−1.

Proof of well-definedness. Note the coboundary operator is defined by imitating the con-
struction in the snake lemma.

CG

��

A i //

d1

��

B
p

//

d1

��

C

Der(G,A) i // Der(G,B)

c

��
b

p
//

d1
��

c

(s 7→ i−1(b−1s(b))) i // (s 7→ b−1s(b))

We need to show that s 7→ b−1s(b) is actually a cocycle; its image is in A because s(b) ≡ b−1

(mod i(A)) by exactness; show that the cohomology class is independent of the choice of b.
The second part is similar. Everything is easy to prove so we omit it. See Serre [29],

Appendix to Chapter VII.

Theorem 15.3 (Exact sequence in nonabelian cohomology): Let 1→ A
i−→ B

p−→ C → 1 be
an exact sequence of non-abelian G-modules. Then the following is exact.

1 // H0(G,A)
i0 // H0(G,B)

p0
// H0(G,C) δ // H1(G,A)

i1 // H1(G,B)
p1
// H1(G,C)

∆
��

H2(G,A)

(with the last map present if A is in the center of B).
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Chapter 25

Introduction to Galois cohomology

We will apply group (co)homology as follows: Take a Galois extension L/K and let G :=
G(L/K). Take as a G-module a multiplicative or additive subgroup S of L. The special case
that G is cyclic will come up often, since if L/K is an unramified extension of local fields,
then G is cyclic. Furthermore, the norm map NG has a natural interpretation:

1. If S ⊆ L× then for a ∈ S,

NG(a) =
∏
σ∈G

σ(a) = NmL/K(a).

2. If S ⊆ L+ then for a ∈ S,

NG(a) =
∑
σ∈G

σ(a) = TrL/K(a).

In Section 2 we give an application to Kummer theory (characterizing certain abelian ex-
tensions L of K in terms of L×n ∩ K). Kummer theory will allow us to prove the linear
independence of nth roots.

Finally, we give two interpretations of Galois cohomology groups.

1. H1(G(L/K),Aut(V )) parameterizes algebraic structures defined over K that become
isomorphic in L (Section 3). This is called descent.

2. H2(G(L/K), L×) parameterizes classes of K-algebras “split” over L (Section 4), i.e. it
is the Brauer group.

§1 Basic results

We prove two fundamental theorems on the cohomology of L× and L+.

Theorem 1.1 (Hilbert’s Theorem 90): (†) Let L/K be a Galois extension with Galois group
G. Then

H1(G,L×) = {1}.

Moreover, if G = 〈σ〉 is cyclic and u ∈ L×, then the following are equivalent.
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1. NmL/K(u) = 1.

2. There exists v ∈ L× such that u = σ(v)v−1.

We will often abbreviate H1(G(L/K), L×) as H1(L/K).

Proof. First suppose G is finite. Let c : G → L× be a 1-cocycle; we have cστ = σ(cτ )cσ.
Consider the function

b(e) :=
∑
τ∈G

cττ(e).

By linear independence of the characters τ ∈ G, b is not identically zero; hence there exists
e ∈ L× so that b(e) 6= 0. Operating by σ on both sides and using the cocycle condition gives

σ(b(e)) =
∑
τ∈G

σ(cτ )(στ)(e) =
∑
τ∈G

cστcσ−1(στ)(e) = c−1
σ b(e) (25.1)

and cσ = b(e)σ(b(e))−1, so c is a coboundary.
The infinite case follows from the finite case and Theorem 24.14.2.
For the second part, note that H1(G,L×) = ker(N)/im(D) = 0 gives ker(N) = im(D).

Here N is the norm map NmL/K and D is the map σ − 1, i.e. the map v 7→ σ(v)
v

.

Next we think of L as an additive group.

Theorem 1.2: Let L/K be a finite Galois extension. Then

Hr(G,L+) = 0, r > 0.

Proof. From the normal basis theorem 11.4.3, there exists α ∈ L such that {σα : σ ∈ G} is
a basis for L over K. We get that K[G] ∼= L as G-modules by the map∑

σ∈G

aσσ 7→
∑
σ∈G

aσσα.

Since K[G] ∼= IndG{1}(K),

Hr(G,L+) ∼= Hr({1}, K) = 0

by Shapiro’s Lemma 8.7.

§2 Kummer theory

We use Galois cohomology to prove the following.

Theorem 2.1 (Kummer theory): Suppose K is a field containing a primitive nth root of 1.
Then there is a bijection between

1. Finite abelian extensions of K of exponent dividing n (i.e. for any σ in the Galois
group G(L/K), σn = 1).
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2. Subgroups of K× containing K×n as a subgroup of finite index (i.e. subgroups of
K×/K×n).

This correspondence is given by

L 7→ K× ∩ L×n

K[B
1
n ]← [ B.

Moreover,
[L : K] = [K× ∩ L×n : K×] (25.2)

(Note in the reverse map, which nth roots we take doesn’t matter because K contains nth
roots of unity.)

In the course of proving this theorem, we will show the following useful proposition.

Proposition 2.2: Let K be a field containing a primitive nth root of 1 and L/K an abelian
extension with Galois group G. Then there is a natural isomorphism

K× ∩ L×n/K×n ∼= H1(G, µn) = Hom(G, µn)

a 7→

σ 7→ σ
(
a

1
n

)
a

1
n

 .

In particular, there is a natural isomorphism

K×/K×n ∼= H1(G(Ks/K), µn) = Hom(G(Ks/K), µn).

Proof. Let G = G(L/K), and denote the forward map by B(L) = K× ∩ L×n. The key
step is showing that (25.2) holds; we do this by interpreting K× ∩L×n as a 0th cohomology

module. The inclusions L ⊇ K(B(L)
1
n ) and B(K(B

1
n )) ⊇ B are easily seen to hold (Step

2), so (25.2) will give that equality holds (Steps 3-4).

Step 1: By Theorem 24.4.6, the short exact sequence of G-modules

1→ µn → L×
x 7→xn−−−→ L×n → 1

induces the long exact sequence

1→ H0(G, µn)→ H0(G,L×)→ H0(G,L×n)→ H1(G, µn)→ H1(G,L×)→ · · · .

We need not go further because Hilbert’s Theorem 90 (Theorem 1.1) tells us

H1(G(L/K), L×) = 1.

Next, note that H0(G,H) is simply the subgroup of H fixed by G, and that the subfield of
L fixed by G is K. As µn ⊂ K, G acts trivially on µn and H1(G, µn) = Hom(G, µn) by
Corollary 24.7.3. The sequence becomes

1→ µn → K×
x 7→xn−−−→ K× ∩ L×n → Hom(G, µn)→ 1,
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giving an isomorphism

K× ∩ L×n/K×n ∼= Hom(G, µn).

The map is ∂1(a) =

(
σ 7→ σ(a

1
n )

a
1
n

)
, as shown by tracing through the construction in Theo-

rem 24.3.3. This proves Proposition 2.2.

K× ∩ L×n

��

µn
i //

d1

��

L× x 7→xn //

d1

��

L×n

Der(G, µn) i // Der(G,L×)

a

��
a

1
n

x 7→xn //

d1
��

a

(
σ 7→ σ(a

1
n )

a
1
n

)
i //

(
σ 7→ σ(a

1
n )

a
1
n

)

We claim that |Hom(G, µn)| = |G|. Indeed, by the structure theorem for abelian groups,
G decomposes as (Z/n1Z)×· · ·×(Z/nmZ) where n1, . . . , nm | n. To choose a homomorphism
for G means choosing images for the generators of Z/n1Z, . . . ,Z/nmZ; there are n1, . . . , nm
possibilities, respectively, for a total of |G|.

Then

[L : K] = |G(L/K)| = [K× ∩ L×n : K×].

This shows (25.2).

Step 2: Next note the following two inclusions.

1. K[B(L)
1
n ] ⊆ L: Anything in (K× ∩ L×n)

1
n is in the form (βn)

1
n and hence in L.

2. B(K[B
1
n ]) ⊇ B: Anything in B is in the form (b

1
n )n and hence in K× ∩K(B

1
n )×n.

Step 3: We show that K[B(L)
1
n ] = L. By the inclusions in step 2,

[L : K] ≥ [K[B(L)
1
n ] : K]

(25.2)
= [B(K[B(L)

1
n ]) : K×] ≥ [B(L) : K×].

But [L : K] = [B(L) : K×] by (25.2), so equality holds everywhere. The first equality gives
the conclusion.

Step 4: We show that B(K[B
1
n ]) = B. We apply step 1 with L = K[B

1
n ] to get the

isomorphism

B(L) = K× ∩ L×n/K×n
∼=−→ Hom(G, µn)

a 7→

(
σ 7→ σ(a

1
n )

a
1
n

)
.
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Now B ⊆ B(L) gets mapped to a subgroup H ′ ⊆ Hom(G, µn), which can be identified

with Hom(G/H, µn)1. But as the a
1
n generate L over K and the fixed field of G is K,⋂

h∈H′ kerh = 1. Thus H = {1}. Hence |B(L)| = |G| = |B|, and B = B(L).

Corollary 2.3 (nth roots are linearly independent): Let S be a set of nonzero integers so
that a

b
is not a perfect nth power for any distinct a, b ∈ S. Then the elements

n
√
s, s ∈ S

are linearly independent over Q.

Proof. Step 1: It suffices to show that for distinct primes p1, . . . , pk, we have

[Q( n
√
p1, . . . , n

√
pk) : Q] = nk. (25.3)

Then a basis for this extension over Q is formed by taking products of basis elements for the
Q( n
√
pj): {

n

√
pa1

1 · · · p
ak
k : 0 ≤ aj < n

}
. (25.4)

However, the radicands are exactly the representatives of elements in Q×/Q×n. The elements
of S are all represented by distinct elements of (25.4) modulo Q×, so the theorem will follow.
(To deal with s ∈ S negative, note if s is negative then n

√
s is a not in R.)

We want to use Kummer theory to conclude (25.3). However, Q only has square roots
of unity (±1), so we have to consider all other roots separately. We may as well assume 2 | n.

Step 2: We first show

[Q(
√
p1, . . . ,

√
pk) : Q] = 2k. (25.5)

Let B be the subgroup of Q× generated by p1, . . . , pk and Q×2. By Theorem 2.1,

[Q(B
1
2 ) : Q] = [B : Q×2] = 2k,

as needed.

Step 3: We now adjoin nth roots of unity such that we can apply Kummer theory for nth
roots. Let N be a positive integers such that n | N and Q(

√
p1, . . . ,

√
pk) ⊆ Q(ζN) (every

quadratic extension is contained in a cyclotomic extension; we can take N = 4p1 · · · pkn).

1 The subgroups of G are in bijective correspondence with the subgroups of Hom(G,µn) via the map

H
Φ−→ {h ∈ Hom(G,µn) : H ⊆ kerh} ∼= Hom(G/H,µn)⋂

h∈H′
kerh

Ψ←− H ′

Indeed, clearly Ψ(Φ(H)) ⊇ H, and we have equality since for every g ∈ G\H we can find h ∈ Hom(G,µn)
with kernel containing H, so that h(g) 6= 1. Since Hom(G,µn) ∼= G, they have the same number of subgroups,
and this is a bijection.
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However, if we look at K := Q(ζN), what if elements that aren’t nth powers in Q become
nth powers? Fortunately, this doesn’t happen for n 6= 2. We show that for even n 6= 2 and
m ∈ Q not a perfect n

2
th power,

n
√
m 6∈ Q(ζN). (25.6)

By taking roots, we may assume that m is not a perfect dth power for any d | n.
Note L := Q( n

√
m, ζn) is a Galois extension of Q since it is the splitting field of Xn −m.

Note Xn−m is irreducible over Q because the constant term of any proper factor must be in
the form m

j
n 6∈ Q where 0 < j < n. Hence there exists τ ∈ G(L/Q) sending n

√
m to ζn n

√
m.

Let σ ∈ G(L/Q) denote complex conjugation. Then

στ( n
√
m) = σ(ζn

n
√
m) = ζ−1

n
n
√
m

τσ( n
√
m) = τ( n

√
m) = ζn

n
√
m.

Hence G(L/Q) is not abelian. Since all cyclotomic extensions are abelian, L cannot be
contained in an abelian extension, giving (25.6).

Let C be the subgroup of Q(ζN)× generated by
√
p1, . . . ,

√
pk and Q(ζN)×

n
2 . We showed

above that n
√
m 6∈ Q(ζN)×

n
2 for any m not a perfect n

2
th power so [C : Q(ζN)×

n
2 ] =

(
n
2

)k
. By

Kummer Theory,

[Q(ζN , n
√
p1, . . . , n

√
pk) : Q(ζN)] = [Q(C

n
2 ) : K] = [C : Q(ζN)×

n
2 ] =

(n
2

)k
.

Since Q(
√
p1, . . . ,

√
pk) ⊆ Q(ζN) we get

[Q( n
√
p1, . . . , n

√
pk) : Q(

√
p1, . . . ,

√
pk)] =

(n
2

)k
. (25.7)

Combining (25.5) and (25.7) gives (25.3), as needed.

§3 Nonabelian Galois cohomology

Because of the definition ofH1 in Section 24.15, we find that we can often interpretH1(G(L/K), A)
as parameterizing certain algebraic structures, specifically a set of them defined over K that
become isomorphic in L. (This is known as descent because it answers the question, how
many ways can an algebraic structure (or in general, a variety) “descend” from L to K?) In
general,

H1(G(L/K), {automorphisms preserving V over K})
∼= {K-isomorphism classes that are L-congruent to V } (25.8)

In this section, we will see several examples where A is an algebraic group. We could
also take A to be an abelian variety (see Silverman [31], Theorem X.2.2, for instance).

In particular, we find in the next section that a special cohomology group classifies algebra
structures over K: the Brauer group.

First, we need the following nonabelian generalization of Hilbert’s Theorem 90 (1.1).
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Theorem 3.1 (Generalization of Hilbert’s Theorem 90): For any finite Galois extension
L/K, letting G = G(L/K),

H1(G,GLn(L)) = H1(G, SLn(L)) = 1.

Proof. As in Theorem 1.1, given a 1-cocycle c : G→ GLn(L), consider the function

b : GLn(L)→Mn(L)

b(A) :=
∑
τ∈G

cττ(A).

Note that unlike in the proof of Theorem 1.1, we not only have to choose A to be nonzero,
but also invertible.

Also define b on Ln in the same way:

b : Ln → Ln

b(x) :=
∑
τ∈G

cττ(x).

We show that {b(x) : x ∈ Ln} generate Ln as a vector space over L.2 Suppose a linear
functional f : Ln → L vanishes on all the b(x). Then for every α ∈ L,

0 = f(b(αx)) =
∑
τ∈G

f(cττ(α)τ(x)) =
∑
τ∈G

τ(α)f(cττ(x)).

By linear independence of characters, we get that all the coefficients of the τ(α) must be 0,
i.e. f(cττ(x)) for all cτ ,x. But cτ ∈ GLn(L) is invertible, so f must vanish identically on
Ln. We’ve shown that every linear functional vanishing on {b(x)} vanishes on Ln; therefore
spanL{b(x)} = Ln.

Thus we can choose x1, . . . ,xn such that yj = b(xj) form a basis for Ln over L. Let A be
the matrix sending the canonical basis ej to the xj. Then (note τ acts trivially on the ej)

b(A)ej = b(Aej) = yj

so b(A) is invertible.
The the rest of the proof of Theorem 1.1 goes through: we have as in (25.1) that

cσ = b(A)σ(b(A))−1,

i.e. c is a coboundary. This shows H1(G,GLn(L)) = 1.
For the second part, the exact sequence

1→ SLn(L)→ GLn(L)
det−→ L× → 1

gives the long exact sequence 24.15.3

H0(G,GLn(L)) det // H0(G,L×) // H1(G, SLn(L)) // H1(G,GLn(L))

GLn(K) det // // K× 0.

As the map on the left is surjective, we get H1(G, SLn(L)) = 1.

2Note b is not a L-linear transformation; it is a K-linear transformation.
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We have now established (25.8) when V is a vector space: all vector spaces that become
isomorphic in L have the same dimension to begin with so are isomorphic in K, so the right-
hand side of (25.8) is {1}, and if V = Kn, GLn(L) is the group of automorphisms preserving
V over L, and Theorem 3.1 shows the right-hand side of (25.8) is {1}. We now extend this
to other algebraic structures.

To encode an algebraic structure, we consider vector spaces and tensors.

Example 3.2:
Let V be a finite-dimensional vector space. The space V ⊗p ⊗ V ∗⊗q encodes. . .

p q Structure
1 0 vectors
0 1 linear functionals
1 1 linear operators
0 2 bilinear forms
1 2 algebra structures

We focus on the case p = 1, q = 2. Given a tensor
∑

i vi ⊗ fi ⊗ gi ∈ V ⊗ V ∗⊗2, define a (not
necessarily commutative or associative) algebra structure on V by

v · w =
∑
i

fi(v)gi(w)vi.

Conversely, any algebra structure can be encoded in this way: Take a basis {vi} for V and
a dual basis fi for V ∗, and encode the structure by

∑
i,j(vi · vj)⊗ fi ⊗ gj.

Definition 3.3: Let V be a vector space over K and x ∈ V ⊗p ⊗ V ∗⊗q be a tensor of type
(p, q). Two pairs (V, x) and (V ′, x′) are isomorphic if there is a K-linear isomorphism

f : V → V ′

such that f(x) = x′. Here, f sends

x1 ⊗ · · · ⊗ xp ⊗ f1 ⊗ · · · ⊗ fq 7→ f(x1)⊗ · · · f(xp)⊗ (f1 ◦ f−1)⊗ · · · ⊗ (fq ◦ f−1). (25.9)

Given (V, x) defined over K, we can consider it over L by extending scalars; denote the
resulting pair by (VL = V ⊗K L, xL).

We say that (V, x) and (V ′, x′) are L-isomorphic if (VL, xL) and (V ′L, x
′
L) are isomorphic.

Let EV,x(L/K) denote the L-isomorphism classes of pairs that are K-equivalent to (V, x). If
L/K is Galois, let s ∈ G(L/K) act on v⊗α ∈ V ⊗K L = VL by s(v⊗K α) := v⊗K s(α) and
let s act on AL by conjugation:

f s := s ◦ f ◦ s−1.

Theorem 3.4 (Descent for tensors): Let L/K be a Galois extension, G = G(L/K), and let
AL be the group of L-automorphisms of (VL, xL). Define the map

θ : EV,x(L/K)→ H1(G,AL)

(V ′, x′) 7→ (d : σ 7→ f−1 ◦ fσ = f−1 ◦ σ ◦ f ◦ σ−1)

where f : (VL, xL)→ (V ′L, x
′
L) is any L-automorphism. Then θ is a bijection.
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Proof. We show the following.

1. θ is well-defined. First, θ(V ′, x′) is a cocycle as

d(σt) = f−1σtft−1σ−1 = (f−1σfσ−1)[σ(f−1tft−1)σ−1] = d(σ) ◦ d(t)σ.

(See Definition 24.15.2.) Next, we show θ(V ′, x′) does not depend on the choice of f :
Let df (σ) = f−1σfσ−1 and dg(s) = g−1σgσ−1. Then

dg(σ) = g−1σgσ−1 = g−1f(f−1σfσ−1)σf−1gσ−1 = (fg−1)−1df (σ)(fg−1)σ

so df and dg are cohomologous.

2. θ is injective. Suppose θ(V ′1 , x
′
1) = θ(V ′2 , x

′
2). We can choose the isomorphisms f1 and

f2 such that f−1
1 fσ1 = f−1

2 fσ2 for all σ ∈ G(L/K). Then (f2f
−1
1 )σ = f2f

−1
1 for all

σ ∈ G(L/K), i.e. f2f
−1
1 is an isomorphism defined over K. Thus (V ′1 , x

′
1) and (V ′2 , x

′
2)

are K-isomorphic.

3. θ is surjective. Let cσ be a 1-cocycle of G with values in AL. Since AL ⊆ GL(VL), by
Theorem 3.1 there exists f ∈ GL(VL) such that

cσ = f−1 ◦ fσ

Let f operate on V ⊗p ⊗ V ∗⊗q as in (25.9) and let x′ = f(x). As x ∈ V ⊗pK ⊗ V ∗⊗qK and
cσ fixes K, we have

σ(x′) = fσ(σ(x)) = fσ(x) = f ◦ cσ(x) = f(x) = x′.

Thus x′ is rational over K (i.e. in V ⊗pK ⊗ V ∗⊗qK ), and (V, x′) maps to cσ.

Note that since we always take an isomorphism V → V ′, we can really consider all the
vector spaces to be the “same,” and just vary the tensors x. If we consider V = V ′, then we
abbreviate f : (VL, xL)→ (V ′L, x

′
L) by f : x→ x′.

Example 3.5: We can use Galois cohomology to classify quadratic forms over a field K.
Let Φ be a quadratic form (which corresponds to a bilinear form and can be represented by
a tensor of type (0, 2)), and OL(Φ) be the orthogonal group of Φ, i.e. linear transformations
that preserve Φ. Then H1(G(L/K), OL(Φ)) classifies the quadratic forms over K that are
L-isomorphic to Φ.

§4 Brauer group

The Brauer group characterizes algebras over a field K. We already know a simple way
of making algebras: just consider the algebra of n × n matrices, Mn(K). Thus, we will
essentially “mod out” by these when constructing the group.

As we will see, there is an isomorphism to a second cohomology group. Thus, we can apply
results about algebras over K to Galois cohomology, or conversely, apply Galois cohomology
to get information on algebras over K.

First, we need some results from noncommutative algebra. We refer the reader to
Cohn [?], Chapter 5, or Milne [21], Chapter IV.1–2, for the proofs.
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4.1 Background from noncommutative algebra

Definition 4.1: An algebra over a field K is a ring A with K in its center3. Its dimension
is the dimension of A as a K-vector space, denoted [A : K]. In this chapter we assume all
algebras to be finite-dimensional as K-vector spaces.

An algebra over K is

1. simple if it has no proper two-sided ideals.

2. central if its center in K.

An algebra is a division algebra if every nonzero element has an inverse.

Example 4.2: The algebra of n× n matrices Mn(K) is a central simple algebra over K.

Definition 4.3: Let A be an algebra over K. We use “A-module” to mean any finitely
generated left A-module V ; the map A → End(V ) is called a representation of A. The
module (or representation) is faithful if av = 0 for all v ∈ V implies a = 0, i.e. A ↪→
End(V ) is injective. A module is simple if it doesn’t contain a proper A-submodule, and
indecomposable if it is not the direct sum of two proper A-submodules. (Note that simple
implies indecomposable, but not vice versa.) A module is semisimple if it is the direct sum
of simple A-modules.4

We say A is semisimple if it is semisimple as a module.

We need some basic results from noncommutative algebra.

Definition 4.4: Let B ⊆ A be a subalgebra. Define the centralizer of B to be the elements
of A commuting with B:

C(B) := {a ∈ A : ab = ba for all b ∈ B} .

Theorem 4.5 (Double centralizer theorem): Let A be a K-algebra, and V a faithful
semisimple A-module. Consider A as a subalgebra of EndK(V ). Then

C(C(A)) = A.

Proof. Milne [21], Theorem IV.1.3, or Etingof [?], Theorem 4.54.

Theorem 4.6 (Wedderburn’s structure theorem): An algebra A is semisimple iff it is iso-
morphic to the direct sum of matrix algebras over division algebras.

If A is an algebra over an algebraically closed field K and K, then any semisimple algebra
over K is isomorphic to a direct sum of matrix algebras over K.

3The center of a ring R is the set of elements commuting with all elements of R.
4Equivalently, the radical of A is trivial. If it is semisimple the factors in the decomposition are unique

up to isomorphism (Jordan-Hölder).
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Proof. Milne [21], Theorem IV.1.15.
For the second part, we need to show the only division algebra over an algebraically

closed field K is K itself. Suppose D is a division algebra and α ∈ D. As [D : K] is
finite-dimensional, K(α) is a finite extension of K. Hence α ∈ K, giving D = K.

Theorem 4.7 (Noether-Skolem theorem): Let f, g : A → B be homomorphisms, where A
is a simple K-algebra and B is a central simple K-algebra. Then there exists b ∈ B such
that

f(a) = b · g(a) · b−1

for all a ∈ A, i.e. f, g differ by an inner automorphism of B.
In particular, taking A = B and g = 1, all automorphisms of a central simple K-algebra

are inner (come from conjugation). In particular, this is true for Mn(K).

4.2 Central simple algebras and the Brauer group

We now define the Brauer group.

Definition 4.8: Let A and B be simple algebras over K. We say A and B are similar and
write A ∼ B if

A⊗KMm(K) ∼= B ⊗KMn(K)

for some m,n.
The Brauer group BrK is the set of similarity classes of central simple algebras over

K, with multiplication defined by

[A][B] = [A⊗K B].

The Brauer group BrL/K is the subgroup of classes of central simple algebras over K that
are split over L, i.e. such that A⊗K L is a matrix algebra.

Proof (sketch) that this is a group. We need to check that. . .

1. The tensor product of two central simple algebras is central simple. By Wedderburn’s
Theorem 4.6 we can write the algebras as A = Mm(D) and B = Mm′(D

′), where D,D′

are division algebras. One can show A ⊗K D′ is simple; hence it equals Mn(D′′) for
some D′′. Then A ⊗K B ∼= Mm′n(D′′) is simple. It is central because C(A ⊗K B) =
C(A)⊗K C(B) = K.

2. “∼” is an equivalence relation. If A ∼ B and B ∼ C, then A ⊗KMm(K) ∼= BK ⊗K
Mn(K), B ⊗KMn′(K) ∼= C ⊗KMp(K) for some m,n, n′, p. Then

A⊗KMmn′(K) ∼= A⊗KMm(K)⊗KMn′(K) ∼= C⊗KMn(K)⊗KMp(K) ∼= C⊗KMnp(K).

3. “∼” is preserved under the operation ⊗. If Ai ⊗K Mmi(K) ∼= Bi ⊗K Mni(K) for
i = 1, 2, then A1 ⊗K A2 ⊗KMm1m2(K) ∼= B1 ⊗K B2 ⊗KMn1n2(K).
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4. A has an inverse. Letting Aopp be the opposite algebra, we find that

A⊗K Aopp ∼=Mn(K), n = [A : K].

5. The operation is commutative and associative. This follows since tensor product is
commutative and associative.

By Wedderburn’s Structure Theorem 4.6, each (central) simple algebra is Mn(D) ∼=
Mn(K) ⊗K D for some (central) division algebra D, so every similarity class is represented
by a central division algebra. Thus to determine the Brauer group it suffices to classify
central division algebras.

Example 4.9: We have
BrR = {R,H}

where H denotes the quaternions: the algebra with basis 1, i, j,k = ij and relations i2 = 1,
j2 = 1, and ij = −ji.

Indeed, by Frobenius’s Theorem, the only finite-dimensional (associative) division alge-
bras over R are R, C, and H, and only R and H have center equal to R.

Proposition 4.10: For any algebraically closed field K,

BrK = 0.

Proof. By Wedderburn’s Theorem 4.6, all central simple algebras over K are Mn(K) for
some n.

4.3 Subfields and splitting of central simple algebras

An important way of studying a central simple algebra is to look at its subfields.

Theorem 4.11 (Double centralizer theorem, generalization): Let A be a central simple K-
algebra and B be a simple K-subalgebra. Let C = C(B). Then C is simple, C(C) = A,
and

[B : K][C : K] = [A : K].

Proof. See Milne [21], Theorem IV.3.1.

Corollary 4.12: Let A be central simple over K, and L be a subfield with K ⊆ L ⊆ A.
Then the following are equivalent.

1. L = C(L).

2. [A : K] = [L : K]2.

3. L is the maximal commutative K-subalgebra of A.
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Proof. Milne [21], Corollary IV.3.4.

The following describes the fields over which a central simple algebra splits.

Corollary 4.13: Let A be central simple over K. A finite extension field M splits A iff
there exists an algebra B ∼ A containing M with [B : K] = [L : K]2. In particular, any
subfield L of A of degree

√
[A : K] splits A.

If D is a divison algebra of degree n2 over K, and L is a field of degree n over K
(equivalently a maximal commutative subfield of D), then L splits D, i.e. D ∼=Mn(L).

Proof. Milne [21], IV.3.6, and 3.7.

Theorem 4.14: Every central division algebra over K is split over some finite Galois ex-
tension L/K. Therefore

BrK = BrK/K =
⋃

L/K finite Galois

BrL/K .

Proof. When K is perfect, this follows directly from Corollary 4.13. The general case requires
a separate argument; see Milne [21], IV.3.10.

Similar to the commutative case, we can define a valuation on division algebras.

Proposition 4.15: Let D be a division algebra of rank n2 over a local field K. Then D
admits a discrete valuation extending the valuation on K, such that for any a ∈ (0, 1),
‖x‖D := av(x) defines a norm on D. The set of integral elements {x : v(x) ≥ 0} is a subring
of D.

§5 Brauer group and cohomology

5.1 The Brauer group is a second cohomology group

Definition 5.1: Let BrL/K,n denote the subset of BrL/K consisting of [A] where A⊗K L ∼=
Mn(L). Note that BrL/K =

⋃
n∈N BrL/K,n.

Theorem 5.2 (Cohomological interpretation of Brauer group): There are canonical bijec-
tions

θn : BrL/K,n → H1(G,PGLn(K))

and canonical isomorphisms

δ : BrL/K → H2(L/K)

δ : BrK → H2(K)

where H2(K) := H(K/K) = lim−→L/K finite Galois
H2(L/K).
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Proof. We can represent elements of BrL/K,n as algebras of dimension n2 over K, that are
L-isomorphic to the algebraMn(L). By Example 3.2, we can encode the algebraMn(L) by
a tensor of type (1, 2). By Theorem 3.4,

BrL/K,n ∼= H1(G,Aut(Mn(L))). (25.10)

By the Noether-Skolem Theorem 4.7, every automorphism of Mn(L) is conjugation by an
element of GLn(K). Since the matrices that act trivially by conjugation are just the scalar
matrices, we have the short exact sequence

1→ L× → GLn(L)→ Aut(Mn(L)) ∼= PGLn(L)→ 1. (25.11)

Along with (25.10) this proves the first part.
The long exact sequence 24.15.3 of (25.11) gives

0 = H1(G,GLn(L))→ H1(G,PGLn(L))
∆n−−→ H2(G,L×),

where the LHS follows from Theorem 3.1. Let δn = ∆n ◦ θn; then δn is an injective map.
We show the following.

1. The δn for different n combine compatibly into an injective group homomorphism
δ : Br(L/K)→ H2(L/K): We need to show

δnn′(A⊗ A′) = δn(A)δn′(A
′)

for any A ∈ BrL/K,n and A′ ∈ BrL/K,n′ .

First, note that if a, a′ are tensors encoding the algebras A,A′ on V ⊗ V ∗⊗2 and V ′ ⊗
V ′∗⊗2, then x ⊗ x′ encodes the algebra A ⊗ A′ on (V ⊗ V ′) ⊗ (V ⊗ V ′)∗⊗2. Let x, x′

encode Mn(K) and Mn′(K), so that x ⊗ x′ encodes Mnn′(K). If f : x → a and
f ′ : x′ → a′ are L-linear maps, then we have the L-linear map on Mnn′(L),

f ⊗ f ′ : x⊗ x′ → a⊗ a′.

Now θn, θn′ map A and A′ to cσ = f−1 ◦ fσ and c′σ = f ′−1 ◦ f ′σ. Suppose cσ and c′σ
are represented by conjugation by Sσ and S ′σ, respectively. Now θnn′ maps A⊗A′ onto
dσ = (f ⊗ f ′)−1 ◦ (f ⊗ f ′)σ, which corresponds to conjugation by Sσ⊗S ′σ. Then by the
description of ∆ in Theorem 24.15.2, we see that

δnn′(A⊗ A′) =
{
aσ,τ = i−1

nn′ [(Sσ ⊗ S
′
σ)σ(Sτ ⊗ S ′τ )(Sστ ⊗ S ′στ )−1]

}
= δn(A)δn(A′)

where inn′ is the inclusion map L× → GLnn′(L). Under the inverse of inn′ = in ⊗ in′ ,
tensor product becomes simply the product.

2. δ is surjective. It suffices to show ∆n is surjective, where n = [L : K].5 Take an
2-cocycle aσ,τ ∈ H2(G,L×). We need to show that

aσ,τ = Sσσ(Sτ )S
−1
στ

5Incidentally, this shows that every equivalence class of algebras is represented by one of dimension at
most [L : K]2. This is consistent with results of the previous section.
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for some values of Sσ ∈ GLn(L). We identify Ln with the group algebra L[G], and let
Sσ ∈ GL(L[G]) be the map sending τ to aσ,τστ (it is invertible as aσ,τ ∈ L×). Then
we calculate for every u ∈ G ⊂ L[G],

[Sσσ(Sτ )]u = [aσ,τuσ(aτ,u)]στu

[aστSστ ]u = [aσ,τaστ,u]στu.

The right-hand sides are equal since aσ,τ is a cocycle. Hence

aσ,τ = Sσσ(Sτ )S
−1
στ

is in the image of ∆n.

3. δ gives an isomorphism BrK ∼= H2(K): This follows from Theorem 4.14, the following
easy-to-check commutative diagram (which holds for any K ⊆ L ⊆M),

H2(L/K) �
� Inf //

δ

��

H2(M/K)

δ

��

BrL/K
� � // BrM/K ,

and taking the direct limit of the maps BrL/K → H2(L/K).

Remark 5.3: Milne [21] makes this correspondence more explicit. The relationship between
the two approaches can be seen by choosing a basis for the tensor product V ⊗ V ∗⊗2; the
coefficients are called the structure constants of the algebra. (We followed Serre; note that
the isomorphism in Serre is the opposite of the isomorphism in Milne.)

5.2 Exact sequence of Brauer groups

The importance of the Brauer group in class field theory is given by the following proposition.

Theorem 5.4: Let M/L/K be Galois extensions. Then there is an exact sequence

0 // H2(L/K) // H2(M/K) // H2(M/L)

BrL/K BrM/K BrM/L .

For any Galois extension L/K there is an exact sequence

0 // H2(L/K) // H2(K) // H2(L)

BrL/K BrK BrL .
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Proof. Since H1(L/K) = 0 by Hilbert’s Theorem 90 (1.1), the inflation-restriction exact
sequence 24.11.10 with G = G(M/K) and H = G(M/L) gives

0→ H2(L/K)
Inf−→ H2(M/K)

Res−−→ H2(M/L).

The equality with the Brauer groups follows from Theorem 5.2.
Taking the direct limit over all finite Galois extensions M/K gives the second result.

§6 Problems

2.1 (Artin-Schreier) Let L/K be a Galois extension of degree p, with K/Fp a finite exten-
sion. Prove that L = K(α) for some α such that αp − α ∈ K. (Hint: Consider a short
exact sequence as in the proof of Kummer theory. However, use the map x 7→ xp − x
instead of x 7→ xp, and consider additive instead of multiplicative groups.)
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Chapter 26

Local class field theory

We now prove the main theorems of class field theory using cohomology. Throughout this
chapter, K, L, etc. will denote nonarchimedean local fields, unless specified otherwise.1 The
main steps are the following.

1. Construct the invariant map H2(Kur/K)→ Q/Z. (Proposition 2.1)

(a) Show that H2(G(Kur/K), UKur) = 0. (Theorem 1.1)

(b) From the decompositionKur× = UKur×Z and step 1, we getH2(G(Kur/K), Kur×) ∼=
H2(G(Kur/K),Z). (Note the projection Kur× → Z is the valuation map vKur .)
Relate H2(G(Kur/K),Z) to Q/Z using the long exact sequence in cohomology
associated to 0→ Z→ Q→ Q/Z→ 0.

2. Now show that there is an isomorphism BrK := H2(K/K) ∼= H2(Kur/K) (Theo-
rem 3.1). Thus we can restrict attention to unramified extensions of K and use step
1. Unramified extensions are easier to deal with! There are two approaches:

(a) By Theorem 25.5.4 there is an exact sequence

0→ H2(Kur/K)→ BrK → BrKur .

Show that BrKur = 0 by considering central simple algebras over local fields.

(b) Study the cohomology of UL when L/K is cyclic to conclude that the Herbrand
quotient h(UL) is 1. From this get h(L×) = [L : K]. From this calculation and
Hilbert’s Theorem 90 (25.1.1), compute2

|H1(L/K)| = 1,

|H2(L/K)| = [L : K].

Conclude thatH2(L/K) is cyclic of order [L : K] and hence included inH2(Kur/K),
for any finite L/K.

1Local class field theory for R and C is trivial and left to the reader. (The only nontrivial field extension
is C/R.)

2This is the input for abstract class field theory according to Neukirch [25].
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3. Combining the first two steps, we get the invariant map invK : BrK → Q/Z. Show that
this is compatible with restriction and hence that (G(K/K), K) is a class formation.
Note invK restricts to H2(L/K) → 1

[L:K]
Z; supposing its image is generated by uL/K ,

Tate’s Theorem 24.13.1 gives an isomorphism

H−2
T (G(L/K),Z)

•∪uL/K
∼=

// H0
T (G,L×)

G(L/K)ab K×/NmL/K(L×)

that sends FrobL/K to [π] when L/K is unramified. Taking a direct limit, we get a
map K× → G(Kab/K). Note we only get a map from Gab (norm limitation).

4. Study the Hilbert symbol to prove the existence theorem (See Sections 6–7).

Unfortunately it is quite difficult to trace through the maps to find out what the Artin map
actually is—for this Lubin-Tate Theory is better.

§1 Cohomology of the units

For an unramified extension, the cohomology of the units is trivial.

Theorem 1.1 (Cohomology of units): Suppose L/K is a finite unramified extension of local
fields with Galois group G. Let UL be the group of units of L. Then

Hr
T (G,UL) = 1

for any r. Hence Hn(G(Kur/K), UKur) = 0 for n > 0.

Proof. We will show that
H1
T (G,UL) = H0

T (G,UL) = 1.

Then it follows from Proposition 24.12.1 that all the Tate groups are trivial. The second
part follows from taking the direct limit.

We have
L× = UL × πZ ∼= UL × Z (26.1)

where π is a uniformizer for L. Since L/K is unramified, we can choose π ∈ K. Then G
acts trivially on π, so acts trivially on Z in the decomposition above. Thus (26.1) gives a
decomposition of L× as a G-module (not just as a group). We have by Hilbert’s Theorem 90
(Theorem 25.1.1) and the fact that cohomology respects products (Proposition 24.6.7) that

0 = H1(G,L×) = H1(G,UL)×H1(G,Z).

Hence H1(G,UL) = 1.

It remains to show H0
T (G,UL) = 1. To do this, let m be the maximal ideal of L, U

(m)
L :=

1 + mn, and consider the filtration

U
(0)
K := UK ⊃ U

(1)
K ⊃ U

(2)
K ⊃ · · · .
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Proposition 1.2 and 1.3 below show that each quotient has trivial cohomology:

H0
T (G,U

(i)
L /U

(i+1)
L ) = 1.

Then Lemma 1.4 gives that H0
T (G,UL) = 1, as needed.

Proposition 1.2: Let K be a complete field with discrete valuation, m be the associated
maximal ideal, and U

(m)
K := 1 + mm. Then we have isomorphisms

UK/U
(1)
K

∼=−→ k× U
(m)
K /U

(m+1)
K

∼=−→ k+

u 7→ u (mod m) 1 + aπm 7→ a (mod m)

that preserve Galois action.

Proof. This is Proposition 21.4.8.

Proposition 1.3: Let l/k be an extension of finite fields and G := G(l/k). Then

Hr
T (G, l×) = {1}

Hr
T (G, l+) = {0}

for all r ∈ Z. Moreover, the maps Nml/k : l→ k and Trl/k : l→ k are surjective.

Proof. By Hilbert’s Theorem 90 (25.1.1), H1(G, l×) = 0. Since G is cyclic and l is finite,
by Proposition 24.12.4, h(l×) = 1, giving H2(G, l×) = 0. Again since G is cyclic, by Theo-
rem 24.12.1, all the Tate groups are 0.

From Theorem 25.1.2, Hr
T (G, l+) = 0 for r ≥ 0.

For the second statement, just note

{1} = H0
T (G, l×) = (l×)G/NG(l×) = k×/Nml/k(l

×)

{0} = H0
T (G, l+) = lG/NG(l) = k/Trl/k(l).

Lemma 1.4: Let G be a finite group and M be a G-module. Let

M = M0 ⊇M1 ⊇ · · ·

be a decreasing sequence of G-submodules and suppose M = lim←−M/M i (i.e. M is complete

with respect to this filtration). If Hq(G,M i/M i+1) = 0 for all i, then Hq(G,M) = 0.

Proof. Let f be a q-cocycle of M . Since Hq(G,M/M1) = 0, the long exact sequence of
0→M1 →M →M/M1 gives Hq(G,M1)� Hq(G,M) and we can write f = g0 +f1, where
g0 = δh0 is a coboundary in M and f1 is a q-cocycle in M1. Given fn ∈ Hq(G,Mn), we can
write

fn = δhn + fn+1

where hn is a (q − 1)-cocycle of Mn and fn+1 is a q-cocycle of Mn+1. Then

f = δ(h1 + h2 + · · · ),

the infinite series being defined in Hq−1(G,M) since hn is a cochain with values in Mn, and
M is complete with respect to this filtration.
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This proves Theorem 1.1. We record the following corollary, for easy reference.

Corollary 1.5: Suppose L/K is a finite extension of local fields. Then

UK ⊆ NmL/K UL.

Proof. If L/K is Galois, then this follows since by Theorem 1.1

UK/NmL/K UL = H0
T (G(L/K), UL) = {1}

so the norm map UL → UK is surjective.
For general extensions L/K, consider the Galois closure and use transitivity of norms.

§2 The invariant map

2.1 Defining the invariant maps

Proposition 2.1: For any finite unramified Galois extension of local fields L/K there is a
canonical isomorphism

invL/K : H2(L/K)
∼=−→ 1

[L : K]
Z/Z.

Taking the direct limit gives an injective map

invKur/K : H2(Kur/K)→ Q/Z.

Proof. Consider the short exact sequence

1→ UL → L×
vL−→ Z→ 0.

Since Hn
T (G,UL) = 0 for all n by Theorem 1.1, taking the long exact sequence gives

���
���:

0
H2(G,UL)→ H2(L/K)

∼=−→ H2(G,Z)→����
��:0

H3(G,UL).

We relate H2(G,Z) to a lower cohomology group by considering the short exact sequence

0→ Z→ Q→ Q/Z→ 0.

Note Hn(G,Q) is torsion for any n > 0 by Corollary 24.11.6. Since Q is a divisible group, so
is Hn(G,Q), by looking at the description of Hn in terms of cocycles (Section 24.7). Hence
Hn(G,Q) = 0 for any n > 0. Taking the long exact sequence of the above we get

���
���:0

H1(G,Q)→ H1(G,Q/Z)
∼=−→ H2(G,Z)→����

��:0
H2(G,Q).

Thus we get a map

invL/K : H2(L/K)
∼=−→ H2(G,Z)

∼=←− H1(G,Q/Z)
24.7.3∼= Hom(G,Q/Z)

∼=−→ 1

[L : K]
Z/Z.

(26.2)
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where the last is defined by taking the Frobenius element σ of G and mapping f 7→ f(σ).
(Note G is cyclic and σ generates G; the Frobenius is a canonical choice.)

Now define invKur/K = lim−→L/K finite Galois unramified
invL/K , taking the direct limit under

inflation. Since inflation is functorial, the first two maps in (26.2) commute with it. Identi-
fying H1(G,Q/Z) ∼= Hom(G,Q/Z), inflation sends a map G(L/K) → Q/Z to G(M/K) �
G(L/K)→ Q/Z. Moreover, FrobL/K is the projection of FrobM/K to G(L/K). Hence InfM/L

commutes with the inclusion map 1
[L:K]

Z/Z ↪→ 1
[M :K]

Z/Z, and the invL/K form a compatible
system under inflation.

Remark 2.2: Let K be any nonarchimedean complete field (not necessarily local) with
residue field k. Then

Hn(L/K) = Hn(l/k)×Hn(G(L/K),Q/Z).

Indeed, Proposition 1.2 and Theorem 25.1.2 still give

Hr
T (G,U

(i)
L /U

(i+1)
L ) ∼= Hr

T (G, l+) = 0

for i ≥ 1. This gives Hr
T (G,U

(1)
L ) = 0 by Lemma 1.4. From the long exact sequence

associated to
1→ U

(1)
L → UL → UL/U

(1)
L
∼= l× → 1

we get
Hn(L/K) ∼= Hn(G,UL)×Hn(G,Z) = Hn(G, l×)×Hn(G,Z).

In the case of a local field, l was finite so Hn(G, l×) = 1.

2.2 Compatibility of the invariant maps

We show that the invariant maps are compatible, in the following sense.

Theorem 2.3: Let L/K be a Galois extension of local fields, and n = [L : K]. Then

invKur/L ◦ResK/L = n invKur/K

Proof. To do this we have to unravel all those steps we took to define invKur/K . . . We first
prove this for two special cases.

1. L/K is unramified. Let G = G(Kur/K) and S = G(Kur/L). We claim the following
commutes.

H2(Kur/K) //

Res
��

H2(G,Z)

Res
��

H1(G,Q/Z)oo
γ

//

Res
��

Q/Z
n

��

H2(Kur/L) // H2(S,Z) H1(S,Q/Z)oo
γ

// Q/Z.

For the squares involving Res, this follows from naturality of Res. For the last square,
identify H1(G,Q/Z) = Hom(G,Q/Z); Res becomes simply restriction of homomor-
phisms. Recall that γ was defined taking the Frobenius Frob(Kur/K) ∈ G(Kur/K)
and sending f ∈ H1(G,Q/Z) = Hom(G,Q/Z) to f(σ), and we have

FrobnKur/K = FrobKur/L
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by Proposition 23.1.4.

2. L/K is totally ramified. Note that G = G(Kur/K) = G(KurL/L) = G(Lur/L) in this
case, from the description of Kur in Theorem 20.2.6. We show the following commutes:

H2(Kur/K) //

Res
��

H2(G,Z)

n

��

H1(G,Q/Z)oo
γ

//

n

��

Q/Z
n

��

H2(Kur/L) // H2(G,Z) H1(G,Q/Z)oo
γ

// Q/Z.

The first square commutes by commutativity of

Kur× vK //� _

��

Z
n
��

Lur× vL // Z.

(and of course, naturality of cohomology). Here vK and vL are the valuation maps, i.e.
the projections K× ∼= UK × Z→ Z and L× ∼= UL × Z→ Z.

The general case follows by considering L/LIL/K (totally ramified) and LIL/K/K (unramified).
(See Theorem 14.7.2.)

§3 H2(K/K) ∼= H2(Kur/K)

We prove the following.

Theorem 3.1: The inclusion (inflation) map

H2(Kur/K)→ H2(K/K)

is an isomorphism.

For short we write H2(K) := H2(K/K).

3.1 First proof (Brauer group)

First proof. By Proposition 25.5.4 there is an exact sequence

0→ H2(Kur/K)→ H2(K)→ H2(Kur) =���
�:0

BrKur .

The last term is zero by Theorem 3.2 below. Thus we get H2(Kur/K) ∼= H2(K), as needed.

Theorem 3.2: Let K be a local field. Then BrKur = 0.

We need two lemmas.
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Lemma 3.3: Suppose D is a central division algebra of rank n2 > 1 over a field K, and
the residue field k is perfect. Then there exists a commutative subfield L of D properly
containing K, unramified over K.

Lemma 3.4: Keep the same hypotheses as Lemma 3.3. There is a subfield of D of degree
n unramified over K.

Note this is a maximal subfield by Corollary 4.13.

Proof of Lemma 3.3. Suppose by way of contradiction that every commutative subfield L
of D properly containing K is ramified. Then the extension of residue fields l/k must be
trivial (see Theorem 14.7.2). Let a ∈ D be integral and π ∈ D be a uniformizer for D. (See
Proposition 25.4.15.) Since l = k, there exists b ∈ K such that b ≡ a (mod π), and we can
write a = b + πb1 for some b1 ∈ OD, where OD is the ring of integers in D. Iterating this
with b1, we find

a = b+ πb1 + · · ·+ πn−1bn−1 + πnbn

where b1, . . . , bn−1 ∈ OK and bn ∈ OD. Thus a is in the closure of K(π). But K(π) is
closed (it is a finite-dimensional vector space over K), so a ∈ K(π), i.e. D = K(π) and D is
commutative, a contradiction.

Proof of Lemma 3.4. Induct on n. The case n = 1 is clear. Let n ≥ 2. By Lemma 3.3 there
exists a proper unramified extension K ′/K inside D. Let D′ = C(K ′). Since D′ ⊆ D, D′

must be a division algebra (a finite dimensional integral domain must contain inverses). Let
its center be K ′′. The maximal commutative subfield of D′ then has dimension

√
[D′ : K ′′]

over K ′′, or dimension
√

[D′ : K ′′][K ′′ : K] =
√

[D′ : K][K ′′ : K] over K. This is at most n,

since the field is also contained in D. But
√

[D′ : K][K ′ : K] = n by the double centralizer
theorem 25.4.11, so we must have K ′′ = K. Thus D′ is a division algebra with center K ′. Its
degree over K ′ is less than n2, so by the induction hypothesis, D′ has a maximal commutative
subfield L containing K ′, of degree

√
[D′ : K ′], and unramified over K ′, hence over K. We

calculate

[L : K] = [L : K ′][K ′ : K] =
√

[D′ : K ′][K ′ : K] =
√

[D′ : K][K ′ : K] =
√

[D : K]

where we used Theorem 25.4.11 in the last step. This finishes the induction step.

Proof of Theorem 3.2. Suppose D is a central division algebra over Kur of rank n2. Then
lemma 2 furnishes a subfield of Kur of degree n, unramified over Kur. Hence n = 1, and D
is trivial. Thus BrKur = 0. This proves Theorem 3.2 and hence Theorem 3.1.

3.2 Second proof (Herbrand quotient calculation)

Herbrand quotient calculation

We first need the following lemma.

Lemma 3.5: Given a local field L, there exists an open subgroup V of UL with trivial
cohomology, i.e. Hq(G, V ) = 0 for all q.
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Proof. The idea is to compare a multiplicative G-module V with an additive G-module (more
accurately, compare the filtration of V ), and use the same argument as in Theorem 1.1.2.3

By the normal basis theorem, L+ has a normal basis {σ(α) : σ ∈ G}, i.e. it is free over
K[G]. Let A =

∑
σ∈GOKσ(α).4 By multiplying α by a power of πK we may assume that

α ∈ OL. Suppose that
πnKOL ⊆ A ⊆ OL.

Let M = πn+1
K A, V = 1 +M and V (i) = 1 + πiKM . Note that

M ·M ⊆ π2n+2
K A · A ⊆ πKπ

n+1
K πnKOL ⊆ πKπ

n+1
K A ⊆ πKM.

This shows that

1. V is a subgroup: Indeed, (1 +M)(1 +M) ⊆ 1 +M +M ·M ⊆ 1 +M by the above.

2. V i/V i+1 ∼= A/πKA as G-modules. Indeed, if m1,m2 ∈ M , then for some m3 ∈ M , we
have

(1+πiKm1)(1+πiKm2) = 1+πiK(m1+m2)+π2i
KπKm3 ≡ 1+πiK(m1+m2) (mod πi+1

K M).

Hence
Hq(G, V (i)/V (i+1)) = Hq(G,M/πKM) = 0

for each q, since M/πKM is an induced module over G (and has trivial cohomology by
Shapiro’s Lemma 24.8.1). (By construction M/πKM = IndG[(πn+1

K αOK)/(πn+2
K αOK)].)

Lemma 1.4 applied to V finishes the proof.

Proposition 3.6: Suppose L/K is cyclic of degree n. Then

h(UL) = 1.

h(L×) = n.

Proof. Choose V as in Lemma 3.5. Since V is open, UL/V is finite. By Proposition 24.12.4(1),
h(UL/V ) = 1. Hence

h(UL) = h(V )h(UL/V ) = 1.

By Proposition 24.12.4(3), h(Z) = |G| = n. Since L× = UL × πZ
L we get

h(L×) = h(UL)h(Z) = n.

3If char(L) = 0 there is a faster proof: Note that ex is a topological isomorphism from a neighborhood of
0 in the additive group L to a neighborhood of 1 in the multiplicative group OL. Moreover, it preserves the
action of G because the fact that G acts continuously on L gives

eσx =

∞∑
n=0

(σx)n

n!
=

∞∑
n=0

σ(xn)

n!
= σex.

Now Theorem 1.1.2 applies directly.
4Warning: A is a OK [G]-module; we don’t know it is an OL-module.
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Theorem 3.7 (Class field axiom for local class field theory): Let L/K be a cyclic extension
of degree n. Then

|H1(L/K)| = 1

|H2(L/K)| = n.

Proof. The first follows directly from Hilbert’s Theorem 90 (1.1). For the second, we have
|H2(L/K)| = h(L×)|H1(L/K)| = n using Proposition 3.6.

We want to show that |H2(L/K)| = n for all Galois extensions L/K, and in fact H2(L/K)
is cyclic of order n. We proceed in 2 steps.

First inequality

We show that for all Galois extensions L/K, |H2(L/K)| ≥ [L : K]. In fact, we show the
following.

Lemma 3.8: Let L/K be a Galois extension of local fields of degree n. Then H2(L/K)
contains a subgroup canonically isomorphic to 1

n
Z/Z.

Proof. We prove this using Theorem 2.3, which relates the invariant maps on Kur/K and
Lur/L. By Theorem 25.5.4, we have the exact sequence 0 → H2(L/K) → H2(K) →
H2(L). Inflation and restriction commute by functoriality of change of group, so we have
the commutative diagram with exact columns

0

��

0

��

H2(L/K)

��

ker(Res)oo

��

H2(K)

Res
��

H2(Kur/K)? _Infoo

Res
��

H2(L) H2(Kur/L).? _Infoo

(26.3)

By Theorem 2.3, the map H2(Kur/K) → H2(Lur/L) corresponds to the multiplication-by-
[L : K] map after identifying both sides with a subgroup of Q/Z through the respective
invariant maps. Hence ker(Res) = 1

n
Z/Z. The top map exists and is an injection because

the other two are (4-lemma). Hence 1
n
Z/Z ↪→ H2(L/K), as needed.

Second inequality

Next we show |H2(L/K)| ≤ [L : K], so |H2(L/K)| = [L : K].

Lemma 3.9: Let L/K be a Galois extension of local fields of degree n. Then H2(L/K) ∼=
1
n
Z/Z.
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Proof. We already know that |H2(L/K)| = [L : K] for L/K cyclic (Theorem 3.7). We prove
that |H2(L/K)| = [L : K] by induction on the degree.

By Corollary 21.4.12, G(L/K) is solvable. Thus, if G(L/K) is not cyclic, it has a normal
subgroup G(L/K ′). By Theorem 25.5.4 we have an exact sequence

0→ H2(K ′/K)→ H2(L/K)→ H2(L/K ′)

so
|H2(L/K)| ≤ |H2(K ′/K)| · |H2(L/K ′)| = [K ′ : K][L : K ′] = [L : K].

By Lemma 3.8, equality holds.

Finishing the proof

Second proof of Theorem 3.1. Take any element a ∈ H2(K/K); it is in H2(L/K) for some
finite Galois L/K. The top injection in (26.3) is an isomorphism by Lemma 3.9, and we get
a ∈ H2(Kur/K).

§4 Class formations

The preceding sections show that

(G(K/K), {G(L/K) : L/K finite Galois} , K)

is a class formation. That is, it satisfies the basic axioms that allow us to obtain the
conclusions of class field theory. With the abstraction of class formations, when we prove
global class field theory, we only have to verify the axioms and we will get the desired
conclusions in the same way as in local class field theory.

4.1 Class formations in the abstract

Definition 4.1: An abstract Galois group is a group G with a family of subgroups of
finite index {GL}L∈X such that

1. (Closure under intersection) If L1, L2 ∈ X, then there exists M such that

GL1 ∩GL2 = GM .

2. (Closure under superset) If GL ⊆ G′ ⊆ G are subgroups, then G′ = GK′ for some K ′.

3. (Closure under conjugation) For every s ∈ G and L ∈ X there exists L′ so that

sGLs
−1 = GL′ .

This definition is motivated by the fact that these are the key properties of Galois groups.
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Proposition 4.2: A topological Galois group G(Ω/K0) with all its closed subgroups, is an
abstract Galois group.

Proof. By the fundamental theorem of infinite Galois theory 11.8.4, the closed subgroups of
G(Ω/K0) are exactly those in the form G(Ω/K) with K0 ⊆ K ⊆ Ω. The above properties
correspond to the following facts from Galois theory.

1. G(Ω/K) ∩G(Ω/L) = G(Ω/KL).

2. The subgroups of G(Ω/K0) containing G(Ω/L) correspond to intermediate extensions
between K0 and L.

3. sG(Ω/K)s−1 = G(Ω/sK).

We transfer some terminology about Galois groups to the abstract case.

Definition 4.3: Let (G, {GL}L∈X) be an abstract Galois group. The elements of X are
called fields. The field K0 with GK0 = G is called the basefield. For GM ⊆ GL, define
[M : L] to be [GL : GM ]; we say M/L is a Galois extension if GM E GL, and write

G(M/L) = GL/GM

(called the “Galois group” of M/L). We say M/L is abelian, etc. if G(M/L) is abelian, etc.

The field M such that GL1∩GL2 = GM is called the composite of L1 and L2, and denoted
by L1L2; the field L′ such that sGLs

−1 = GL′ is denoted by sL.

Note every extension M/L is contained in a Galois extension: Since [GL : GM ] is finite
GM has finitely many conjugates sGMs

−1 in GL; by the axioms GM ′ =
⋂
s sGLs

−1 for some
M ′, called the Galois closure of M/L.

Definition 4.4: A formation is a triple (G, {GK}K∈X , A) where (G, {GK}K∈X) is an ab-
stract Galois group and A is a discrete topological G-module (see Definition 24.14.1). Let
AK := AGK .

Define the norm NmL/K : AL → AK by letting NmL/K(a) =
∏

σ∈G(L′/K)/G(L′/K) σ(a) for
any L′ Galois over K.

For L/K Galois, we define Hn(L/K) := Hn(G(L/K), AL). We can define inflation,
restriction, and corestriction maps in the natural way, with ResK/L = ResGK/GL , and so
forth.

Definition 4.5: A class formation is a formation (G, {GK}K∈X , A) with a homomorphism
invL/K : H2(L/K)→ Q/Z for each Galois extension L/K, such that the following hold.

1. H1(L/K) = 0 for every cyclic extension of prime degree.

2. invL/K is an isomorphism from H2(L/K) to 1
[L:K]

Z/Z.
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3. (Compatibility under inflation) For any finite extension M/L,

invM/K ◦ InfM/L = invL/K .

Hence we can define invK : lim−→L
H2(L/K)→ Q/Z. (This axiom implies that inflations

are injective on H2, so we can think of H(K) := lim−→L
H2(L/K) as

⋃
LH

2(L/K).)

4. (Compatibility with restriction) For any finite Galois extension L/K,

invL ◦ResK/L = [L : K] invK .

Define the fundamental unit of L/K to be

uL/K = inv−1
K

(
1

[L : K]

)
.

Proposition 4.6: Assume a formation satisfies axiom 1. Then for every Galois extension
L/K,

H1(L/K) = 0.

Proof. First we show this when [L : K] is a prime power pn. Induct on the degree. The base
case is given. Every p-group has a subgroup of index p, so there is K ⊂ K ′ ⊂ L such that
G(K ′/K) has order p. By the inflation-restriction exact sequence 24.11.10, we get

0→����
���:0

H1(K ′/K)
Inf−→ H1(K/L)

Res−−→����
��:0

H1(L/K ′);

the first and last terms are 0 by axiom 1 and by the induction hypothesis. So H1(K/L) = 0.
For general L/K, this shows H1(G(L/K)p, AL) = 0, so the result follows from Corol-

lary 24.11.8.

Proposition 4.7: Assume a formation satisfies axiom 2. Transferring the action of Res,
Cor, and Inf to the subgroups of Q/Z, we get the following diagram:

M

[M :L]

L

[L:K]

H2(M/L)
invL //

s S

CorL/K

��

1
[M :L]

Z/Z
t T

i

��

L

K H2(M/K)
invK //

ResK/L

YYYY

1
[M :K]

Z/Z

[L:K]

WWWW

K H2(L/K)
invK //

dD

InfM/L

ll
1

[L:K]
Z/Z

dD

i

ll

(Note CorL/K ◦ResK/L = [L : K].) Moreover (passing to the limit), the following hold.

1. For every extension L/K,

ResK/L : H2(K)� H2(L)

is surjective.
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2. For every extension L/K,

CorL/K : H2(L) ↪→ H2(K)

is injective, and
invK ◦CorL/K = invL .

3. For every s ∈ G, letting s∗ : H2(K)→ H2(sK),

invsK ◦s∗ = invK .

Proof. The surjectivity of ResK/L in the diagram comes directly from the injectivity of invK
and invL ◦ResK/L = [L : K] invK .

For the action of CorL/K , note

invK ◦CorL/K ◦ResK/L = invK ◦[L : K] = invL ◦ResK/L

where the first follows from Theorem 24.11.5 and the second from the axiom. Surjectivity
of ResK/L gives invK ◦CorL/K = invL, as needed.

Items 1 and 2 now follow from taking the direct limit.
For 3, let the basefield be K0; note the map s∗ : H2(K0) → H2(sK0) = H2(K0) is

the identity by Proposition 24.11.3, so invsK0 ◦s∗ = invK0 . For arbitrary x ∈ H2(K), by
surjectivity of ResK/L we can write x = ResK/L(x0). Since Res and s∗ commute (transport
of structure),

invsK(s∗x) = invsK(s∗ResK0/K x0) = invsK RessK/sK0(s∗x0) = [sK : sK0] invsK0(x0) = invK(x).

The reciprocity law follows from the properties of class formations.

Theorem 4.8 (Abstract reciprocity law): Let (G, {GK}K∈X , {AK}, invL/K) be a class for-
mation. Then there is a isomorphism

H−2
T (G(L/K),Z)

uL/K∪•
∼=

// H0
T (G,AL)

G(L/K)ab AK/NmL/K(AL)

Here NmL/K means NGK/GL . Denote the reverse map by φL/K .

Proof. The identifications are from Theorem 24.8.3 and Definition 24.9.2. Axioms 1 and 2
for class formation give that the two conditions of Tate’s Theorem 24.13.1 are satisfied.

This map is hard to calculate directly because cup products on negative Tate cohomology
are hard to deal with. The following helps us by transferring the cup products to nonnegative
Tate groups.
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Theorem 4.9: Keep the above hypothesis. Then for any χ ∈ Homcont(G(L/K),Q/Z) =
H1(G,Q/Z) and a ∈ AK ,

χ(φL/K(a)) = invK(a ∪ δχ).

Here a denotes the image of a in H0
T (G(L/K), AL) = AL/NmL/K AL, and δ is the diagonal

morphism corresponding to the exact sequence 0→ Z→ Q→ Q/Z→ 0.

Note this characterizes the reciprocity map since knowing the image of an element of an
abelian group under all homomorphisms to Q/Z is equivalent to knowing the element itself.5

Proof. Suppose χ(φL/K(a)) = r
n
.

By the definition of the Artin map as the inverse of uL/K ∪ •, we have

a = uL/K ∪ φL/K(a).

We now calculate the following (for easy reference, we note which cohomology groups the
elements are in).

a︸︷︷︸
0

∪ δχ︸︷︷︸
2

= [uL/K︸ ︷︷ ︸
2

∪φL/K(a)︸ ︷︷ ︸
−2

] ∪ δχ︸︷︷︸
2

= uL/K︸ ︷︷ ︸
2

∪[φL/K(a)︸ ︷︷ ︸
−2

∪ δχ︸︷︷︸
2

] associativity

= uL/K︸ ︷︷ ︸
2

∪[δ(φL/K(a)︸ ︷︷ ︸
−2

∪ χ︸︷︷︸
1

)] Theorem 24.10.1(4)

= uL/K︸ ︷︷ ︸
2

∪ δ(χ(φL/K(a)))︸ ︷︷ ︸
0

Theorem 24.10.3(3)

= uL/K︸ ︷︷ ︸
2

∪ δ
( r
n

)
︸ ︷︷ ︸

0

= uL/K︸ ︷︷ ︸
2

∪ r︸︷︷︸
0

(26.4)

= ruL/K Theorem 24.10.3(1)

invK(a ∪ δχ) =
r

n
= χ(φL/K(a)).

In (26.4), we use the map in the snake lemma to calculate δ
(
r
n

)
: it pulls back to r

n
∈ Q ∼=

H−1
T (G,Q); the norm maps it to r = n · r

n
∈ Q ∼= H0

T (G,Q) ⊇ H0
T (G,Z). In the second-

to-last line, we note that • ∪ r is simply multiplication by r in dimension 0, so Theorem
24.10.3(1) tells us it is multiplication by r in dimension 2 as well.

We need several naturality properties of the reciprocity map.

5It may seem odd to calculate χ ◦ φL/K instead of φL/K directly but keep in mind that for general L/K,
FrobL/K(p) is only defined to be a conjugacy class, and it is natural to look at the action of characters on
conjugacy classes because characters are class functions.
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Theorem 4.10: Let M/L/K be Galois extensions. The following are commutative.

AL
Cor0=NmL/K

//

φM/L
��

AK

φM/K
��

AK
� � Res0=i //

φM/K
��

AL

φM/L
��

G(M/L)ab Cor−2

natural
// G(M/K)ab G(M/K)abRes−2=V// G(M/L)ab

AK

φL/K
��

s∗ // AsK

φsL/sK
��

AK

φM/K
��

φL/K

''

G(L/K)ab s∗ // G(sL/sK) G(M/K)ab // G(L/K)ab.

Proof. First note that the maps in the first diagram are corestrictions and the maps in the
second diagram (on the right) are restrictions by Proposition 11.4.

From axiom 4 of Proposition 4.5, we have

ResK/L(uM/K) = uM/L.

We will use Proposition 24.11.9, about the commutativity of cup products with restriction
and corestriction. The first diagram follows from

Cor0
L/K(x ∪ uM/L) = Cor0

L/K(x ∪ ResK/L(uM/K)) = Cor2
L/K(x) ∪ uM/K , x ∈ G(M/L)ab.

The second diagram follows from

Res0
K/L(x ∪ uM/K) = Res−2

K/L(x) ∪ uM/L.

The third diagram follows from the fact that the map s∗ : AL→ AsK takes uL/K to usL/sK .
For the last diagram, let χ be a character on G(L/K), which gives a character χM/K

on G(M/K) using the projection G(M/K) → G(L/K). By Theorem 4.9 we have, for any
character χ,

χM/K(φM/K(a)) = invK(aM/K ∪ δχM/K) = invK(aL/K ∪ δχ) = χ(φL/K(a))

where aM/K , aL/K are the images in H0
T (M/K) and H0

T (L/K), respectively.

The fourth diagram means that the maps φL/K are compatible, so we can define

φK = lim←−
L

φL/K : A→ Gab.

(Note A =
⋃
AH .)

Theorem 4.11 (Norm limitation): Let (G, {GK}, {AK}, invL/K) be a class formation. Let
L/K be an extension and E/K be the largest abelian subextension. Then

NmL/K AL = NmE/K AE.
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Proof. Let Lgal be the Galois closure of L. Transitivity of norms (just look at the definition
of norm...) gives us ⊆. Conversely, suppose a ∈ NmE/K AE. Let G = G(Lgal/K) and
H = G(L′/L). Since E is the largest abelian subextension of Lgal abelian over K and
contained in L, the subgroup of G fixing it is G′H. We have the commutative diagram

AL
φ
Lgal/L

//

NmL/K

��

H/H ′

i
��

AK
φ
Lgal/K

//

φE/K ##

G/G′

����

G/G′H

where i is induced by inclusion. Because a ∈ NmE/K AE, φE/K(a) = 1 in G/G′H. Thus
φLgal/K(a) ∈ G′H/G′, and φLgal/K(a) is in the image of i and hence i ◦ϕL′/L, and there exists
b ∈ AL such that φLgal/K(a) = i(φLgal/L(b)). Then

φLgal/K(a) = i(φLgal/L(b)) = φLgal/K(NmL/K(b)).

This means a
NmL/K(b)

∈ ker(φLgal/K) = NmLgal/K(AL′); say it equals NmLgal/K(c). Then

a = NmL/K(bNmLgal/L(c)) ∈ NmL/K(AL),

as needed.

Definition 4.12: A subgroup S of AK is a norm group if there exists an extension L/K
such that S = NmL/K(AL).

Theorem 4.13 (Bijective correspondence): Let (G, {GK}, {AK}, invL/K) be a class forma-
tion. Then there is a bijective correspondence between finite abelian extensions of K and
the set of norm groups of AK , given by

L 7→ NmL/K(AL).

Furthermore, this is an inclusion-reserving bijection that takes intersections to products and
products to intersections:

L ⊆M ⇐⇒ NmL/K(AL) ⊇ NmM/K(AM)

NmL·L′/K(AL·L′) = NmL/K(AL) ∩ NmL′/K(AL′)

NmL∩L′/K(AL∩L′) = NmL/K(AL) · NmL′/K(AL′).

Finally, every subgroup of AK containing a norm group is a norm group.

Proof. Abbreviate NmL/K(AL) by NL.
First we show NLL′ = NL ∩NL′ . By reciprocity,

NL ∩NL′ = ker(φL/K) ∩ ker(φL′/K)
(∗)
= ker(φLL′/K) = NLL′
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where (∗) comes from compatibility of the φ and the fact that the map G(LL′/K) →
G(L/K)×G(L′/K) is injective.

If L ⊆ M , then NL ⊇ NM from transitivity of norms. Conversely, if NL ⊇ NM , then
by the above NL = NLNM = NLM . Thus [AK : NL] = [AK : NLM ], and reciprocity gives
[L : K] = [LM : K], i.e. LM = L, i.e. L ⊆ M . Thus, L 7→ NL is an inclusion-reversing
bijection.

Next we show that every subgroup containing a norm group is a norm group. Sup-
pose NL ⊆ N ; we show N is a norm group. We have that φL/K maps N isomorphically
onto G(L/K ′), where K ′ = LφL/K(N), the fixed field of φL/K(N). Consider the following
commutative diagram from Theorem 4.10:

AK
φL/K
// //

φK′/K %% %%

G(L/K)

��

G(K ′/K).

From this we find
N = ker(φK′/K) = NK′

as needed.
Finally, we show NL∩L′ = NL · NL′ . Note L ∩ L′ is the largest extension contained in

both L and L′, while NL ·NL′ is the smallest group containing both NL and NL′ , and it is a
norm group by the above. Since L 7→ NL is an inclusion-reversing bijection, we must have
NL∩L′ = NL ·NL′ .

4.2 Class formations for local class field theory

As promised, we apply the results of the last section to (G(K/K), K) where K is a local
field. (In the global case we will set A to be the ideles instead.)

Theorem 4.14: Let L be a local field. Then

(G(K/K), {G(L/K) : L/K finite Galois} , K)

is a class formation.

Proof. We verify the axioms of class formations.

1. H1(L/K) = 0 for every cyclic extension of prime degree, by Hilbert’s Theorem 90
(1.1).

2. Take the composition of the isomorphism H2(K) ∼= H2(Kur/K) of Theorem 3.1 with
the invariant map H2(Kur/K)→ Q/Z to get

invK : H2(K)→ Q/Z.

The maps invL/K : H2(L/K) ↪→ H2(K) → Q/Z are isomorphisms onto their image,
which much be 1

[L:K]
Z/Z.
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Now we verify that

invL ◦ResK/L = n invK , n = [L : K].

This follows from the following commutative diagram. From Theorem 2.3, the right
square commutes; from the fact that inflation commutes with restriction (by functori-
ality), the left square commutes.

H2(K)

ResK/L
��

H2(Kur/K)∼=
Infoo

ResK/L
��

invKur/K
// Q/Z

n

��

H2(L) H2(Lur/L)∼=
Infoo

invLur/L
// Q/Z.

(Note that the target of the restriction in the middle is H2(Kur/L), which is a subgroup
of H2(Lur/L).)

Applying results about class field theory, we get the main results of local class field theory,
restated below.

Theorem (Local reciprocity law, Theorem 23.2.1): For any nonarchimedean local field K,
there exists a unique homomorphism

φK : K× → G(Kab/K),

called the local Artin (reciprocity) map with the following properties.

1. (Relationship with Frobenius map) For any prime element π of K and any finite un-
ramified extension L of K, φK(π) acts on L as FrobL/K(π).

2. (Isomorphism) Let pL be the projection G(Kab/K)→ G(L/K). For any finite abelian
extension L/K, φK induces an isomorphism φL/K : K×/NmL/K(L×)→ G(L/K) mak-
ing the following commute:

K×
φK //

��

G(Kab/K)

pL

��

K×/NmL/K(L×)
φL/K

∼=
// G(L/K).

3. (Compatibility with norm map) For any K ⊆ K ′, the following diagram commutes.

K ′×
φK′ //

NmK′/K
��

G(K ′ab/K ′)

•|
Kab

��

K×
φK // G(Kab/K)
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Proof. By Theorem 4.14, (G(K/K), {G(L/K) : L/K finite Galois} , K) is a class forma-
tion. By the Abstract Reciprocity Law applied to AK = K, we thus have an isomorphism

K×/NmL/K L
× ∼=−→ G(L/K)ab. These maps are compatible by the first and fourth diagrams

in Theorem 4.10.

Next we show that φK(π) acts on L as FrobL/K . For the first, we use Theorem 4.9, which
says

χ(φL/K(π)) = invK(π ∪ δχ).

We calculate the invariant map on π ∪ δχ, recalling that the map H1(G,Q/Z) → Q/Z is
evaluation at the Frobenius:

H2(L/K) // H2(G,Z) H1(G,Q/Z)δoo // Q/Z

π ∪ δχ // v(π) ∪ δχ = 1 ∪ δχ 1 ∪ χ //oo χ(FrobL/K).

Thus χ(φL/K(π)) = χ(FrobL/K) for all characters χ on G(L/K), and φL/K(π) = FrobL/K .

We will prove uniqueness in Section 8.1

Proof of norm limitation, Theorem 2.6. This follows directly from Theorem 4.14 and Theo-
rem 4.11.

§5 Examples

Before we move on to the existence theorem, we seek to understand the reciprocity map a
bit better.

5.1 Unramified case

The reciprocity map is easiest to understand for unramified extensions.

Example 5.1: Suppose L/K is an unramified extension of local fields of degree n (possibly
infinite). Then the reciprocity map is

φL/K : K×/NmL/K(L×) ∼= K×/πnZUK → G(L/K)

a 7→ Frob
v(a)
L/K .

Proof. There are many ways to see this. We know that any uniformizer maps to FrobL/K .

But the uniformizers generate K×, so φL/K must be the map a 7→ Frob
v(a)
L/K . As FrobL/K has

order n, the kernel is πnZUK .

Alternatively, in the proof of Theorem 23.2.1 above, run the argument with arbitrary a
instead of π.
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5.2 Ramified case

To understand the reciprocity map on ramified extensions, we have the following.

Proposition 5.2: For any Galois extension of local fields L/K,

φL/K(UK) ⊆ I(L/K),

where I(L/K) is the inertia group.

Proof. By Theorem 14.7.2, LI(L/K)/K is the maximal unramified subextension of L/K, so
UK ⊆ ker(φLI(L/K)/K) from Example 5.1. This means that φL/K(UK) projects trivially on

G(LI(L/K)/K), i.e. φL/K(UK) ⊆ I(L/K).

In fact, the reciprocity map relates filtration on the unit group UK with the filtration on
ramification groups (cf. Section 21.4.2), so Proposition 5.2 is just the beginning of the story.

Theorem 5.3: The reciprocity map transforms the filtration

K×/NmL/K(L×) ⊇ UK/NmL/K(UL) ⊇ U
(1)
K /NmL/K(U

ψ(1)
L ) ⊇ · · ·

into the filtration
G(L/K) ⊇ G0 = I(L/K) ⊇ G(L/K)1 ⊇ · · · .

Proof. This uses more about local fields and local symbols than we’ll prove. See Serre [29],
Chapter XV or Neukirch [25], V.§6.

Example 5.4: For the totally ramified extension Qp(ζp∞)/Qp, the reciprocity map sends

pZ(1 + (pr)) 7→ G(Qp(ζp∞)/Qp(ζpr)).

The RHS is the rth upper ramification group Gr.

Explicit computation of the reciprocity map in the ramified case is difficult without
Lubin-Tate Theory.

§6 Hilbert symbols

To prove the existence theorem, we need to show that every closed subgroup of G occurs as
a norm group, i.e. as the kernel of some Artin map φL/K . To do this, we explicitly construct
field extensions L/K that give these norm groups. We will construct Kummer extensions,
extensions that come from adjoining an nth root. We focus on these extensions for several
reasons.

1. Recall that we don’t have a way to directly calculate the action of φL/K . Instead,
we calculate indirectly by Theorem 4.9: If we know χ(φL/K(a)) for all characters on
G(L/K), then we have determined φL/K(a).
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An easy source of characters comes from Kummer Theory 25.2.2, since the group of
characters is isomorphic to a cyclic group.6

2. We want to show that certain subgroups of norm groups are also norm groups. After
verifying several topological properties of φK , we can reduce this to a statement about
pth powers/roots of norm groups. In the abstract existence theorem 7.2, properties 1
and 3 are easy to check; they are basically the reductions that allow property 2 to be
sufficient.

Recally from Proposition 25.2.2 that K×/K×n ∼= Hom(G(Ks/K), µn). Thus the characters
we get are in bijection with elements of K×/K×n. We can also consider a ∈ K× as inside
K×/K×n, and this gives us a sort of “duality”: the Kummer pairing. We will see eventually
that this is the source of reciprocity laws (Section 28.1), so these symbols are good for more
than just proving the existence theorem.

We assume throughout that K contains a nth root of unity, and char(K) - n.

Definition 6.1: Let G = G(Ks/K). Define the local symbol

( , )n : H1(G,Q/Z)×H0(G,Ks×)︸ ︷︷ ︸
K×

→ H2(G,Ks×) = BrK

(χ, b) = b ∪ δχ

Here δ is with respect to the exact sequence 0→ Z→ Q→ Z/Q→ 0 and b is the image of
Ks× in H0

T (G,Ks×).
We will drop the subscript n when the context is clear.

Since cup product is bilinear and δ is linear, ( , ) is bilinear. If K is local, by Theorem 4.9,
we have for any Galois L/K and any character χ on G(L/K),

invK(χ, φL/K(a)) = invK(a ∪ δχ) = χ(φL/K(a)). (26.5)

As promised, we now transfer this action to K×/K×n.

Definition 6.2: Suppose K is a local field, and let G = G(Ks/K). For a ∈ K×, define the
character as in Proposition 25.2.2 by

χa(σ) =
σ(a

1
n )

a
1
n

, χa ∈ H1

(
G,

1

n
Z/Z

)
∼= H1(G, µn),

where G = G(L/K) and L = K(a
1
n ). Here we choose a root of unity ζ to make a correspon-

dence 1
n
Z/Z ∼= µn.

Define the Hilbert symbol by

K× ×K× → BrK [n] ∼=
1

n
Z/Z ∼= µn

(a, b) := (χa, b) = b ∪ δχa.

If K is a global field, let (a, b)v denote the Hilbert symbol where a, b are considered as
elements of Kv.

6Artin-Schreier theory, from exercise 25.2.1, is another source of characters.
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Note that the image is in 1
n
Z/Z, not just in Q/Z, because nχa = 0.

We’ll abuse notation and not make a clear distinction between BrK [n] ∼= 1
n
Z/Z ∼= µn,

where BrK [n] denotes the n-torsion subgroup of BrK . The first isomorphism is given by
invK and the second by 1

n
↔ ζ. We transfer the χa from being defined on µn to 1

n
Z/Z, then

transfer back from BrK [n] ∼= 1
n
Z/Z to µn at the end, so we may as well use the formula (26.5)

for the χa treated in H1(G, µn).
The following relates the Hilbert symbol to the Artin map.

Proposition 6.3: We have

(a, b) =
[φL/K(b)]( n

√
a)

n
√
a

where L = K( n
√
a).

Proof. Formula (26.5) gives (remember we’re identifying BrK ∼= 1
n
Z/Z ∼= µn; by abuse of

notation we drop the “invK” because it is an isomorphism)

(a, b) = (χa, φL/K(b)) = χa(φL/K(b)) =
[φL/K(b)]( n

√
a)

n
√
a

where L is any field Galois over K, containing n
√
a.

Theorem 6.4: The Hilbert symbol descends to a nondegenerate skew-symmetric bilinear
map

K×/K×n ×K×/K×n → µn

satisfying the following.

1. (a, b) = 1 iff b ∈ Nm
K(a

1
n )/K

(K(a
1
n )×).

2. If a ∈ K×, x ∈ K×, and xn − a 6= 0, then

(a, xn − a) = 1.

In particular, (a,−a) = 1 = (a, 1− a).

Proof. Everything that went into defining (, ) was linear in either variable (cup products,
evaluation homomorphisms, snake lemma morphism), so (, ) gives a bilinear map K××K× →
µn.

Suppose χ is an element of order n. Then its kernel ker(χ) has index n in G(Ks/K).
Under the Artin map this corresponds to a extension Lχ of degree n, such that ker(χ) =
φK(NmLχ/K(L×χ )). Then

(χ, b) = χ(φK(b)) = 0 ⇐⇒ φK(b) ∈ ker(χ)

iff b ∈ NmLχ/K(L×χ ).

We apply this to χ = χa. Note that χ has order [K(a
1
n ) : K] and χa(G(Ks/K(a

1
n ))) = 0.

Hence φK(Nm
K(a

1
n )/K

(K(a
1
n )×) ⊆ kerχa. By comparing indices in G(Ks/K), equality holds,

giving the first item.
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For the second item, note that

xn − a =
n−1∏
j=0

(x− ζjna
1
n )

(for any choice of nth root). The factors in the product can be grouped into conjugates over

K, so xn − a is a norm from K(a
1
n )/K. Then (a, xn − a) = 1 from the first item. Setting

x = 0, 1 gives (a,−a) = 1 and (a, 1− a) = 1.
To show skew-symmetry, note from item 2 and bilinearity that

1 = (ab,−ab) = (a,−a)(a, b)(b, a)(b,−b) = (a, b)(b, a).

To show nondegeneracy, suppose b ∈ K× such that (a, b) = 1 for all a ∈ K×; we show
b ∈ K×n. The condition (a, b) = 1 translates into χa(φK(b)) = 1 for all a. Now the image
of φK is dense in G(L/K)ab (because it is surjective for every finite extension L/K, and

G(L/K) has the profinite topology). Hence χa = 0. This means a
1
n ∈ K, i.e. a ∈ K×n.

Corollary 6.5: Suppose K is a local field, K(a
1
n )/K is unramified, and b is a unit in K.

Then (a, b) = 1.
If K is a global field, then (a, b)v = 1 in Kv unless either a or b is not a unit in Kv, or

K(a
1
n )/K is ramified (which happen at finitely many places).

Proof. Since K(a
1
n )/K is unramified, UK ⊂ Nm

K(a
1
n )/K

(K(a
1
n )×). The result now follows

from Theorem 6.4.
The second part says that (a, b)v = 1 if a, b are units in Kv and K(a

1
n )/K is unramified,

which is clear from part 1.

Remark 6.6: In fact, (a, b) = i(χa ∪ χb) where i : H2(G,Z/nZ) → BrK . (See Serre, p.
207.) This explains the symmetry better but takes more work to prove.

§7 Existence theorem

We show that the existence theorem follows from several further (topological) axioms on
formations. We then prove that in local class field theory, these axioms are satisfied.

7.1 Existence theorem in the abstract

First, a definition.

Definition 7.1: Let (G, {GK}K∈X , A) be a class formation. The universal norm group
DK of K is the intersection of all norm groups of AK :

DK =
⋂
L/K

NmL/K(AL).
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Theorem 7.2 (Abstract existence): Suppose that (G, {GK}K∈X , A) is a formation satisfying
the following conditions.

1. For every extension L/K, the norm homomorphism has closed image and compact
kernel.

2. Let [p] denote the map x 7→ px on A. For every prime p, there exists a field Kp such
that for K containing Kp, ker([p]|AK ) is compact and im([p]|AK ) contains DK .

3. There exists a compact subgroup UK of AK such that every closed subgroup of finite
index in AK containing UK is a norm group.

Then a subgroup of AK is a norm group iff it is closed of finite index.

If the conclusion holds, nAK ⊆ DK for every K, because nAK is closed of finite index
and hence a norm group. Conversely, DK ⊆

⋂
n≥1 nAK because every norm group N has

finite index so n kills AK/N for some n. Furthermore, DK must be divisible: else we could
find a norm group N ⊇ DK , and n such that nN 6⊇ DK , even though nN is still of finite
index. (Note we write AK additively here, but in class field theory, AK = K and nAK
actually means AnK .) The most important condition is item 2, because it will give us these
two conditions. This gives us a large set of norm groups, and items 1 and 3 (which are more
topological in nature) will give us the rest of the desired norm groups.

Proof. Step 1: Suppose axiom 1 holds. We show that for every extension L/K, NmL/K(DL) =
DK .

By transitivity of norms, NmL/K(DL) ⊆ DK .
Conversely, suppose a ∈ DK . Since a ∈ DK , for any extension M/L, AM contains an

element b such that NmM/K(b) = NmL/K NmM/L(b) = a. Thus

SM := Nm−1
L/K(a) ∩ NmM/L(AM)

is nonempty. Since Nm has compact kernel, the first group is compact; since Nm has closed
image, the second group is closed; thus SM is compact. Since the SM for all M/L form
a directed system of compact subsets, S =

⋂
M SM is nonempty. Any element of S is an

element of Nm−1
L/K(a) ∩DL. This shows a ∈ NmL/K(DL).

Step 2: Suppose axioms 1 and 2 hold. We show DK is divisible and

DK =
⋂
n≥1

nAK .

First we show that for every prime p, pDK = DK . Let L be a field containing Kp,
a ∈ DK , and set

SL = [p]−1(a) ∩ NmL/K AL.

Since [p]−1(a) is compact (as ker([p]|AK ) is compact by axiom 2) and NmL/K AL is closed,
SL is compact. Now this set this nonempty: since a ∈ DK = NmL/K DL by step 1, we can
write a = NmL/K x, x ∈ DL. By axiom 2, x = py with y ∈ AK , so b := NmL/K y ∈ SL. Then⋂
L⊇Kp SL is nonempty as in step 1. Hence a ∈ pDK .
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This shows pDK = DK , and we get DK =
⋂
n≥1 nDK ⊆

⋂
n≥1 nAK .

For the other direction, note that na is the norm of any extension of degree n, so⋂
n≥1 nAK ⊆ DK .

Step 3: Assume all the axioms. We prove the theorem.
First, note that any norm group is closed by axiom 1, and has finite index by the reci-

procity law 4.8. Indeed, by transitivity of norm, it suffices to consider Galois extensions, and
the reciprocity law says NmL/K(AL) has index equal to G(L/K)ab.

Conversely, suppose S is a closed subgroup of finite index n. We will find a norm subgroup
contained in S and then apply Theorem 4.13. Since AK/S has order n, we get DK ⊆ nAK ⊆
S, so ⋂

N norm group

(N ∩ UK) = DK ∩ UK ⊆ S.

Since N ∩UK are compact (N is closed and UK is compact) and S is open (closed subgroups
of finite index are also open), there exists N such that

N ∩ UK ⊆ S.

Note UK + (N ∩S) is closed of finite index in AK because N,S are closed of finite index;
we show we can replace UK with UK + (N ∩ S) above:

N ∩ (UK + (N ∩ S)) ⊆ S.

Suppose a ∈ UK and a′ ∈ N ∩ S such that a + a′ ∈ N . Then a ∈ N , but N ∩ UK ⊆ S so
a ∈ S as well. Thus a+ a′ ∈ S, as needed.

Now N ∩ (UK + (N ∩ S)) is is closed of finite index containing UK , so is a norm group
by axiom 3. By Theorem 4.13, we get S is also a norm group.

7.2 Existence theorem for local class field theory

Proof of Theorem 23.2.3. We verify that the class formation for LCFT satisfies the three
axioms of Theorem 26.7.2.

1. To see that the norm map is closed, note that

NmL/K(L×) ∩ UK = NmL/K(UL)

because an element is a unit iff its norm is a unit. As UL is compact and NmL/K

is continuous (Proposition 20.1.6), NmL/K(UL) is compact and hence closed. Now
NmL/K(L×) is a union of translates of UL, therefore closed as well.

The kernel of NmL/K is a closed subset of UL, hence compact.

2. Take Kp containing all pth roots of unity. The kernel of the pth power map is the pth
roots of unity, which is a compact set. Suppose K ⊇ Kp, and let b ∈ DK be a universal
norm. Then (a, b) = 1 for all a by Theorem 6.4. Since the pth power Hilbert symbol
is nondegenerate on K×/K×p, a ∈ K×p. Thus DK ⊆ K×p.
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3. Take UK to be the group of units of K×. The closed subgroups of finite index containing
UK are just πnZUK for n 6= 0; these are the norm groups of unramified extensions of
degree n by Proposition 5.1. (Note these extensions exist—just adjoin appropriate
roots of unity.)

Proof of Theorem 23.2.5. This follows from Theorem 4.13, Theorem 4.14 (class formation
for LCFT), and the existence theorem just proved.

Note the existence theorem gives the following.

Corollary 7.3: The universal norm group DK is {1}.

Proof. All open subgroups of finite index are norm groups by the Existence Theorem 23.2.3.
The intersection of all open subgroups of finite index is {1}, as

⋂
m,n(1+(πm))πnZ = {1}.

§8 Topology of the local reciprocity map

We now prove that φK gives a topological isomorphism K× → W (L/K).

Proof of Theorem 23.2.4. By Proposition 5.2, φL/K(UK) ⊆ I(L/K), so we have the commu-
tative diagram

1 // UK //

φL/K
��

K×
v //

φL/K
��

Z //

��

1

1 // I(L/K) // G(L/K) // G(l/k) // 1.

where the rightmost vertical map sends 1 to the pth power Frobenius (p = |k|). The vertical
maps factor as

1 // UK/NmL/K(UL) //

φL/K∼=
��

K×/NmL/K(L×) v //

φL/K∼=
��

Z/fZ //

∼=
��

1

1 // I(L/K) // G(L/K) // G(l/k) // 1.

(26.6)

where f = [l : k]. Recall φK = lim←−L φL/K . The intersection of all norm groups is {1} by

Corollary 7.3, so φK is injective on K×.
In forming φK = lim←−L φL/K , we are really considering the embedding

K× ↪→ K̂× := lim←−
L

K×/NmL/K(L×)
∼=−→ G(Kab/K).

Decomposing K×/NmL/K(L×) as in (26.6), we have that

1. lim←−L UK/NmL/K(UL) ∼= UK since UK is compact, hence complete, so UK ∼= I(Kab/K).

2. lim←−L Z/fZ = Ẑ.
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Thus K× ↪→ K̂× is the embedding UK × πZ ↪→ UK × πẐ.
Recalling that W (L/K) is the inverse image of FrobZ ⊆ G(k/k), we get φL/K : K× →

W (L/K) is a topological isomorphism. In summary, we have the diagram

1 // UK //

φK∼=
��

K× //

φK∼=
��

πZ //

∼=
��

1

1 // I(Kab/K) //

''

W (Kab/K) //
� _

��

FrobZ //� _

��

1

G(Kab/K) // FrobẐ = G(k/k) // 1

8.1 Uniqueness of the reciprocity map

Finally, we prove uniqueness. This finishes all the proofs of local class field theory.
We first restate Lemma 23.6.7.

Lemma: Suppose thatK is a nonarchimedean local field, Kur is the maximal abelian unram-
ified extension of K, and L is an abelian extension containing Kur. Let f : K× → G(L/K)
be a homomorphism satisfying (1) and either (2) or (2)′:

1. The composition K×
f−→ G(L/K)→ G(Kur/K) takes α to FrobKur/K(π)v(α).

2. For any uniformizer π ∈ K, f(π)|Kπ = 1, where

Kπ := LφK(π).

2’. For any finite subextension K ′/K of Kπ, we have

f(NmK′/K(K ′
×

))|K′ = {1}.

Then f equals the reciprocity map φK .

Proof of Lemma 23.6.7. It suffices to prove this for L = Kab. We have the split exact
sequence

1→ U×K → K×
v−→ Z→ 1, (26.7)

where the splitting is determined by the map Z → K× sending 1 7→ π, and the map
K× → UK sending a 7→ a

πv(a) . Under the Artin map, (26.7) gets sent to the split exact
sequence of topological groups

1→ I(Kab/K) = G(K/Kur)→ W (Kab/K)→ W (Kur/K) ∼= Z→ 1

by Theorem 23.2.4. This gives the exact sequence

1→ G(Kab/Kur)→ G(Kab/K)→ G(Kur/K)→ 1,
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where the splitting is by the map Z ∼= G(Kur/K) → G(Kab/K) sending 1 7→ φK(π). This
identifies G(Kab/Kur) with the quotient group G(Kπ/K) where

Kπ = L〈φK(π)〉 = LφK(π).

If (2)′ holds, then for any uniformizer π, we have that π ∈ NmK′/K(K ′×) for every finite
subextension K ′ of Kπ. Then (2)′ gives that f(π)|Kπ = 1. Then (2) holds.

We now show if (1) and (2) hold, then f = φ. Indeed, (1) and (2) imply that φ(π)|KurKπ =
f(π)|KurKπ for any uniformizer π. But KurKπ = Kab and the set of uniformizers generate
K× (any unit is the quotient of two uniformizers). Hence φ = f .

Proof of uniqueness in Theorem 23.2.1. Suppose φ′ is another map satisfying the conditions
of Theorem 23.2.1. It suffices to show φ′ satisfies the conditions of Lemma 23.6.7 with
L = Kab. By assumption it satisfies (1). For condition (2)′, we have φK(π)|Kπ = 1 by
definition of Kπ. Hence π is a norm from every finite subextension of Kπ. By condition 2 of
Theorem 23.2.1, this shows φ′K′/K(NmK′/K(K ′×)) = {1} for every subextension K ′/K of L,
as needed. Hence φ′ = φ.

Problems

1. Using φK , construct a natural bijection between the following two sets.

• continuous charactersW (K/K)→ C× (i.e. continuous representationsW (K/K)→
GL1(C)).

• continuous character K× → C (i.e. continuous homomorphisms GL1(K) →
GL(C)).

This is the “local Langlands correspondence for GL1 over K.” Local class field theory
generalizes more naturally in this form.
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Global class field theory

To prove the global reciprocity law we need to do two things, namely construct a map

φK : IK/K×NmL/K IL
∼=−→ G(L/K),

and show that it is an isomorphism. To show it is an isomorphism, we need to show that
the two sides have the same cardinality:1

|IK/K×NmL/K IL| = [L : K].

The first inequality “≥” will be shown using cohomology, with lots of Herbrand quotient
calculations. The second inequality “≤” is most easily shown with L-functions, but can also
be shown with a more complicated cohomological argument.

To construct a map, there are two approaches. We can define φK to be the map whose
components are the local Artin map, and use the properties of the local Artin map given
by local class field theory. Alternatively, we can construct it directly in the global case,
without using local theory, and get local class field theory as a corollary. We will take the
first approach. For an account of the second, see Lang [18].

§1 Basic definitions

First, some basic definitions.

Definition 1.1: Define the action of G(L/K) on IL by permuting the places: For an idele
a = (av)v∈VL , define σa by

(σa)σ(v) = σ(av).

Definition 1.2: Define the inclusion map IK ↪→ IL by

(av)v∈VK 7→
(
(av)w|v

)
v∈VK

,

i.e. it is induced by componentwise inclusions Kv ↪→ Lw. Let the inclusion map CK ↪→ CL

be induced by the above inclusion.

1More precisely, we use this to show the invariant map is an isomorphism, then get the Artin map from
the machinery of class formations.
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For an infinite extension M/K, define

IM = lim−→
K⊆L⊆M

IL, CM = lim−→
K⊆L⊆M

CL

where the limit is taken over finite Galois extensions L/K.

For short, let Hn(L/K,A) denote Hn(G(L/K), A) and H2(K,A) := Hn(K/K,A). As
in the local case, Hn(L/K) denotes Hn(G(L/K), K×).

Proposition 1.3: Let L/K be a Galois extension and G = G(L/K). The inclusion map

IK ↪→ IL sends IK
∼=−→ IGL and the inclusion map CK ↪→ CL sends CK

∼=−→ CG
L .

Proof. The first part holds because G acts transitively on all the places in L dividing a single
v ∈ VK , so any element of IGL has to be constant on all w | v, i.e. in the image of IK .

For the second part2, take the long exact sequence in cohomology associated to

1→ L× → IL → CL → 1

to get

1 // H0(G,L×) // H0(G, IL) // H0(G,CL) // H1(G,L×)

K× IGL = IK CG
L 1

where the equality on the right is Hilbert’s Theorem 90 (Theorem 25.1.1) and the map
IK → CG

L is induced by inclusion. Thus CG
L = IK/K× = CK .

§2 The first inequality

In this section we will prove the following.

Theorem 2.1 (First inequality of global class field theory): If L/K is cyclic, then

|IK/K×NmL/K IL| ≥ [L : K].

To prove the inequality, we first express the left-hand side in terms of cohomology. Letting
G = G(L/K), we know that

H0
T (G,CL) = CK/NmL/K CL = IK/K×NmL/K IL.

Then noting that the Herbrand quotient (with respect to G) of CL is h(CL) =
|H0
T (G,CL)|

|H−1
T (G,CL)| ,

we have that
|IK/K×NmL/K IL| = |H0

T (G,CL)| ≥ h(CL). (27.1)

To calculate h(CL) our plan is as follows.

2which isn’t obvious, because we’re taking quotients here
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1. First express CL in terms of something involving a finite set of places; we find T so
that

IL = L×ITL.

(Proposition 2.2). Then calculation shows that h(CL) =
h(ITL)

h(UTL )
, where UT

L denotes the

T -units in L.

2. Compute h(ISL) =
∏

v∈S nv. Note ISL is a direct product, not a restricted direct product,
so we can just take the product of the Herbrand quotient of the factors. Breaking up
the places into G(L/K)-orbits, we can calculate h(ISL) using the corollary to Shapiro’s
Lemma 24.8.7.

3. Compute h(US
L ) = 1

n

∏
v∈S nv by relating it to a lattice of codimension 1 in Rs by the

log map, where s = |S|. (See ANT, Chapter 17.) We use the fact that the Herbrand
quotient of a full lattice depends only on the vector space it resides in (Theorem 2.5)
to change to a more convenient lattice whose basis consists of vectors representing the
s places in US

L , i.e. the lattice Λ =
∏

w∈S Zew.

The set S breaks up into G(L/K)-orbits, so the lattice breaks up into induced S-
modules, and we can calculate h(US

L ) using again using Shapiro’s Lemma 24.8.7.

4. Putting all the steps together gives

h(CL) = n,

as needed.

2.1 Reduce to finite number of places

Proposition 2.2: Let L be a number field. There exists a finite set of places T of L such
that

IL = L×ITL.

Proof. This basically follows from the finiteness of the class group.
For the first part, consider the map p : IL → CL, defined by sending

(av)v∈VL 7→
∏

v=vp∈V 0
L

pv(ap).

(Map a to the prime ideal whose valuation at each prime equals the valuations of the cor-
responding coordinates of a.) The kernel—the set sent to the principal ideals—is L×IV∞L ,
where V ∞ is the set of infinite places. Thus we have an isomorphism IL/L×IV

∞
L → CL

3.
The latter is finite; take the inverse image of a set of generators A. We can choose finite
T containing V ∞ so that the coordinates of elements of A are units outside of T . Then ITL
generates IL/L×, as needed.

3cf. Example 5.10; there IV∞L is written as UL.
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2.2 Cohomology of ISL and IL
Proposition 2.3: Let L/K be a Galois extension of number fields. Let S be a set of places
in K and let ISL := ITL where T = {w ∈ VL : w | v for some v ∈ S}. Then for any i > 0 we
have

H i(G, ISL) =
∏
v∈S

H i(G(Lv/Kv), L
v×)×

∏
v 6∈S

H i(G(Lv/Kv), U
v).

This is also true for Tate groups if G is finite.

In particular, if L/K is cyclic, and S contains all ramified places, then

H1(G, ISL) = 1

H2(G, ISL) =
∏
v∈S

1

nv
Z/Z

h(ISL) =
∏
v∈S

nv

where nv is the local degree [Lw : Kv], for any w | v.

Proof. We have

ISL =
∏
w∈T

L×w ×
∏
w 6∈T

Uw

where Uw := UKw . We calculate the cohomology groups of each factor.

H i

(
G,
∏
w∈T

L×w

)
= H i

G,∏
v∈S

∏
w|v

L×w


=
∏
v∈S

H i

G,∏
w|v

L×w

 cohomology respects products, Proposition 24.6.7

=
∏
v∈S

H i(Gv, Lv×) by Corollary 24.8.8 to Shapiro’s Lemma

=
∏
v∈S

H i(G(Lv/Kv), L
v×) (27.2)

=

{
1, i = 1,∏

v∈S
1
nv
Z/Z, i = 2.

(27.3)

For i = 1, the last result follows from Hilbert’s Theorem 90, and for i = 2, it follows

from the fact that invKv : H2(G(Lv/Kv), L
v×)

∼=−→ 1
nv
Z/Z is an isomorphism (a consequence

of the class formation for LCFT, Theorem 26.4.14, or actually just Theorem 26.3.1 and
Proposition 26.2.1).

342



Number Theory, §27.2.

For the units, we have,

H i

(
G,
∏
w 6∈T

Uw

)
=
∏
v 6∈S

H i(G(Lv/Kv), Uw) Proposition 24.6.7 (27.4)

= 1 if T unramified, by Theorem 26.1.1. (27.5)

For the general case, take the product of (27.2) and (27.4). For the special case, take the
product of (27.3) and (27.5). The Herbrand quotient calculation follows directly.

If we consider the full group IL, we get the following result. (We won’t need this until
Section 5.)

Proposition 2.4: For any Galois extension L/K with Galois group G and any n ≥ 0, we
have

Hn(G, IL) ∼=
⊕
v∈VK

Hn(Lv/Kv).

This is also true for Tate groups when G is finite.
In particular, we have

1. H1(G, IL) = 0.

2. H2(G, IL) =
⊕

v∈VK
1
nv
Z/Z.

Proof. We have
IL = lim−→

S finite

ISL.

Hence using Proposition 24.14.3,

Hn(G, IL) = Hn(G, lim−→
S

ISL)

= lim−→Hn(G, ISL)

=


lim−→S

∏
v∈S H

n(Gv, Lv×)×
∏

v 6∈S H
n(Gv, U v) =

⊕
v∈VK H

n(Gv, Lv×), general case

1, n = 1⊕
v∈VK

1
nv
Z/Z, n = 2

where the last statement follows from Proposition 2.3.

2.3 Cohomology of lattices and UT
L

Proposition 2.5: Suppose G is finite cyclic, V is a finite real vector space and R[G]-module,
and M,N are two lattices in V , stable under the action of G. Then

h(M) = h(N).

(If one is defined, so is the other.)
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Proof. We proceed in 2 steps.

Step 1: We show that M ⊗Z Q ∼= N ⊗Z Q as G-modules. We know M ⊗Z R = V = N ⊗Z R.
Suppose V = Rn. Choose bases {βi} for M and {γi} for N . Let B(σ) and C(σ) be matrices
representing the action of a generator σ ∈ G on these bases.4 A linear map M⊗ZR→ N⊗ZR
represented by a matrix A with respect to {βi} and {γi} is a isomorphism of G-modules if

A ·B(σ) = C(σ) · A.

These determine a system of homogeneous linear equations in the entries of A, with coeffi-
cients in Z, since B(σ) and C(σ) have entries in Z.

Letting the solution space be W ⊆Mn×n(R), we have

dimRW = dimQ(W ∩Mn×n(Q)),

because Gaussian elimination never needs to leave the world of Q. Hence we can find a
basis for W contained in Mn×n(Z), say {A1, . . . , Ak}. By the existence of an isomorphism
between M ⊗Z R and N ⊗Z R, there exist a1, . . . , ak ∈ R such that a1A1 + · · · + akAk is
nonsingular, i.e.

det(a1A1 + · · ·+ akAk) 6= 0.

The left hand side is hence a nonzero polynomial in the ak; since it has coefficients in the
infinite field Q it has a solution over Q. Taking A to be the corresponding linear combina-
tion, we get the desired G-isomorphism M ⊗Z Q→ N ⊗Z Q.

Step 2: We have an isomorphism f : M ⊗Z Q → N ⊗Z Q; by scaling f (since M,N are
finite-dimensional lattices) we may assume f restricts to f : M → N . Now N/f(M) is
finite; hence by Proposition 24.12.4(1) and (2),

h(N) = h(M)h(N/f(M)) = h(M).

Proposition 2.6: Let L/K be a finite cyclic extension of number fields of degree n. Let S be
a set of places in K containing the infinite places and T = {w ∈ VL : w | v for some v ∈ S}.
We have

h(UT
L ) =

1

n

∏
w∈T

nw

where UT
L denotes the T -units in L and nw is the local degree [Lw : Kv], where w | v.

Proof. Consider the map L : UT
L → RT defined by letting

L(a) = (ln |a|w)w∈T

where | · |w is the normalized valuation. Then L(a) is a lattice of dimension |T | − 1 by
Dirichlet’s S-unit theorem 17.3.2; it is in the hyperplane where the sum of coordinates is 0

4G cyclic is not important here; we could work with all elements of G.
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(take the log of the product formula 19.30.1). The kernel of L consists the roots of unity in
L, µ ∩ L, which is a finite group. By Proposition 24.12.4(1)–(2) applied to 1 → µ ∩ L →
UT
L → L(UT

L )→ 0,

h(UT
L ) = h(µ ∩ L)h(L(UT

L )) = h(L(UT
L )) (27.6)

Let G(L/K) act on RT by permuting the coordinates corresponding to the places. Note
that L is a G-module homomorphism with respect to this action. Let x be the vector
(1, 1, . . . , 1); note it is fixed by G(L/K). Note that

Λ := L(UT
L )⊕ (1, 1, . . . , 1)Z

is a full lattice in RT . By Proposition 24.12.4(2)–(3), we have

h(Λ) = h(L(UT
L ))h(Z) = n · h(L(UT

L )). (27.7)

Consider the lattice Λ′ = ZT in RT , where ev is the vector with 1 in the v position and 0’s
elsewhere. By Proposition 2.5, h(Λ) = h(Λ′). Since G permutes the places above v ∈ S
transitively, we have

h(Λ) = h(Λ′) = h

(⊕
w∈T

ewZ

)

= h

⊕
v∈S

⊕
w|v

ewZ


=
∏
v∈S

h

⊕
w|v

ewZ

 cohomology respects products, Proposition 24.6.7

=
∏
v∈S

h(Gv,Z) by Corollary 24.8.8 to Shapiro’s Lemma

=
∏
v∈S

|Gv| Proposition 24.12.4(3)

=
∏
v∈S

nv.

Together with (27.6) and (27.7), we get

h(UT
L ) =

1

n
h(Λ′) =

1

n

∏
v∈S

nv.

2.4 Herbrand quotient of CL

Lemma 2.7: If L/K is a cyclic extension of number fields of degree n,

h(CL) = n.
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Proof. Choose a set of places T for L containing the ramified places and satisfying the
conditions of Proposition 2.2. Enlarge T so it is stable underG(L/K). Using Propositions 2.3
and 2.6, we have that

h(CL) = h(L×ITL/L×) = h(ITL/ITL ∩ L×) =
h(ITL)

h(UT
L )

=

∏
v∈S nv

1
n

∏
v∈S nv

= n

Proof of Theorem 2.1. We have

|IK/K×NmL/K(IL)| = |H0
T (G,CL)| = h(CL)|H−1

T (G,CL)| ≥ n

by Lemma 2.7.

2.5 The Frobenius map is surjective

Using the first inequality, we can already prove surjectivity of the Artin map, defined on
ideals.

Proposition 2.8: Let L/K be a finite abelian extension, and S be a finite set of primes.
Define the map

ψL/K : IS → G(L/K)

by setting ψL/K(p) = FrobL/K(p) for primes p 6∈ S and extending to a group homomorphism.
Then ψL/K is surjective.

Proof. Let H = im(ψL/K). By compatibility of the Frobenisus map, FrobKH/K(p) is the
image of FrobL/K(p) under the projection G(L/K) → G(KH/K). Hence the map ψKH/K :
IS → G(KH/K) is trivial, giving (KH)v = Kv for every v 6∈ S, and

ISK ⊆ NmKH/K IKH .

However, K×ISK is dense in IK by the weak approximation theorem 19.3.4, so K×ISK =
K×NmKH/K IKH = IK . But by the First Inequality 2.1,

[KH : K] ≤ [IK : K×NmKH/K IKH ] = 1.

Hence KH = K, i.e. H = G.

§3 The second inequality

We give two proofs of the second inequality, an analytic proof and an algebraic proof. The
first has the advantage of being short and sweet, while the second has the advantage of
staying completely within the algebraic realm, i.e. not requiring knowledge of L-functions.

Theorem 3.1 (Second inequality for global class field theory): For any extension L/K of
degree n, and G = G(L/K), we have
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1. |H0
T (G,CL)| and |H2(G,CL)| divide n.

2. (HT90 for ideles) |H1(G,CL)| = 1.

In particular,
|IK/K×NmL/K IL| ≤ [L : K].

3.1 Analytic approach

We first show the inequality |IK/K×NmL/K IL| ≤ [L : K].

Proof of inequality. Let c be admissible for L/K, i.e. such that UK(1, c) ⊆ NmL/K(IL). By
Proposition 23.5.9 we know that IK/K×NmL/K IL ∼= I cL/PK(1, c) NmL/K(I cL). We show that

[I cK : PK(1, c) NmL/K(I cL)] ≤ [L : K].

LetH = PK(1, c) NmL/K I
c
L and let χ be a nontrivial character of I cK/H, viewed as a character

of I cK/PK(1, c).
Define the Hecke L-series Lc(s, χ) by

Lc(s, χ) :=
∏
p-c

1

1− χ(p)
Nps

=
∑
a⊥c

χ(a)

Nas
,

where equality follows from expanding the product. Define

m(χ) := ords=1 Lc(s, χ).

Since Lc(s, χ) = (s− 1)m(χ)g(s, χ) for some g(s, χ) nonzero at s = 1, taking logs gives

lnLc(s, χ) ∼ m(χ) ln(s− 1) = −m(χ) ln
1

s− 1
.

Taking the sum over all characters of I
S(m)
K gives

ln ζK(s) +
∑
χ 6=1

lnLm(s, χ) ∼

[
1−

∑
χ 6=1

m(χ)

]
ln

1

s− 1
(27.8)

where we use the fact that ζK(s) := L(s, 1) has a pole at s = 1.
On the other hand, by the Taylor series expansion for ln,

lnLc(s, χ) = −
∑
p-c

ln

(
1− χ(p)

Nps

)
=
∞∑
n=1

∑
p-c

χ(p)n

nNpns
∼
∑
p

χ(p)

Nps
=

∑
K∈Ic/H

χ(K)
∑

p∈K, p-c

1

Nps

where in the last step we grouped together the primes based on what they are modulo H.
This is greater than the sum if we only include primes with f(P/p) = 1 (P in L). Again we
are off by at most a constant if we only include primes splitting completely in L, because
the ramified primes are at most a finite subset. We can then “unrestrict” to all the primes
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of L, and be off by at most a constant in a neighborhood of 1, because the other terms are
in the form 1

pfs
for f > 1.

Let h = [IS(m) : H]. We get, for s→ 1+,

ln ζK(s) +
∑
χ 6=1

lnLm(s, χ) ∼
∑
χ

∑
K∈Ic/H

χ(K)
∑

p∈K, p-m

1

Nps

% O(1) + h
∑

p∈Spl(L/K)

1

Nps

∑
χ

χ(K) =

{
0, K 6= H

h, K = H.

∼ O(1) +
h

N

∑
f(P)=1

1

NPs
N primes above each p

∼ O(1) +
h

N
ln ζL(s)

∼ O(1) +
h

N
ln

1

s− 1
.

Combining this with (27.8) gives m(χ) = 0 (since h
N
> 0) for all χ 6= 1, and h ≤ N , as

needed.

3.2 Algebraic approach

The steps are as follows.

1. Carry out some preliminary local computations.

2. Consider the case where L/K is an extension such that G(L/K) ∼= (Z/nZ)r, and K
contains the nth roots of unity. Note this is a Kummer extension, so we can characterize
it in terms of L×n ∩K. This will make computations easy for us.

We construct an explicit set E with

E ⊆ NmL/K IL ⊆ IK .

We have [IK : K×NmL/K IL] | [IK : K×E], so it suffices to show the latter equals nr.

3. Show this.

4. This implies the cyclic prime case, and that the cyclic prime case implies the general
case.

This section is incomplete; see Cassels-Frohlich [8], pg. 180-185.

Local computations

Proposition 3.2: Let K be a local field with |µn ∩K| = m, i.e. K contains m nth roots of
unity. Then

[K× : K×n] =
nm

|n|v
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and

[UK : Un
K ] =

m

|n|v
.

Proof. There are two methods: appeal to the structure of K× or calculate a Herbrand
quotient.

Constructing E

Since L is a Kummer extension we can write it in the form K( n
√
a1, . . . , n

√
ar). Let S be a

set of primes satisfying the following conditions.

1. S contains all infinite places.

2. S contains all divisors of n.

3. IK = K×ISK . (This is possible by Proposition 2.2.)

4. S contains all prime factors in the numerator and denominator of all ai, i.e. the ai are
all S-units.

Define

E =
∏
v∈S

K×nV ×
∏
v∈T

K×v ×
∏

v 6∈S∪T

Uv.

Lemma 3.3: E ⊆ NmL/K IL.

We want to calculate [IK : K×E] but K×E is hard to deal with. E however, is not,
because to calculate the index of E we can appeal to Proposition 3.2. Thus we use the
following group theoretic fact.

Proposition 3.4: Let B ⊆ A and C be subgroups of a group G. Then

[CA : CB][C ∩ A : C ∩B] = [A : B].

Then

[IK : K×E] = [K×IS∪TK : K×E] =
[IS∪TK : E]

[K× ∩ IS∪TK : K× ∩ E]
.

See Cassels-Frohlich.

3.3 Finishing the proof

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Step 1: We show the theorem when [L : K] is prime. In this case,
both the first and second inequality hold, so

|H2
T (G,CL)| = [IK : K×NmL/K(IL)] = [L : K].
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Since h(CL) = n by Lemma 2.7, we get |H1
T (G,CL)| = 1. Finally, note H2

T (G,CL) =
H0
T (G,CL) because G(L/K) is cyclic.

Step 2: We show the theorem when [L : K] is a prime power, by induction on the exponent.
Suppose |G| = pn. Every p-group has a normal subgroup of index p. Let H / G be such a
group; it corresponds to H = G(L/K ′) for some extension K ′/K of degree p. The inflation-
restriction exact sequence 24.11.10 gives

0→ H1(G/H,CK′)︸ ︷︷ ︸
=0 by prime case

Inf−→ H1(G,CL)
Res−−→ H1(H,CL)︸ ︷︷ ︸

=0 by induction hypothesis

.

Thus H1(G,CL) = 0. This shows part 2. Using H1(G,CL) = 0, the inflation-restriction
exact sequence gives

0→ H2(G/H,CK′)︸ ︷︷ ︸
order p

Inf−→ H2(G,CL)
Res−−→ H2(H,CL)︸ ︷︷ ︸

order |pn−1

by the case for cyclic extensions and the induction hypothesis. This shows |H2(G,CL)| | pn.
Finally,

|H0
T (G,CL)| = [CK : NmL/K CL] = [CK : NmK′/K(CK′)][NmK′/K(CK′) : NmL/K(CL)].

Now [CK : NmK′/K(CK′)] = p by the cyclic case, and the surjection NmK′/K : CK′/NmL/K′(CL)�
NmK′/K(CK′)/NmL/K(CL) and the induction hypothesis gives that the second factor divides
pn−1. This finishes the induction step.

Step 3: We show the theorem holds in general, using Corollary 24.11.7: the map

Resn : Hn(G,M)→ Hn(Gp,M)

is injective on the p-primary component. Using step 2, for n = 1, this gives us that p -
H1
T (G,CL) for any p, i.e. H1

T (G,CL) = 0. For n = 0, 2, this gives that vp(|Hn(G,M)|) ≤
vp(|Hn(Gp,M)|) ≤ vp(G), giving part 1.

3.4 Local-to-global principle for algebras

The fact that H1(G,CL) = 0 also gives the following corollary.

Theorem 3.5 (Brauer-Hasse-Noether Theorem): Let L/K be any Galois extension with
Galois group G. Then the map

H2(G,L×)→
⊕
v∈VK

H2(Gv, Lv×)

is injective. A central simple algebra over a number field K is split over K iff it is split
locally everywhere.
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Proof. Taking cohomology of 0→ L× → IL → CL → 0 gives

H1(G,CL) // H2(G,L×) // H2(G, IL) // · · ·

0 // BrK
� � //

⊕
v∈VK BrKv

(27.9)

Here H1(G,CL) = 0 directly from HT90 for ideles (Theorem 3.1), and equality on the right
comes from

H2(G, IL) =
⊕
v∈VK

H2(Lv/Kv)

(Proposition 2.4). Brauer group is H2 by Theorem 5.2. Injectivity of the bottom map gives
the result.

(We do need to check that in the above diagram, the map BrK →
⊕

v∈VK BrKv is exactly
the map sending an algebra to its reduction over every local field. This is a matter of tracing
the long windy road between Br and H2 and left to the reader.)

§4 Proof of the reciprocity law

To construct the Artin map in the local case, we constructed the invariant map invK :
H2(Kur/K)→ Q/Z. Then we used the fact that H2(Kur) = 0, i.e. every a ∈ H2(K) splits
in an unramified extension, to conclude that H2(K) ∼= H2(Kur/K).

In the global case we will construct the invariant map invK : H2(Kc/K, IKc) → Q/Z,
for a certain infinite cyclotomic extension Kc. Then we show H2(Kc, IK) = 0, i.e. every
a ∈ H2(K, IK) splits in this cyclotomic extension, to conclude H2(K, IK) ∼= H2(Kc/K, IKc

).
We construct the global Artin map by taking the product of the local Artin maps:

φL/K : IK → G(L/K)

φL/K(a) =
∏
v∈VK

φv(av). (27.10)

(Only a finite number of the factors—those where Lv/Kv is ramified or av 6∈ Uv—are not
equal to the identity.)

We need to show that K× ⊆ kerφL/K , so that it factors through IK/K× · NmL/K IL.
Consider the following two properties.

(A) Define the map φL/K as in (27.10). The map φL/K takes the value 1 on the principal
ideles K× ⊆ IK .

(B) For all α ∈ H2(G(L/K), L×) = BrL/K ,

inv(α) :=
∑
v∈VK

invv(i(α)) = 0.

Note in (B), invv is defined as follows.
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Definition 4.1: Define invv as the following composition:

invv : H2(G, IL)
ResG/Gv−−−−−→ H2(Gv, IL)

H2(Gv ,pv)−−−−−−→ H2(Gv, (L
v)×)

inv−→ Q/Z

where pv : IL → (Lv)× is the projection map. (This looks complicated, but it is just what
you think it is.)

We prove (A) for all finite abelian extensions of number fields and (B) for all finite Galois
extensions of number fields.

We first show that (A) holds for a special class of extensions, and then use an “unscrew-
ing” argument to show (A) and (B) hold for more general extensions. The plan of attack is
as follows.

1. Show (A) holds for Q(ζm)/Q.

2. Show (A) holds for all cyclotomic extensions.

3. Show that (B) holds for α split by a cyclotomic extension.

4. Every α is split by a cyclic cyclotomic extension, so (B) holds for all α ∈ H2(K,K
×

).

5. Show that (A) holds for all abelian extensions.

Note that (A) is a statement about H−2
T → H0

T while (B) is a statement about H2. We
“transfer” the problem from (A) to (B) so that we can apply our characterization of φv in
terms of the local invariant map (Theorem 26.4.9). First, we need an analogue of Theo-
rem 26.4.9 in the global case.

Lemma 4.2: Let G = G(L/K). For all v ∈ VK and all χ ∈ H1(G,Q/Z) = Hom(G,Q/Z),
we have invv(a ∪ δχ) = χv(φv(av)). (χv is the restriction of χ to Gv and a is the image of a
in H0

T (G(L/K), IL). Hence

inv(a ∪ δχ) =
∑
v

invv(a ∪ δχ) = χ(φ(a)).

Proof. Since restriction commutes with cup products (Proposition 24.11.9) and with δ, we
have

invv(a ∪ δχ) = inv(pv ResG/Gv(a ∪ δχ))

= inv(pv(a) ∪ δχv) ResG/Gv(χ) = χv

= inv(av ∪ δχv) = χv(φv(av)).

We invoked Theorem 26.4.9 in the last step.
Taking the product gives the second statement:

χ(φ(a)) = χ

(∏
v

φv(av)

)
=
∑
v

χv(φv(a)) =
∑
v

invv(a ∪ δχ).
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4.1 (A) holds for Q(ζn)/Q
Proposition 4.3: For any m ∈ N,

φQ(ζm)/Q(Q×) = 1.

First reduce to the case where m = p is prime. We give two approaches.

Proof 1. By Example 23.4.3, we know the ideal version of global class field theory holds for
all cyclotomic extensions of Q. Note the maximal unramified extension of Qp is included in
Qp(ζ∞) for all p (Theorem 20.2.6). Hence by Theorem 23.6.6(2), there is a map φ′ satisfying
the conditions of the idele version of GCFT, except that φ′R may not equal φR. Letting φ′v
be the restriction of φ′ to Kv, we have (on G(Q(ζ∞)/Q))

φ′(a) = φ′R(aR)
∏
v∈V 0

Q

φ′v(av)
?
=
∏
v∈VQ

φv(av) = φ′(a) (27.11)

where the middle inequality is pending a proof that φ′R = φR. We check this is true.
Since φ′R is a map R/R>0 → G(C/R), it suffices to show complex conjugation is in the

image of φ′. We have G(C/R) ∼= G(R(i)/R), so consider φ′ on G(Q(i)/Q). As φ′(Q×) = 1,
we have by (27.11) and the fact that Q(i)/Q is only ramified at 2 that on G(Q(i)/Q),

1 = φ′(−7) = φ′2(−7)φ′7(−7)φ′R(−7)

Now −7 ≡ 1 (mod 8) so −7 ∈ NmQ2(i)/Q2(Q2(i)×), and φ′2(−7) = 1. We have v7(−7) = 1, so
φ′(−7) equals the Frobenius element, complex conjugation. Hence φ′R(−7) is also complex
conjugation.

Thus (27.11) holds, and we have φQ(ζ∞)/Q(Q×) = φ′Q(ζ∞)/Q(Q×) = 1, as needed.

Proof 2. Use explicit computations of local symbols, obtained from Lubin-Tate theory. See
Cassels-Frohlich [8], p. 191.

4.2 (B) holds for all cyclomic extensions

We prove the following more general proposition.

Proposition 4.4 (Devissage): 5 If (A) is true for L/K, then (A) holds for

1. any subextension M/K and

2. any extension LK ′/K ′.

For an extension K ′(ζn)/K ′, apply the proposition with L = Q(ζn) and K = Q to obtain
the following.

Corollary 4.5: (A) holds for all cyclotomic extensions.

5Devissage means “unscrewing” in French.
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Proof of Proposition 4.4.

1. For any place v, φMv/Kv is the composition of φLv/Kv and the projection G(Lv/Kv)→
G(M v/Kv). Since the global map is the product of the local maps, φM/K is the com-
position of φL/K and G(L/K)→ G(M/K). Hence φM/K(K×) = 1.

2. Let L′ = L ·K ′. We have a natural inclusion G(L′/K ′) ↪→ G(L/K). The local Artin
map is compatible with basefield extension with respect to the norm map. Since the
norm on ideles is computed componentwise, it follows the map φ =

∏
v∈VK φv is also

compatible with field extensions.

IK′
φL′/K′

//

NmK′/K
��

G(L′/K ′)

i
��

IK
φL/K

// G(L/K).

Suppose a ∈ K ′×. By commutativity and (A) for the extension L/K, we have

i ◦ φL′/K′(a) = φL/K [NmK′/K(a)︸ ︷︷ ︸
∈K×

] = 1.

Since i is injective, this implies φK′/K′(a) = 1.

4.3 (A) for cyclotomic implies (B) for α split by cyclic cyclotomic

This follows from the more general proposition:

Proposition 4.6: If L/K is cyclic, then (A) implies (B).

Proof. Since L/K is cyclic, we can take χ ∈ H1(G,Q/Z) to be a generating character. We
have the following commutative diagram.

K× �
�

//

•∪δχ
��

IK
φL/K

//

•∪δχ
��

G(L/K)

χ

��

H2(G,L×) // H2(G, IL) inv // Q/Z.

The left-hand square commutes by functoriality of cup products; the right-hand square
commutes by Lemma 4.2. Recall •∪δχ is an isomorphism forG cyclic, by Proposition 24.12.1.
Hence if a ∈ H2(G,L×), then it is equal to b ∪ δχ for some b ∈ K×, and

inv(a) = inv(b ∪ δχ) = χ(φL/K(b)) = 0.

In the last step we use (A) to give φL/K(b) = 0.
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4.4 (B) for cyclic cyclotomic implies (B) in general

It suffices to prove the following.

Theorem 4.7: For any β ∈ H2(K) there exists a cyclic cyclotomic extension L/K such
that β maps to 0 in H2(L).

There exists a cyclotomic extension Kc ⊆ K(ζ∞) with G(Kc/K) ∼= Ẑ such that the
inclusion map

H2(Kc/K)→ H2(K)

is an isomorphism.

We first give a criterion for β to map to 0 in H2(L), then find a cyclotomic L/K where
this criterion holds.

Lemma 4.8: Let α ∈ H2(K). Then ResK/L(α) = 0 inH2(L) if and only if [Lv : Kv] invv(α) =
0 for every v ∈ VK .

Proof. By the Brauer-Hasse-Noether Theorem 3.5, ResK/L(α) = 0 inH2(L/K,L×) iff ResK/L(α) =
0 inH2(Lv/Kv, L

v×) = 0 for all v. Since invKv is an isomorphism, this is true iff invKv ResKv/Lv(α) =
0 for all v. But we know

invKv ResKv/Lv(α) = [Lv : Kv] invv(α),

from the class formation for LCFT (Theorem 26.4.14).

Lemma 4.9: Suppose K/Q is a finite extension and S be a finite set of places of K. There
exists a cyclic cyclotomic extension L/K such that

m | [Lv : Kv] for every finite v ∈ S
2 | [Lv : Kv] for every real v ∈ S.

(The second condition is just equivalent to L being complex.)

Proof. First consider the case K = Q. Note that for an odd prime q,

G(Q(ζqr)/Q) ∼= (Z/qr)× ∼= Z/(q − 1)qr−1 ∼= Z/(q − 1)× Z/qr−1.

Let L(qr) be the subextension of Q(ζqr) with Galois group Z/qr−1. Becuase Qp only has a
finite number of roots of unity, vq([L(qr) : Qp])→∞ as r →∞.

Similarly for q = 2,

G(Q(ζ2r)/Q) ∼= (Z/2r)× ∼= Z/2× Z/2r−2.

The subextension Q(ζ2r − ζ−1
2r ) corresponds to the automorphisms ζ 7→ ζs with s ≡ 1

(mod 4), which form a group isomorphic to Z/2r−2. Let L(2r) = Q(ζ2r − ζ−1
2r ) (note this is

complex), then similarly limr→∞ v2([L(2r) : Q]) =∞. Now take

L :=
∏
qi|2m

L(qrii )
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for ri large enough. As it is a compositum of cyclic cyclotomic extensions of relatively prime
degrees, L is cyclic cyclotomic.

Now suppose we are given general K. First construct Q(ζn)/Q satisfying the conditions
for Q with m[K : Q]. Then take L = K(ζn). We have [Kv(ζn) : Kv] | m for finite primes v
of Q since [Kv : Qv] | [K : Q].

We can take Kc =
⋃
S,ri

K ·
∏

qi∈S L(qrii ).

Proof of Theorem 4.7. We know invv(α) = 0 except for a finite number of primes, say primes
in S. Suppose m invv(α) = 0. Use Lemma 4.9 to get L = K(ζN) such that works for m
and S. Then by Lemma 4.8, ResK/L(α) = 0 in H2(K(ζN)).

4.5 (B) implies (A) for all abelian extensions

This will follow from the following proposition.

Proposition 4.10: If L/K is abelian, then (B) for L/K implies (A) for L/K.

Proof. Let a ∈ K×. By Lemma 4.2, for any character χ,

χ(φL/K(a)) = inv( a ∪ δχ︸ ︷︷ ︸
∈H2(L/K,L×)

) = 0.

Hence φL/K(a) = 0.

We have now proved the following.

Theorem 4.11: The following hold.

(A) For an abelian extension L/K, define the map φL/K as in (27.10). The map φL/K takes
the value 1 on the principal ideles K× ⊆ IK .

(B) For any α ∈ H2(K/K),

inv(α) :=
∑
v∈VK

invv(α) = 0.

§5 The ideles are a class formation

We now complete the proof of global class field theory by showing that the ideles are a class
formation and invoking the theorems in Section 26.4. In the local case, the G-modules in
the class formations are the fields themselves, but in the global case, the G-modules are the
ideles.

Theorem 5.1: Let K be a global field. Then

(G(K/K), {G(L/K) : L/K finite Galois} ,CK)

is a class formation.
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Note that C
G(K/L)

K
= CL for each L by Proposition 1.3.

Proof. We check the axioms in Definition 4.5.

Step 1: First, H1(G(L/K),CL) = 0 for every cyclic extension of prime degree (in fact every
finite extension), by Theorem 3.1.

Second, we need maps invL/K : H2(L/K,CK)
∼=−→ Q/Z. Right now we just have a map

invL/K : H2(G(L/K), IL)→ Q/Z.

We need to show invL/K “factors through” H2(G(L/K),CL). We also need to show com-
patibility with inflation and restriction, and that

invL/K : H2(G(L/K),CL)
∼=−→ 1

[L : K]
Z/Z

for all L/K. It is hard to show this directly, except in the cyclic case, when we know the
first inequality holds. As we will see, though, showing the cyclic case is enough, because by
Theorem 4.7, every element of H2(G(K/K),CK) is contained in H2(G(L/K),CL) for some
cyclic (in fact, also cyclotomic) L/K.

Step 2: Consider the following commutative diagram, whose columns are inflation-restriction
sequences.

0

��

0

��

0

��

0 // H2(L/K,L×)
i1 //

Inf
��

H2(L/K, IL)
p1
//

Inf
��

inv
++

H2(L/K,CL)

Inf
��

0 // H2(M/K,M×)
i2 //

Res
��

H2(M/K, IM)
p2
//

Res
��

inv
++

H2(M/K,CM)

Res
��

1
n
Z/Z

0 // H2(M/L,M×)
i3 // H2(M/K, IM)

inv
++

p3
// H2(M/L,CM) Q/Z

Q/Z.

The columns are exact by the inflation-restriction exact sequence (Proposition 24.11.10) and
the following:

1. H1(M/L,M×) = 0 by Hilbert’s Theorem 90 (Theorem 25.1.1).

2. H1(M/L, IM) = 0 by Proposition 2.4.

3. H1(M/L,CM) = 0 by Theorem 3.1.
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The rows are exact because they come from the long exact sequences of 0 → L× → IL →
CL → 0 and 0 → M× → IM → CM → 0, and the fact that H1 of CL,CM is trivial (again
by Theorem 3.1).

Step 3: Next we show the maps inv are compatible with inflation. Indeed, since we have a
class formation for local class field theory (Theorem 26.4.14), for every w | v we have the
diagram

H2(Lw/Kv)
invKv //

InfLw/Lw
��

1
[Lw:Kv ]

Z/Z

i

��

H2(Kv)
invKv // Q/Z.

Now H2(G(L/K), IK) ∼=
⊕

v∈VK H
2(Gv, (Lv)×) by Proposition 2.4 and inv =

∑
v∈VK invv, so

inv is compatible with inflation.

Step 4: Thus, we can take the direct limit over M , noting direct limits preserve exactness,
to get (we will explain the dashed and dotted lines)

0

��

0

��

0

��

0 // H2(L/K,L×)
i1 //

Inf
��

H2(L/K, IL)
p1
//

Inf
��

inv1

++

H2(L/K,CL)

Inf
��

inv′1

&&

0 // H2(K,K
×

)
i2 //

Res
��

H2(K, IK)
p2

//

Res

��
inv2

++

H2(K,CK)

Res

��

inv′2

&&

1
n
Z/Z

��

0 // H2(L,L
×

)
i3 // H2(L, IK)

inv3

++

p3
// H2(L,CK)

inv′3

&&

Q/Z

n

��

Q/Z.

(27.12)

Step 5: Now we show the maps invj are compatible under restriction. Again, since we have
a class formation for local class field theory (Theorem 26.4.14), we have the diagram

H2(Kv)
invKv //

ResKv/Lw
��

Q/Z

[Lw:Kv ]

��

H2(Lw)
invLw // Q/Z

Using H2(G(L/K), IK) ∼=
⊕

v∈VK H
2(Gv, (Lv)×), we can write an element of H2(K, IK) as

x = (xv)v∈VK , where xv ∈ H2(Gv, (Kv)
×). On degree 0, ResK/L is the diagonal imbedding

IK
∼=−→ IGL ↪→ IL of Proposition 1.3, so on degree 2,

ResK/L x =
((

ResKv/Lw xv
)
w|v

)
v∈VK

∈
⊕
v∈VK

⊕
w|v

H2(Gw, Kv
×

).
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The invariant map then sends this to∑
v∈VK

∑
w|v

invLw(ResKv/Lw xv) =
∑
v∈VK

∑
w|v

nw/v invKv xv = n
∑
v∈VK

invKv xv = n invK x,

using the fact that [L : K] =
∑

w|v nw/v, where nw/v is the local degree.

Step 6: By Theorem 4.11, the bent maps are complexes, i.e. im(ij) ⊆ ker(invj) for all three
rows.

Thus the maps invj factor through the images im(pj), for j = 1, 2, 3 to give the maps inv′j.
Be careful: we have only so far defined inv′1 : im(p1)→ 1

n
Z/Z, and not inv′1 : H2(L/K,CL)→

1
n
Z/Z. We want to show that for certain extensions L/K, the pj are in fact surjective, so

the map inv′j is an isomorphism H2(L/K,CL)→ 1
n
Z/Z.

To do this we orders of im(inv1) and |H2(L/K,CL)|. Again, we use H2(L/K, IL) ∼=⊕
v∈VK

1
nv
Z/Z (Proposition 2.4). Making this identification using the invariant maps invv,

the invariant map takes (av)v ∈
⊕

v∈VK
1
nv
Z/Z to

∑
v∈VK av. Thus im(inv1) = 1

lcmv(nv)
Z/Z

and
|im(inv1)| = lcmv(nv).

We have that

lcmv(nv) = |im(inv1)| = |im(inv′1)| ≤ |im(p1)| ≤ |H2(L/K,CL)| ≤ n, (27.13)

where the last step is the second inequality. We don’t get any information out of this unless
lcmv(nv) = n. For certain extensions L/K, we do know it is true, though.

Step 7: We show that if L/K is cyclic, then lcmv(nv) = n. Let S be the set of ramified
primes and infinite places of K. By Proposition 2.8, G(L/K) is generated by the elements
FrobL/K(p) for p 6∈ S. Now 〈FrobL/K(p)〉 is sent to a subgroup of index nv in G(L/K). Since
G(L/K) to be generated by these elements, we must have lcmv(nv) = n.

Then equality holds everywhere in (27.13), we have the exact sequence

0→ H2(L/K,L×)→ H2(L/K, IL)→ H2(L/K,CL) ∼=
1

n
Z/Z→ 0,

where the map H2(L/K, IL)→ 1
n
Z/Z is the invariant map.

Step 8: Taking the direct limit over all L ⊆ Kc (as defined in Theorem 4.7) we get

0 // H2(K,K×c ) //

Inf
��

H2(Kc/K, IKc) //

Inf
��

// H2(Kc/K,CKc)
∼= Q/Z

Inf
��

// 0

0 // H2(K) // H2(K, IK) inv // Q/Z

where the top row is exact. By Theorem 4.7, the left vertical map is an isomorphism. The
middle map is also an isomorphism because Theorem 2.4 gives that it is the map⊕

v∈VK

H2(Kv
c /Kv)→

⊕
v∈VK

H2(Kv).
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This is surjective because H2(Kv
c /Kv) ∼= Q/Z via the invariant map, Kv

c being the directed
union of Lw with [Lw : Kv] arbitrarily divisible. Hence it is an isomorphism. Finally, the
right vertical map is clearly an isomorphism. Thus the bottom row is short exact and invK
gives an isomorphism H2(K,CK) → Q/Z, i.e. the map inv′2 in (27.12). Restricting to
H2(L′/K,CL′), it is an isomorphism to 1

[L′:K]
Z/Z for any L′, as needed.

We are now ready to reap the rewards of our hard work.

Theorem (Global reciprocity, Theorem 23.6.1): Given a finite abelian extension L/K, there
is a unique continuous homomorphism φL/K that is compatible with the local Artin maps,
i.e. the following diagram commutes:

IK
φL/K
// G(L/K)

K×v
φv
// //

?�

iv

OO

G(Lv/Kv).
?�

OO

Moreover, φL/K satisfies the following properties.

1. (Isomorphism) For every finite abelian extension L/K, φK defines an isomorphism

φL/K : CK/NmL/K(CL) = IK/(K× · NmL/K(IL))
∼=−→ G(L/K).

2. (Compatibility over all extensions) For L ⊆M , L,M both finite abelian extensions of
K, the following commutes:

G(M/K)

pL
��

IK

φM/K
::

φL/K
// G(L/K)

Thus we can define φK := lim←−L/K abelian
φL/K as a map IK → G(Kab/K).

3. (Compatibility with norm map) φK is a continuous homomorphism IK → G(Kab/K),
and the following commutes.

IL
φL //

NmL/K

��

G(Lab/L)

•|
Kab

��

IK
φK // G(Kab/K)

Proof. By Theorem 5.1 and the abstract reciprocity law (Theorem 26.4.8) we get isomor-
phisms φ′L/K : CK/NmL/K CL → G(L/K) satisfying the required compatibility properties.

We only have to check that φ′L/K = φL/K (recall we defined φL/K as the product of local

maps). From Theorem 26.4.9, for every character χ, χ(φ′L/K(a)) = invK(a ∪ δχ). But this
is also true for φL/K by Proposition 4.2. Hence φL/K = φ′L/K , as needed.

Uniqueness is clear from the condition that φ restricts to the local Artin maps.
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§6 Existence theorem

We now prove the existence theorem for global class field theory.

Proof of Theorem 23.6.3 and Theorem 23.6.4. This involves explicitly constructing norm groups
and calculating norm indices, which overlaps with Section 3.2. The proof is omitted for now.
See Cassels-Frohlich [8], pg. 201-202.

Theorem 23.6.4 now follows from the Existence Theorem and Theorem 4.13.

Finally, we prove that φK gives a topological isomorphism IK/K×(K×∞)0 → G(Kab/K).
This finishes the proof of all theorems of global class field theory.

Proof of Theorem 23.6.5. First we prove that φK is surjective. We know that φHK/K : IK →
G(HK/K) is surjective, where HK is the Hilbert class field (See Definition 28.5), since this
is a finite extensions. Thus it suffices to show φHK/K : IK → G(Kab/HK) is surjective.

We know that for each place v of K, φK : Kv � W (Kab
v /Kv) is surjective (Theo-

rem 23.2.4). Restricting to Uv, we get that φK |Uv : Uv � I(Kab
v /Kv) ∼= Iv(K

ab/K) is surjec-
tive. Since K×

(∏
v∈VK Uv

)
/K× ⊆ IK , it suffices to show

∏
v∈VK Iv(K

ab/K) = G(Kab/K).

Let Kab,ur
v denote the maximal abelian extension of K unramified at v. We have by Theo-

rem 14.7.2 that

∏
v∈VK

Iv(K
ab/K) =

∏
v∈VK

G(Kab/Kab,ur
v ) = G

(
Kab/

⋂
v∈VK

Kab,ur
v

)
= G(K/HK)

since HK is the maximal abelian extension unramified at all places. This shows surjectivity.
To show the kernel is K×(K×∞)0, note that this is exactly the intersection of all open

subsets of finite index in IK .
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Chapter 28

Applications

In this chapter we give several important applications of class field theory to number theory,
rewarding the reader for reading the difficult proofs in the last few chapters (or conversely,
motivating the reader to read the proofs).

Why is class field theory useful? It relates a field K to its Galois group G(Kab/K), so
transfers information about the extensions of a field into information contained in the field
itself, or conversely, relates the behavior of elements in the field K, to their behavior in
various extension fields. Moreover, because the global Artin map is constructed from the
local Artin maps, questions in number theory involving global fields like Q can be understood
by patching together information from its completions (local fields). In the chapter, we will
use the full power of class field theory to give solutions to the following problems.

Throughout, we will assume that K is a number field.

1. Reciprocity laws: We show, roughly, that whether a prime p is a perfect nth power
modulo q, depends only on q mod p (actually, some multiple of p). Reciprocity hence
shows that the Legendre symbol

(∗
•

)
, is like a group homomorphism in both the top

and bottom. The Artin isomorphism will give us the homomorphism in the bottom.

2. Local-to-global principle: We show the Hasse-Minkowski theorem: a quadratic
form has a solution in K iff it has a solution in every completion of K.

3. Density of primes: We prove the Chebotarev density theorem on the distribution
of prime ideals in a number field.

4. Splitting of primes: We show how a prime p splits in an abelian extension L/K
depends only on p modulo a ray class group, since splitting behavior can be expressed
in terms of the Artin map (Proposition 23.1.3). We show this characterization is unique
to abelian extensions, and give some examples for splitting in nonabelian extensions.

5. Maximal unramified abelian extension: We characterize the maximal unramified
abelian extension HK of a number field K, and show that all ideals of K become
principal in HK . HK can be computed for quadratic extensions using the modular
function j, which we show in Chapter 39.

6. Primes representated by quadratic forms: We relate quadratic forms to primes
using the Gauss correspondence (Theorem 16.5.1), then use the Hilbert class field to
characterize which primes are represented by a given quadratic form.
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7. Artin and Hecke L-functions: We use class field theory to show that for abelian
extensions, all Artin L-functions are Hecke L-functions. This is useful because it is
relatively easy to show Hecke L-functions satisfy nice properties such as analytic con-
tinuation and functional equation. This was Emil Artin’s original motivation for class
field theory.

Finally, we describle how class field theory fits as the “1-dimensional case” of the Langlands
program.

§1 Reciprocity laws

First we interpret and generalize the Legendre symbol using class field theory. We derive
a generalize reciprocity law using class field theory, and then specialize to quadratic, cubic,
and biquadratic reciprocity.

Reciprocity laws take two forms. The first is as follows.

Theorem 1.1 (Weak reciprocity): Let K be a number field containing all nth roots of unity.
Let p be a fixed prime. Then there exists a modulus m and a finite subset S ∈ ImK/PK,1(m),
such that for all p relatively prime to m,

p is a perfect nth power mod q ⇐⇒ (q mod PK,1(m)) ∈ S.

In fact, S is the kernel of a certain homomorphism IK(m)/PK,1(m)→ µn.

This tells us that whether p is a perfect nth power modulo q, depends only on the modular
properties of q, and is moreover characterized by a group homomorphism. However, it does
not give an efficient method to actually determine whether p is a perfect nth power modulo
q. To get this we turn to strong reciprocity.

We know that the Legendre symbol
(
•
p

)
(and its generalizations to nth powers,

(
•
p

)
n
),

is a homomorphism in the upper component as well, so it is natural to relate these two

homomorphisms: what is their ratio
(
p
q

)
n

(
q
p

)−1

n
? This will give us a natural algorithm to

compute the Legendre symbol
(
a
p

)
n
. We will prove strong reciprocity at the end of this

section, after we discuss the Hilbert symbol.

1.1 Weak reciprocity and the Legendre symbol

The key observations linking reciprocity to the Artin map are that a is a perfect nth power

modulo p iff a
Np−1
n ≡ 1 (mod p) (just like

(
a
p

)
= a

p−1
2 in the quadratic case), and the

homomorphism a 7→ a
Np−1
n can be linked to the Frobenius map.

Definition 1.2: Let K be a number field containing an nth root of unity, and let p be a

prime ideal with an ⊥ Np. Define the Legendre symbol
(
a
p

)
n

to be the unique nth root

of unity ζ such that

ζ ≡ a
Np−1
n (mod p).
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To see this is well-defined, note the following two points.

1. The nth roots of unity are distinct modulo p because n ⊥ Np. Hence Np−1
n

is an integer.

2. (a
Np−1
n )n = 1 ≡ 1 (mod p) by Fermat’s little theorem so a

Np−1
n is equivalent to a unique

nth root of unity.

Proposition 1.3: Let K be a number field containing an nth root of unity, let p be a prime

ideal with an ⊥ Np. Then a is a perfect nth power modulo p iff
(
a
p

)
n

= 1.

Proof. Let the residue field of p be k. As k× has order Np−1 and is generated by 1 element,

a is a perfect nth power modulo p iff a
Np−1
n =

(
a
p

)
n

= 1.

Proposition 1.4:
(
a
p

)
is a group homomorphism factoring through OK/p.

Proof. Clear.

How can class field theory give us an expression like this? Well, the Frobenius element

corresponding to p acts like taking the Np power modulo p. How do we get to a
Np−1
n ? By

acting by the Frobenius on n
√
a instead.

Proposition 1.5: The following holds:(
a

p

)
n

=
[ψL/K(p)]( n

√
a)

n
√
a

,

where L = K( n
√
a).

Proof. First note p - an implies that K( n
√
a)/K is unramified at p, by Theorem 20.2.5.

By definition ψL/K(p) is the homomorphism that sends b to bNp modulo p. Thus

[ψL/K(p)]( n
√
a) ≡ n

√
a
Np ≡ a

Np−1
n n
√
a (mod p).

But n
√
a satisfies Xn − a = 0, so (p, L/K) must send n

√
a to ζ n

√
a where ζ is some root of

unity. The above equation shows that we must have ζ =
(
a
p

)
n
, as needed.

We define
(
a
b

)
n

for any b ∈ I(na)
K by extending multiplicatively the map

(
a
•

)
, originally

defined for primes p. Equivalently (by Proposition 1.5), define
(
a
b

)
=

[ψL/K(b)]( n
√
a)

n√a .1

We can now prove weak reciprocity.

1We can extend the definition to all prime elements p by definining
(
a
p

)
n

=
φL/K(iv(p))( n

√
a)

n
√
a

, then extend

the definition of
(
a
b

)
n

to encompass any b ∈ K× by multiplicativity. For instance, in the case n = 2, this

gives the Jacobi symbol. For b = 2,
(
a
b

)
tells us whether a is a perfect square modulo any power of 2.
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Proof of Theorem 1.1. By Proposition 1.5,(
a

p

)
n

=
[ψK( n

√
a)/K(p)]( n

√
a)

n
√
a

. (28.1)

Taking a = p and p = (q), we get(
p

q

)
n

=
[ψK( n

√
p)/K(q)]( n

√
p)

n
√
p

.

Let m be the conductor of K( n
√
p)/K. Since ψK( n

√
p)/K is an homomorphism on ImK/i(PK,1(m))

(Theorem 23.4.1), its kernel contains i(PK,1(m)). In other words, when q ∈ i(PK,1(m)), then(
p
q

)
=

[ψK( n
√
q)/K(q)]( n

√
p)

n
√
p

=
id( n
√
p)

n
√
p

= 1 and p is a perfect nth power modulo q.

1.2 Strong reciprocity and the Hilbert symbol

To prove strong reciprocity we need to actually compute (28.1). Supposing p is a principal
ideal (b), our statement about reciprocity seems to suggest that b and a play similar roles in
the equation:2 (a

b

)
n

=
[ψL/K(b)]( n

√
a)

n
√
a

. (28.2)

However, (28.2) is not symmetric. We seek to symmetrize it.

But look at Proposition 25.2.2. Equation (28.1) is the character corresponding to the
element a ∈ K×. Using the map in Kummer Theory, we can get the equation symmetric in
a and b. In fact, we did this already when we defined the Hilbert symbol.

If motivation was lacking when we defined the Hilbert symbol, hopefully this clears things
up: it explains and clarify the duality in a and b observed above by making it symmetric in
a and b.

Proposition 1.6: Let b - n be prime in K and Kb the completion at b. Let (, )b : K×b /K
×n
b ×

K×b /K
×n
b → µn denote the Hilbert symbol. Then for a ⊥ b,

(a, b)b,n =
(a
b

)
n
.

In general, if Kπ( n
√
a)/Kπ(a) is unramified,

(a, b)π,n =

(
(−1)v(a)v(b)av(b)b−v(a)

π

)
n

.

where (a, b)v,n denotes (a, b)n when a, b are considered in Kv.

2Caution: we’re using the Artin map on ideals; we write ψL/K(b) to mean ψL/K((b)). In contrast,
φL/K(b) = 1 since b ∈ K.
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Proof. Proposition 1.5 and Proposition 26.6.3 give(a
b

)
n

=
[ψL/K(b)]( n

√
a)

n
√
a

=
[ψLb/Kb(b)](

n
√
a)

n
√
a

= (a, b)b,n.

For the second part write a = πju and b = πku′ where u, u′ are units, and use bilinear-
ity 26.6.4 to compute

(πju, πku′) = (π, πku′)j(u, π)k (u, u′) = 1 since K( n
√
a) unramified, 26.6.5

= (π,−π)jk(π, (−1)ku′)j
(u
π

)k
n

by the first part

= ((−1)ku′, π)−j
(u
π

)k
n

(π,−π) = 1, Theorem 26.6.4(2)

=

(
(−1)ku′

π

)−j
n

(u
π

)k
n

=

(
(−1)jkuku′−j

π

)
n

=

(
(−1)v(a)v(b)av(b)b−v(a)

π

)
n

.

The last main ingredient is the product formula for Hilbert symbols.

Theorem 1.7 (Product formula for Hilbert symbols): Let K be a number field containing
the nth roots of unity. Then ∏

v∈VK

(a, b)v = 1.

Proof. Using the fact that the global Artin map can be written as the product of local Artin
maps, ∏

v∈VK

φKv( n
√
a)/Kv(b) = φK(b) = 1,

because φK is the identity on K. Now operate on this by the character χ(σ) = σ( n
√
a)

n√a ∈ K
and use Proposition 26.6.3 to get∏

v∈VK

(a, b)v =
∏
v∈VK

χ(φK( n
√
a)/K(b)) = 1.

Combining Proposition 1.6 and 1.7 gives the strong reciprocity law.

Theorem 1.8 (Strong reciprocity): Let K be a number field containing a primitive nth
root of unity and suppose a, b, n are pairwise relatively prime. Then(a

b

)
n

(
b

a

)−1

n

=
∏
v|n∞

(b, a)v,n.
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Suppose b, n are relatively prime and a is a prime dividing n. Then(a
b

)
n

=
∏
v|n∞

(a, b)v,n.

Proof. Suppose a, b, n are pairwise relatively prime. For a number c let S(c) denote the finite
places v where v(c) 6= 0. We calculate

(
a
b

)
n

and
(
b
a

)
n

using multiplicativity. We have

(a
b

)
n

(
b

a

)−1

n

=

(
a∏

π∈S(b) π
vπ(b)

)(
b∏

π∈S(a) π
vπ(a)

)−1

(b) =

 ∏
π∈S(b)

πvπ(b)

 , (a) =

 ∏
π∈S(a)

πvπ(a)


=

∏
vπ∈S(b)

(a
π

)vπ(b)

n

∏
vπ∈S(a)

(
b

π

)−vπ(a)

n

=
∏

vπ∈S(b)

(a
π

)vπ(b)

n

∏
vπ∈S(a)

(
b−vπ(a)

π

)
n

=
∏
v∈S(b)

(a, b)v
∏

v∈S(a)

(a, b)v by Proposition 1.6

=
∏
v-n∞

(a, b)v (a, b)C = 1, (a, b)v = 1 when a, b ∈ Uv, 26.6.5

=
∏
v|n∞

(b, a)v

where in the last step we used the product formula 1.7, which tells us
∏

v∈VK (a, b)v = 1.

Now suppose a is a prime dividing n. Then again using multiplicativity, Proposition 1.6,
and the fact that (a, b)v = 1 for v | n∞, n - a (Corollary 26.6.5),(a

b

)
n

=
∏

vπ∈S(b)

(a
π

)vπ(b)

=
∏
v∈S(b)

(a, b)v =
∏
v|n∞

(a, b)v.

In practice, we can compute the action of the Hilbert symbol for each v | n∞, since
K×v /K

×n
v is a finite set. We will carry out these computations in the cases n = 2, 4, for

K = Q and Q(i).

1.3 Quadratic and biquadratic reciprocity

We derive quadratic and biquadratic reciprocity using Theorem 1.8.

Theorem 1.9 (Quadratic reciprocity): Let p, q be odd primes. Then(
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8 ,

(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .
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Proof. The first follows from definition of the Legendre symbol. By strong reciprocity 1.8,(
2

p

)
= (2, p)2(

p

q

)(
q

p

)
= (p, q)2.

Let U (i) denote 1 + (2)i in Q2.

1. We have (2, p)2 = 1 iff p is a norm from Q2(
√

2) (Theorem 26.6.4), iff p is in the form
x2−2y2 in Q2. Looking at this modulo 8, we must have p ∈ {1, 5}2Z. This is sufficient
as we know [Q×2 : NmQ2(

√
2)/Q2

(Q2(
√

2)×)] = [Q2(
√

2) : Q2] = 2, so we must have

NmQ2(
√

2)/Q2
(Q2(
√

2)×) = {1, 5}2Z. Hence (2, p)2 = 1 iff p ≡ 1, 5 (mod 8), iff p2−1
8

is
even. This gives (

2

p

)
= (−1)

p2−1
8 .

2. We have (p, q)2 = 1 iff q ∈ N := NmQ2(
√
p)/Q2(Q2(

√
p)×), iff q is in the form x2 − py2.

(a) If p ≡ 1 (mod 4), then x2 − py2 can attain any odd residue modulo 8. Since
[Q : N ] = [Q2(

√
p) : Q2] ≤ 2, we have U (3)22Z = Q×2

2 ⊆ N . Since N contains all
residues modulo 8, U22Z ⊆ N . Hence q ∈ N , and (p, q)2 = 1.

(b) If p ≡ 3 (mod 4), then x2 − py2 cannot be 3 (mod 4). Hence N = U (2)2Z, and
q ∈ N iff q ≡ 1 (mod 4). Hence (p, q)2 = 1 iff q ≡ 1 (mod 4).

It remains to note (−1)
p−1

2
· q−1

2 = 1 iff either p ≡ 1 (mod 4) or q ≡ 1 (mod 4).

Theorem 1.10 (Biquadratic reciprocity): Suppose p, q are primes in Z[i] with p, q ≡ 1
(mod (1 + i)3). Then (

p

q

)
4

= (−1)
Np−1

4
·Nq−1

4

(
q

p

)
4

.

Note every prime contains an associate that is equivalent to 1 (mod 4).

Proof. Note p ≡ 1 (mod (1 + i)3) means p ≡ 1 or 1 + 2i (mod (1 + i)3).
By strong reciprocity 1.8,(

p

q

)
4

(
q

p

)−1

4

= (q, p)2,4 = (p, q)−1
2,4.

We have (p, q)2,4 = 1 iff q ∈ NmQ2(
√
p)/Q2(Q2(

√
p)×). Consider 2 cases.

1. Np ≡ 1 (mod 8). Equivalently (writing out p = a+bi and calculating the norm), p ≡ 1
(mod 8). We can calculate that (1 + i)3ZU (3) ⊆ N := NmQ2(

√
p,i)/Q2(i)(Q2(

√
p, i)×), so

q ∈ N . (The calculations are lengthy, but here’s the idea: by examining the structure

369



Number Theory, §28.1.

of Q2(i), or using Proposition 27.3.2, we find that Q2(i)×4 = U (7)(1 + i)4Z. Hence the
norm group N satisfies

U (7)(1 + i)4Z ⊆ N ⊆ Q2(i)×

and has index at most 4. Now calculate the norm of enough numbers in Q2(
√
p, i) until

we can determine (1 + i)3ZU (3) ⊆ N . Using a computer algebra system is advised.)

2. Np ≡ 5 (mod 8). Equivalently, p ≡ 5 (mod 8). We can calculate that (1 + i)4ZU (3) ⊆
NmQ2(

√
p)/Q2(Q2(

√
p)×) but (1 + 2i)(1 + i)4ZU (3) 6⊆ NmQ2(

√
p)/Q2(Q2(

√
p)×). Hence

(p, q)4 = 1 iff q ≡ 1 (mod 4), i.e. iff Nq ≡ 1 (mod 8).

In the case where Np,Nq ≡ 5 (mod 8), we have (p, q)2
4 = (p, q2)4 = 1 but (p, q)4 6= 1 so

(p, q)4 = −1.

1.4 Reciprocity for odd primes

We give an algorithm for finding reciprocity laws for Q(ζp)/Q for p prime, and then specialize
to p = 3.

Theorem 1.11: Let p be an odd prime, let K = Q(ζp), and let v be the valuation corre-
sponding to 1− ζp. Let π = 1− ζp. Then the elements

π

η1 = 1− π = ζp

η2 = 1− π2

...
...

ηp = 1− πp

generateK×v /K
×p
v , and (a, b)v is the unique skew-symmetric pairingK×v ×K×v → µp satisfying

the following.

1. (ηi, ηj)v = (ηi, ηi+j)v(ηi+j, ηj)v(ηi+j, π)−jv .

2. (ηi, π)v =

{
1, 1 ≤ i ≤ p− 1

ζ, i = p.

Moreover, if i+ j ≥ p+ 1, then (a, b)v = 1 for all a ∈ U (i) and b ∈ U (j).

We start with the following lemma.

Lemma 1.12: Let K be a number field containing pth roots of unity. Let ζ be a primitive
pth root of unity, π = 1− ζ, and p a prime dividing π. Suppose a = 1 + πpc with π = 1− ζ
and c ∈ Ov. Then for all b,

(a, b)p = ζ−Trk/Fp (c)vp(b).

We will just need the case where K = Q(ζp), in which case k = Fp.
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Proof. Because a 6∈ p, K( p
√
a)/K is unramified by Lemma 19.2.5. We have (cf. Proposi-

tion 18.2.2)

ζp − 1

ζ − 1
= 0

=⇒ (1− π)p − 1

(1− π)− 1
= 0

=⇒ πp−1 − pπp−2 + · · ·+ p = 0

=⇒ πp−1 ≡ −p (mod pπ)

and we get
πp−1

p
≡ −1 (mod p). (28.3)

Let α = p
√
a be a pth root of a, and write α = 1 + πx, where x ∈ L. Now αm −

a = 0 becomes (1 + πx)p − (1 + πpc) = 0. Hence x is a zero of the polynomial f(X) =
1
πp

((1 + πx)p − (1 + πpc)). Using (28.4), we find that f(X) is integral, so x ∈ OL, and that
modulo π,

f(X) =
1

πp
(πpxp + pπx− πpc) ≡ xp − x− c (mod π)

Let Np = pf . Letting σ be the Frobenius, we find that σ(x) ≡ xp
f

(mod p). Note that

xp
j ≡ (x+ c)p

j−1 ≡ xp
j−1

+ cp
j−1

(mod p).

Hence by induction

σ(x) = xp
f

= x+ c+ cp + · · ·+ cp
j−1

= x+ Trk/Fp(c) (28.4)

in k. Now by Proposition 26.6.3,

(a, b)p =
[φKπ(α)/Kπ(b)](α)

α
=
σv(b)(α)

α

To get the second equality, note that by construction, φKπ(α)/Kπ(π) is the Frobenius element;
as Kπ(α)/Kπ is unramified, UKπ ⊆ kerφKπ(α)/Kπ (Example 26.5.1), and the Artin map
depends only on v(b). We have

(a, b)v = ζn where ζnα = σv(b)(α);

to find n we reduce both sides modulo pπ. We calculate

ζα ≡ (1− π)(1 + πx) ≡ 1 + (x− 1)π (mod pπ) (28.5)

=⇒ ζnα ≡ 1 + (x− n)π (mod pπ) (28.6)

σv(b)(x) ≡ x+ v(b)Trk/Fp(c) (mod π) by (28.4) (28.7)

=⇒ σv(b)(α) ≡ 1 + (x+ v(b)Trk/Fp(c))π (mod pπ). (28.8)

Matching (28.6) and (28.8) gives n = −v(b)Trk/Fp(c) and

(a, b)v = ζ−v(b)Trk/Fp (c) (mod π).
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In particular, note that (a, b)v = 1 if a ≡ 1 (mod πp+1). By nondegeneracy of the pairing
(Theorem 26.6.4), we get that a ∈ (K×v )p. Hence U (p+1) ⊆ (K×v )p.

Proof of Theorem 1.11. Note that ηi generates U (i)/U (i+1), and π generates K×π /(K
×
π )pU (1).

As mentioned above, U (p+1) ⊆ (K×π )p so π, η1, . . . , ηp generate K×π /(K
×
π )p. Since the group

has order p2

|p|vπ
= pp+1 (Proposition 27.3.2), these generators are independent.

We use a relation between the ηi, ηj to derive the first relation. Namely, we have
ηj
ηi+j

+

πj ηi
ηi+j

= 1, so (
ηj
ηi+j

, πj
ηi
ηi+j

)
p

= 1

by Theorem 6.4. Note (a,−1) = 1 for any a because −1 is a pth power. Expanding the
above bilinearity gives

1 = (ηj, π
jηi)(ηi+j, π

jηi)
−1 (ηi+j,−ηi+j)︸ ︷︷ ︸

1

(ηi+j,−1)︸ ︷︷ ︸
1

(ηj, ηi+j)
−1

= (ηj, ηi) (ηj, π
j)︸ ︷︷ ︸

=1, ηj+πj=1

(ηi+j, π)−j(ηi+j, ηi)
−1(ηj, ηi+j)

−1

= (ηi, ηj)
−1(ηi+j, π)−j(ηi+j, ηi)

−1(ηi+j, ηj)

=⇒ (ηi, ηj) = (ηi, ηi+j)(ηi+j, ηj)(ηi+j, π)−j.

This shows item 1. For item 2, note for 1 ≤ i ≤ p− 1 that since ηi + πi = 1,

1 = (ηi, π
i) = (ηi, π)i =⇒ 1 = (ηi, π).

For i = p, we use the lemma to find

(ηp, π)v = ζ−Trk/Fp (−1) = ζ

because k = Fp.
Note that if i + j ≥ p + 1, then ηi+j ∈ U (p+1) ⊆ (K×v )p so item 1 gives that (ηi, ηj) = 1.

Now as a skew-symmetric bilinear pairing (ηi, ηj) is determined by items 1 and 2, because we
can expand (ηi, ηj) using item 1, then repeatedly expand factors (the indices increase each
time) until we only have factors in the form (•, π), and use item 2 to get a value out.

We now use this to derive cubic reciprocity.

Theorem 1.13 (Cubic reciprocity): Let K = Q(ω), where ω = ζ3 = −1+
√
−3

2
. For a ≡ ±1

(mod 3OK), write
a = ±(1 + 3(m+ nω)).

Then (
b

a

)
3

=
(a
b

)
3

if b ⊥ a, b ≡ ±1 (mod 3OK)(ω
a

)
3

= ω−m−n(
1− ω
a

)
3

= ωm.
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Note that if q 6≡ 1 (mod 3) is prime, then 3 - |F×q | so any element of F×q is a cubic residue.
Note any element of K relatively prime to 3 can be written in the from ωi(1 − ω)ja where
a ≡ ±1 (mod 3OK).

Proof. First suppose a, b ≡ 1 (mod 3). By Strong Reciprocity 1.8,(a
b

)
3

(
b

a

)−1

3

= (b, a)3.

Note a, b ∈ U (2) so by Theorem 1.11, (b, a)3 = 1. This shows the first equation.
For the second, letting π = 1− ω, note that

(1− π2)α(1− π3)β = (1 + 3ω)α(1 + 3(2ω + 1))β ∈ [1 + 3(β + (2β + α)ω)]U (4)

Setting α = n− 2m and β = m, we get

a ∈ (1− π2)n−2m(1− π3)mU (4)

(1− π2)2m−n(1− π3)−m ∈ aU (4)

Now Theorem 1.11 tells us

(ω, 1− π2) = (η1, η2) = (η3, π)−2 = ω

(ω, 1− π3) = (η1, η3) = 1

(π, 1− π2) = (η2, π)−1 = 1

(π, 1− π3) = (η3, π)−1 = ω−1.

Thus (ω
a

)
= (ω, (1− π2)2m−n(1− π3)−m) = ω−m−n(π

a

)
= (π, (1− π2)2m−n(1− π3)−m) = ωm.

As an application, we show the following.

Theorem 1.14: If q ≡ 1 (mod 3) is a prime, then 2 is a cubic residue modulo q iff q is in
the form

q = x2 + 27y2, for some x, y ∈ Z.

Proof. Since q ≡ 1 (mod 3), q splits in OK as αα. By multiplying by a root of unity, we
may assume α ≡ 1 (mod 3OK), i.e. α is in the form α = 3(x + yω) ± 1. In order for 2 to
be a cubic residue, it must be a cubic residue modulo α. If a3 ≡ 2 (mod α), then a3 ≡ 2
(mod α), so it would also be a cubic residue modulo α and hence modulo q.

Now
(

2
α

)
= 1 iff

(
α
2

)
= 1, by Cubic Reciprocity 1.13. Since 2 remains inert in OK , and

the only cube in F×4 is 1, we get that α must actually be in the form

α = 6(x+ yω)± 1.
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Taking the norm gives
p = (6x+ 3y ± 1)2 + 27y2.

This is in the form x′2+27y′2; conversely, any prime in the form x′2+27y′2 must have x′ ≡ ±1
(mod 3), and hence is in the above form.

§2 Hasse-Minkowski Theorem

The global Artin map can be expressed as the product of local Artin maps. From class
field theory, we get various “local-to-global” results such as the Hasse-Brauer-Noether The-
orem 27.3.5 and the Hasse Norm Theorem 2.2. The most famous is the local-to-global
principle for quadratic forms, the Hasse-Minkowski Theorem.

Definition 2.1: A quadratic form is said to represent a if there is a solution to q(X1, . . . , Xn) =
a with (x1, . . . , xn) 6= (0, . . . , 0). A quadratic form representing 0 is said to be isotropic.

(For a review of quadratic forms, see Chapter 16.)
Where class field theory comes in is that a quadratic form in 2 variables representing

a number a can be interpreted as a norm equation, a = x2 + by2. We can write this as
a = (x + y

√
b)(x − y

√
b) = NmK(

√
b)/K(x + y

√
b) when

√
b 6∈ K. Class field theory gives us

a local-to-global theorem for norms, the Hasse Norm Theorem. This will prove the n = 2
case of Hasse-Minkowski. Then a series of elaborate reductions will prove the local-to-global
principal for any number of variables.

2.1 Hasse norm theorem

Theorem 2.2 (Hasse norm theorem): Suppose L/K is cyclic. Then a is a global norm iff
it is a local norm everywhere: a ∈ NmL/K L

× iff a ∈ NmLv/Kv L
v× for all v ∈ VK .

Compare this to the proof of Theorem 27.3.5.

Proof. The forward direction is clear.
Let G = G(L/K). Take the long exact sequence in Tate cohomology of

0→ L× → IL → CL → 0

to get the top row of the following.

H−1
T (G,CL) // H0

T (G,L×) // H0
T (G, IL) // · · ·

0 // K×/NmL/K L
× � � //

⊕
v∈VK K

×
v /NmKv(L

v×)

(28.9)

We explain the bottom row. First note the equalities of H0
T are by definition of H0

T ,
plus Proposition 27.2.4. Next note cohomology is 2-periodic because G is cyclic (Propo-
sition 24.12.1), and H1

T (G,CL) = 0 by Theorem 27.3.1 (HT90 for ideles), so

H−1
T (G,CL) = H1

T (G,CL) = 0.
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Then (28.9) gives that the map K×/NmL/K L
× ↪→

⊕
v∈VK K

×
v /NmKv(L

v×) is injective. If
a ∈ K× is a norm in every completion, then it is 0 in

⊕
v∈VK K

×
v /NmKv(L

v×), hence 0 in
K×/NmL/K L

×, hence a global norm.

2.2 Quadratic forms

We prove the following.

Theorem 2.3 (Hasse-Minkowski): Let K be a number field. The following hold.

1. A quadratic form f defined over K represents a iff f represents a in every completion
Kv.

2. Two quadratic forms over K are equivalent iff they are equivalent over every completion
Kv.

First we note that item 1 implies item 2.

Proof that 1 implies 2. The forward direction is clear. For the reverse direction, induct on
the rank n, n = 0 being the base case. Suppose f, g are equivalent over every completion
Kv. Suppose f represents a. Then f represents a over every Kv. Since g ∼ f over every Kv,
g represents a over every Kv. By item 1, g represents a.

Thus we can write f ∼ aX2 + f ′, g ∼ aX2 + g′. Now aX2 + f ′ ∼ aX2 + g′ over every Kv

implies (see Serre [28, IV.1.7, Prop. 4]) f ′ ∼ g′ over every Kv. By the induction hypothesis,
f ′ ∼ g′ over K. Thus f ∼ g.

Next we show that we can reduce item 1 to a statement about quadratic forms repre-
senting 0.

Lemma 2.4: Suppose char(K) 6= 2. An nondegenerate isotropic quadratic form over K
represents all of K.

Proof. Let B be the bilinear form associated to q. Suppose x 6= 0 is such that q(x) = 0. Since
q is nondegenerate, there exists y such that B(x,y) 6= 0. Then q(x+ay) = a2q(y)+2aB(x,y)
attains every value as a ranges over K.

Lemma 2.5: A quadratic form q(X1, . . . , Xn−1) represents a iff q(X1, . . . , Xn−1) − aX2
n

represents 0.

Proof. For the forward direction, suppose q(x1, . . . , xn−1) = a. Then q(x1, . . . , xn−1)−a·12 =
0.

For the reverse direction, let (x1, . . . , xn) be a solution. If xn = 0 then q(x1, . . . , xn) = 0 so

q represents 0. Thus q is isotropic and represents a. If xn 6= 0 then q
(
x1

xn
, . . . , xn−1

xn

)
= a.

Thus it suffices to prove item 1 of Hasse-Minkowski for a = 0. Specifically, item 1 for
forms with n variables is a consequence of item 1 for a = 0 for forms with n + 1 variables.
We now prove Hasse-Minkowski. Every quadratic form over a field not of characteristic 2
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can be put in diagonal form, so it suffices to consider diagonal forms. By scaling, we may
assume one of the coefficients is 1.

Proof for n ≤ 2

For n = 1 the theorem is trivial. For n = 2, we need the following.

Lemma 2.6: An element a ∈ K is a square iff it is a square in every completion Kv.

Proof. (cf. the proof of Proposition 27.2.8) The forward direction is clear.
So suppose a is a square in every completion. ThenKv(

√
a) = K so NmKv(

√
a)/Kv Kv(

√
a)× =

K×v . This shows NmK(
√
a)/K(IK(

√
a)) = IK . By the first inequality 27.2.1,

[K(
√
a) : K] ≤ [IK : NmK(

√
a)/K(IK(

√
a))] = 1

so K(
√
a) = K, i.e. a is a square in K.

Now a quadratic form
q(X, Y ) = X2 − aY 2

represents 0 iff a is a square (it rearranges to
(
X
Y

)2
= a), so q represents 0 over K if it

represents 0 over every Kv.

Proof for n = 3

As promised, we re-express the condition for p(x) to represent 0 as a condition on norms.

Lemma 2.7: Let K be any field. A quadratic form

q(X, Y, Z) = X2 − bY 2 − cZ2

represents 0 iff c ∈ NmK(
√
b)/K(K(

√
b)×).

Proof. Note if q(x, y, z) = 0 with z = 0, then b must be a perfect square. If b is a perfect
square then K(

√
b)/K is trivial and c is trivially a norm.

So it suffices to consider solutions with z 6= 0 and b not a perfect square. In this case,

x2 − by2 − cz2 = 0

iff

c =
(x
z

)2

− b
(y
z

)2

=
(x
z
−
√
b · y
z

)(x
z

+
√
b · y
z

)
= NmK(

√
b)/K

(x
z
−
√
b
y

z

)
.

By the Hasse Norm Theorem 2.2, c ∈ NmK(
√
b)/K(K(

√
b)×) if this is true for every

completion Kv. Combined with the lemma above, this gives Hasse-Minkowski for n = 3.
We will need the following in the proof for n ≥ 5.

Lemma 2.8: The form f = X2 − bY 2 − cZ2 represents 0 in a local field Kv iff (b, c)v = 1.
Moreover, f represents 0 in Kv for all but a finite number of places v.
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Proof. Note f represents 0 iff c ∈ NmK(
√
b)(K(

√
b)×), which is equivalent to (b, c)v = 1 by

Theorem 26.6.4. Only finitely many of these are not equal to 1 by Corollary 26.6.5.

Proof for n = 4

We reduce the n = 4 case to the n = 3 case (but for a different field extension) by the following
string of equivalences. The brilliant idea here is to turn the quadratic form equation into a
quotient of norms.

Theorem 2.9: For any field K, the following are equivalent, for a, b, c ∈ K×.

1. The form f(X, Y, Z, T ) = X2 − bY 2 − cZ2 + acT 2 represents 0 in K.

2. c is a product of norms from K(
√
a) and K(

√
b):

c ∈ NmK(
√
a)/K(K(

√
a)×) NmK(

√
b)/K(K(

√
b)×).

3. c ∈ NmK(
√
a,
√
b)/K(

√
ab)(K(

√
a,
√
b)×).

4. The form g(X, Y, Z) = X2 − bY 2 − cZ2 represents 0 in K(
√
ab).

Proof. (1) ⇐⇒ (2): If (x, y, z, t) is a solution with z2 − at2 = 0, then x2 − by2 = 0 as
well. Then a, b are squares in K and (2) is clear. So it suffices to consider solutions with
z2 − at2 6= 0. In that case,

x2 − by2 − cz2 + act2 = 0 ⇐⇒ c =
x2 − by2

z2 − at2
= (x−

√
by)(x+

√
by)(z −

√
at)−1(z +

√
at)−1,

and this has a solution iff (2) holds.

(4) ⇐⇒ (3): Applying Lemma 2.7, we see (4) is equivalent to c being a norm from
K(
√
b,
√
ab)/K(

√
ab). But K(

√
b,
√
ab) = K(

√
a,
√
b).

(2)⇐⇒ (3): This is the hard part. We consider the field extensions

L := K(
√
a,
√
b)

Lσ = K(
√
a) Lστ = K(

√
ab) Lτ = K(

√
b)

K

If any of a, b, ab is in K×2 then the result is clear: If a ∈ K×2 then both (2) and (3) are true
for any c, since K(

√
a) = K and K(

√
a,
√
b) = K(

√
ab). If ab ∈ K×2 then K(

√
a) = K(

√
b)

so both (2) and (3) are equivalent to c ∈ NmK(
√
a)/K(K(

√
a)×).
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Now assume a, b, ab 6∈ K×2. In this case G(K(
√
ab)/K) ∼= Z/2× Z/2 with the 3 subex-

tensions corresponding to 3 subgroups. Let σ be the non-identity element fixing K(
√
a), τ fix

K(
√
b) and ρ = στ fix K(

√
ab). (I.e. σ switches ±

√
b and τ switches ±

√
a.) We convert the

statements in (2) and (3) into the language of Galois theory, using the fixed field theorem.
Note (2) is equivalent to the following:

(2)′ : There exist x, y ∈ L, σ(x) = x, τ(y) = y, xρ(x)yρ(y) = c.

To go between these statements take

x′ = z −
√
at, y = x−

√
by

and note ρ conjugates both
√
a and

√
b. Similarly, (3) is equivalent to the following.

(3)′ : There exists z ∈ L, zρ(z) = c;

just take z′ = (x −
√
by)(z −

√
az). To go from (2)′ to (3)′ just take z = xy. To go back

from (3)′ to (2)′ requires more work. Given z, let u = z·σ(z)
c

. Now σ(u) = u and uρ(u) =
zρ(z)σ(z)σ(ρ(z))

c2
= 1. Since σ(u) = u. i.e. u ∈ K(

√
a), and G(K(

√
a)/K) = {1, τ |K(

√
a)}, by

Hilbert’s Theorem 90 (25.1.1) there exists x ∈ K(
√
a) (i.e. x satisfying σ(x) = x) such that

τ(x)
x

= u. Set y = ρ(z)
x

. We’ve chosen x satisfying the conditions. For y, note

τ(y) =
σ(z)

τ(x)
τρ = σ

=
σ(z)

xu

τ(x)

x
= u

=
c

xz
u =

zσ(z)

c

=
ρ(z)

x
= y zρ(z) = c.

Finally, xyρ(xy) = ρ(z)ρ(ρ(z)) = c. This shows (2)′ =⇒ (3)′ and finishes the proof.

Now we show Hasse-Minkowski holds for n = 4. By (1) ⇐⇒ (4) in Theorem 2.9,
Hasse-Minkowski for f = X2 − bY 2 − cZ2 + acT 2 over K is equivalent to Hasse-Minkowski
for g = X2 − bY 2 − cZ2 over K(

√
ab), and we have already proved Hasse-Minkowski for

n = 3.

Proof for n ≥ 5

We now prove Hasse-Minkowski for n ≥ 5. We proceed by induction. The idea is to “replace”
aX2

1 + bX2
2 by just cX2.

Suppose it proved for n− 1, and write

f(X1, . . . , Xn) = aX2
1 + bX2

2 − g(X3, . . . , Xn).

Suppose f represents 0 in each Kv. Then there exists cv such that

aX2
1 + bX2

2 = cv = g(X3, . . . , Xn)
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has a nontrivial solution in Kv. By Lemma 2.8, there exists a finite set S such that g
represents all elements of Kv when v 6∈ S. We only need to focus on v ∈ S.

Note K×2
v is open in K×v by Theorem 20.1.5. By the Weak Approximation Theo-

rem 19.3.4, there exists c such that c ∈ cvK
×2
v for all v ∈ S. Since cv is in the form

ax2
1 + bx2

2, so is c. Then c = g(X3, . . . , Xn) has a solution for all v.
Thus

h(X,X3, . . . , Xn) := cX2 − g(X3, . . . , Xn)

represents 0 in all Kv. By the induction hypothesis, it represents 0 in K as well. Then f rep-
resents 0: if c = ax2

1 +bx2
2 then replace the solution (x, x3, . . . , xn) with (xx1, xx2, x3, . . . , xn).

This finishes the proof.
We now use Hasse-Minkowski show that most quadratic forms in n ≥ 5 variables represent

0.

Lemma 2.10: A form f = X2 − bX2 − cZ2 + acT 2 represents every nonzero element over
a local field K unless K = R and f is positive definite.

A form f in n ≥ 5 variables over K represents 0 unless K is real and f is definite.

Proof. First we show that if f does not represent 0 in K, then a, b 6∈ K×2, ab ∈ K×2, and c 6∈
NmK(

√
a) K(

√
a)× = NmK(

√
b)K(

√
b)×. If a or b is inK×2 then f clearly represents 0, so a, b 6∈

K×2. By ∼ (1) =⇒ ∼ (2) of Theorem 2.9, c 6∈ NmK(
√
a)/K(K(

√
a)×) NmK(

√
b)/K(K(

√
b)×).

If K(
√
a) 6= K(

√
b), then the norm groups are distinct groups of index 2 in K×, by the

correspondence between norm groups and extensions. Then their product must be all of
K×, a contradiction. Hence, K(

√
a) = K(

√
b) and ab ∈ K×2. Then ∼ (2) becomes simply

c 6∈ NmK(
√
a)/K(K(

√
a)×).

Conversely, suppose a, b 6∈ K×2, ab ∈ K×2, and c 6∈ NmK(
√
a)K(

√
a)× = NmK(

√
b) K(

√
b)×.

Let N := NmK(
√
a)/K(K(

√
a)×); as noted it has index 2 in K×. Then{

x2 − by2 − cz2 + act2 : x, y, z, t ∈ K not all zero
}

= {x2 − by2} − c{z2 − at2} = N − cN

where A ± B denotes {a± b : a ∈ A, b ∈ B}. Since c 6∈ N , 0 6∈ N − cN . Since N − cN is
invariant under multiplication by elements of N , it is a union of cosets of N . Suppose that
N − cN 6= K×. Then N − cN is either N or cN , and

{N − cN, cN − c2N} = {N, cN}

so
N − cN + cN − c2N = N + cN.

If −1 ∈ N , then N + cN = N − cN is cN or N , which is a contradiction because 0 is in the
LHS above. Hence −1 6∈ N . Then

(N − cN)− (cN − c2N) ∈ {N − cN, cN −N} = {N, cN}

Now c,−1 6∈ N imply −c ∈ N , so (N − cN) − (cN − c2N) = N + N + N + N ∈ {N, cN}.
We have 12 + 12 + 12 + 12 = 22 ∈ N and 32 + 42 = 52, so N + N + N + N = N and
N + N = N (as it is a union of cosets). This implies that there exists a choice of sign in
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K: K× is the disjoint union of the closed semigroups N of “positive” elements and −N of
“negative” elements. If K is p-adic then this cannot happen as we must have N ⊇ Z = K
where • denotes closure in the v-adic topology. The only possibility is K = R. Because N
consists just of positive numbers, f is positive definite. This proves the first part.

For the second part, write f(X1, . . . , Xn) = g(X1, . . . , Xn−1) − anX2
n. By the first part,

g(X1, . . . , Xn−1) represents every element of K× unless K ∼= R and g is positive definite.
(Just consider g(X1, . . . , X4, 0, . . . , 0).) In the first case, g represents an so f represents 0.
In the second case, g represents all positive reals, and f fails to represents all reals iff an is
negative, i.e. f is positive definite.

Corollary 2.11: A form f in n ≥ 5 variables represents 0 in K unless there is a real place
v with f positive definite in Kv.

Proof. This follows directly from Lemma 2.10 and the Hasse-Minkowski Theorem 2.3.

§3 Chebotarev density theorem

Definition 3.1: The density of a set of primes S in K is d if

d = lim
N→∞

|{p ∈ S | Np ≤ N}|
{p | Np ≤ N}

.

The Dirichlet density of a set of primes S in K is δ if

δ = lim
s→1+

∑
p∈S

1
Nps

ln 1
s−1

.

(Note that
∑

p
1

Nps
∼ ln 1

s−1
as s → 1+ by a weak version of the prime number theorem for

number fields.)

Note if a set of primes has density d, then it has Dirichlet density d (an exercise in
partial summation), but a set of primes having a Dirichlet density may not have a well-
defined density.

Theorem 3.2 (Chebotarev density theorem): Let L/K be a finite Galois extension of num-
ber fields, and let C be a conjugacy class G. The set of prime ideals p of K such that
(p, L/K) = C has density |C||G| .

In the special case that G is abelian, the conjugacy classes are just elements and they
occur with density 1

|G| . An especially notable case is the following.

Example 3.3 (Dirichlet): Let n ∈ N and k be relatively prime to n. Then the set

{q prime | q ≡ k (mod n)}

has density 1
ϕ(n)

.
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Indeed, Chebotarev gives that the density of q where (q, L/K) is a specific element is
1

ϕ(n)
. By Example 23.1.6, this gives that the density of q being a specific (relatively prime)

residue modulo n is 1
ϕ(n)

.

Example 3.4: If L/K is a Galois extension, then the density of primes of K splitting in L
is 1

[L:K]
.

Indeed, a prime splits completely iff (p, L/K) = 1, by Proposition 23.1.3.

3.1 Proof

We prove a weaker form of the Chebotarev Density Theorem, with Dirichlet density. We
will need the following.

Theorem 3.5 (Dirichlet’s theorem for number fields): Let K be a number field, let H be a
congruence subgroup modulo m, and let K be a class in ImK/H. The set of prime ideals p of
K such that p ∈ K has density 1

[ImK :H]
.

Proof. See Lang [18, VIII. §4] for the proof with Dirichlet density.

In the proof below, we use “density” to mean “Dirichlet density.”

Proof of Chebotarev Density Theorem 3.2. We can’t deal with nonabelian extensions directly,
so the idea is to reduce to the abelian case as follows. Consider L/Lσ; this is cyclic. A prime
P in L with (P, L/K) = σ descends to a prime P′ such that (P′, L/Lσ) = σ|Lσ . Since L/Lσ

is abelian, these primes P′ are characterzed by a modular condition, and we can find their
density using Theorem 3.5. Then we will relate the density of primes with (p, L/K) = C to
the density of primes with (P, L/K) = σ.

L

Lσ

K

SL,σ
1:1

SL′

S

1: N
|C|f

Let
S = {p : (p, L/K) = C} .

Note that fixing σ ∈ C, p ∈ S iff there exists P | p in L such that (P, L/K) = σ.
Suppose σ ∈ C has order f . Then L/Lσ is a cyclic extension of degree f . Let c be the

conductor of this extension. The Artin map gives an isomorphism

I cLσ/H
∼=−→ G(L/Kσ)

for some congruence subgroup H.
Let SL,σ be those primes in L whose Frobenius element is σ:

SL,σ = {P : (P, L/K) = σ} .
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(Note that
⋃
σ∈C SL,σ gives all primes above those in S.) Let SL′ be those primes in L′ := Lσ

below a prime in L′:

SL′ = {P ∩ Lσ : P ∈ SL,σ} .

We have a bijection SL,σ ∼= SL′ by P 7→ P ∩ Lσ, because σ generates the decomposition
group DL/K(P), and L/LDL/K(P) has no splitting.

Now the density depends only on primes of degree 1 over Q. Since H is a subgroup of
index f in I cLσ , by Theorem 3.5, SL′ has density 1

f
.

Given p such that (p, L/K) = C, how many primes P above p satisfy (P, L/K) = σ?
Choose P0 above p. The primes above p are τP for τ ∈ G(L/K). Each prime is hit
|DL/K(P)| = f times. Now we have (τP0, L/K) = σ iff

τ(P0, L/K)τ−1 = σ.

The number of such τ is equal to the order of the stabilizer of the conjugation action (i.e.
the number of elements commuting with τ) which is N divided by the number of elements
in an orbit, i.e. N

|C| . Hence the number of P lying above p with (P, L/K) = σ is

N/|C|
f

=
N

|C|f
.

The density of SL,σ is 1
f
. Now every N

|C|f good primes in L correspond to 1 good prime down
below, so we get the desired density to be

1/f

N/(|C|f)
=
|C|
N
.

3.2 Applications

Often, we will need Chebotarev just for the existence of infinitely many primes with (p, L/K) =
C, or just for the existence of a prime after we exclude a set of zero density. Here is a typical
application.

Corollary 3.6: Let K be a number field. There exist infinitely many primes p of Q such
that there is a prime p | p of K with (p, L/K) = C and Np = p.

Proof. Chebotarev’s Theorem 3.2 says there is a positive Dirichlet density of primes p with
(p, L/K) = C. The Dirichlet density of primes p with residue degree greater than 1 is 0,
because a sum of terms of the form 1

pfs
with f ≥ 2 converges. Hence infinitely many primes

must remain.

Definition 3.7: For two sets S, T , we write S
⊂∼ T to mean S ⊆ T ∪ A for some finite set

A, i.e. we have inclusion except for finitely many elements. We write S ≈ T if S
⊂∼ T and

S
⊃∼ T .
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Definition 3.8: Define

Spl(M/K) = {p prime of K splitting completely in M}.

S̃pl(M/K) = {p prime of K unramified in M, f(P/p) = 1 for some P in M}.

If p is unramified in K and f(P/p) = 1, we say that P is a split factor of p.

Note S̃pl(M/K) = Spl(M/K) if M/K is Galois.
The following says that the primes that split in a Galois extension characterize the

extension uniquely, as well as giving inclusions between extensions.

Theorem 3.9: Let L/K and M/K be finite field extensions.

1. If L/K is Galois, then L ⊆M iff S̃pl(M/K)
⊂∼ Spl(L/K).

2. If M/K is Galois, then L ⊆M iff Spl(M/K)
⊃∼ Spl(L/K).

3. If L/K and M/K are Galois, then L = M if and only if Spl(M/K) ≈ Spl(L/K).

In (1) and (2), inclusions actually hold.

Proof.

1. Suppose L ⊆ M , and p ∈ S̃pl(M/K). Say that P | p and f(P/p) = 1. Let P′ =
P ∩ OK . Then f(P′/p) = 1. Additionally, e(P/p) = 1 implies e(P′/p) = 1. Since
L/K is Galois, the ramification indices and residue field degrees are equal for all primes

above p. Hence S̃pl(M/K)⊆ Spl(L/K).

Conversely suppose S̃pl(M/K)
⊂∼ Spl(L/K). LetN/K be a Galois extension containing

L and M . It suffices to show G(N/M) ⊆ G(N/L); then Galois theory gives M ⊇ L.

Take any σ ∈ G(N/M). By Chebotarev Density 3.2, there exist infinitely many primes
p in K such that (p, N/K) = [σ]. For such a prime p, let P be a prime lying above p
in N such that (P, N/K) = σ and let P′ = P ∩ OM . For such a prime we have

α ≡ σ(α) ≡ αNp (mod P′), α ∈ OM .

The left equality holds because σ fixes M and the right equality holds by definition of
(P, N/K). Hence OM/P′ ⊆ FNp = OK/p, and equality must hold. In other words,

f(P′/p) = 1. Hence p ∈ S̃pl(M/K). Since S̃pl(M/K)
⊂∼ Spl(L/K), we can take p such

that p ∈ Spl(L/K) as well. Then σ|L = 1 hence G(N/M) ⊆ G(N/L) and M ⊇ L.

2. Suppose L ⊆M . Then any prime splitting completely in M splits completely in L, so
Spl(M/K) ⊆ Spl(L/K).

Conversely suppose Spl(M/K)
⊂∼ Spl(L/K). Let Lgal be the Galois closure of L. Since

M/K is Galois, S̃pl(M/K) = Spl(M/K); we also have Spl(L/K) = Spl(Lgal/K) (Any
prime splitting completely in L splits completely in the Galois closure, by exercise 2 in
14.8). Thus

S̃pl(M/K) ⊆ Spl(Lgal/K)

and we can apply part 1 to get Lgal ⊆M ; a fortiori L ⊆M .
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3. Apply part 2 twice.

§4 Splitting of primes

4.1 Splitting of primes

Theorem 4.1: Let L/K be an extension of number fields.

1. If Lgal/K is abelian, then there is a modulus m and a congruence subgroup modulo m
such that

Spl(L/K) = {prime p ∈ H}.

2. If there exists K ∈ CK(m) = ImK/PK(1,m) such that

{prime p : p (mod PK(1,m)) = K} ⊂∼ Spl(L/K),

(i.e. all but finitely many primes satisfying a certain modular condition split) then
Lgal/K is abelian.

In other words the law of decomposition of primes in an extension L/K is determined by
modular conditions iff L/K is an abelian extension.

Proof. 3 As Spl(L/K) = Spl(Lgal/K), it suffices to consider L/K Galois.

Part 1: By global class field theory, the kernel of the Artin map ImK → G(L/K) is a congruence
subgroup H. But we have by Proposition 23.1.3 that p splits completely iff ψL/K(p) =
(p, L/K) = 1. Hence

H = ker(ψL/K) = Spl(L/K).

Part 2: Let Km be the ray class field of K modulo m and M = LKm. There is a natural map

p = p1 × p2 : G(M/K) ↪→ G(Km/K)×G(L/K)
∼=−→ CK(m)×G(L/K)

where the second map is given by ψ−1
L/K in the first component.

For all but finitely many primes, we have the following string of facts.

1. p ∈ K.

2. p ∈ Spl(L/K).

3. (p, L/K) = 1.

4. For any prime P | p in M , p((P,M/K)) = (K, 1).

3This proof is from http://mathoverflow.net/questions/11688.
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(1) =⇒ (2) is by assumption, (2) ⇐⇒ (3) is Proposition 23.1.3, and (3) ⇐⇒ (4) is
by compatibility of the Frobenius elements (the map G(M/K) → G(Lm/K) × G(L/K) is
compatible with the map on residue fields G(m/k)→ G(km/k)×G(l/k)).

Suppose σ ∈ G(M/K) and p(σ) = (K, g). By Chebotarev’s Theorem there exist primes
P | p in M and K, respectively, such that (P,M/K) = σ. But (1) =⇒ (4) shows that
g = 1. Hence

p(G(M/K)) ∩ (K, G(L/K)) = {(K, 1)}.
Since p is a group homomorphism that is surjective in the first component, p(G(M/K)) ∩
(K′, G(L/K)) must consist of 1 element for every K′, in particular for K′ = 1. Thus if
p(σ) = (PK(1,m), g), then g = 1. Given a prime p splitting completely in Km, i.e. p such
that p ∈ PK(1,m), take any P | p in M . Then p(P,M/K) = (PK(1,m), g) for some g, so
g = 1 and

(p, L/K) = (P,M/K)|L = p2(P,M/K) = g = 1,

i.e. p splits completely in L. Thus Spl(Lm/K)
⊂∼ Spl(L/K), showing by Theorem 3.9 that

L ⊆ Lm.

For nonabelian extensions, the set of primes that split has to be specified by more than
just a modulo condition.

Example 4.2: We show that a prime splits completely in Q(ζ3,
3
√

2) iff p ≡ 1 (mod 3) and
p is in the form x2 + 27y2.

Note that Q(ζ3,
3
√

2) is the splitting field of x3− 2 = 0. For an unramified prime, p splits
completely iff the residue field extension has degree 1, i.e. x3 − 2 splits completely in Fp.
This is true iff 2 is a cubic residue modulo p. As we saw in Theorem 1.14, this is true iff p
is of the form x2 + 27y2.

4.2 Roots of polynomials over finite fields

We can recast the problem of splitting behavior in terms of finding roots of univariate
polynomials over finite fields. Let L/K be a finite extension, and f ∈ OK [X] be the minimal
polynomial of a primitive element in L/K. Then Theorem 14.6.3 tells us that for a prime p
relatively prime to the conductor of L/K, the factorization of f in OK/p corresponds to the
factorization of p. In particular, p splits completely iff f splits completely, and p has a split
factor iff f has a root in OK/p.

Definition 4.3: Let Np(f) denote the number of zeros of f in OK/p.

Thus we can rephrase Theorem 4.1 as follows.

Theorem 4.4: Let f be an irreducible polynomial over K. Let α be a root of f and L be
the Galois closure of K(α).

1. For all except a finite number of primes, Np(f) = m iff ψL/K(p) = [σ] for some
σ ∈ G(L/K) fixes m of the roots of L.

2. The sets {p : Np(f) = m} are given by modular conditions iff L/K is abelian.
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3. The density of primes p such that Np(f) = m is {σ∈G(L/K):σ fixes m roots}
[L:K]

.

Proof. The first item follows from Theorem 14.6.3. The second item follows from this and
Theorem 4.1. The third item follows from the Chebotarev Density Theorem 3.2.

Even the reciprocity laws (at least, weak reciprocity) can be put in the same framework:
in a field K containing nth roots of unity, a is a perfect nth power modulo p iff xn − a
splits completely modulo p (the polynomial viewpoint), i.e. the prime p splits completely in
K( n
√
a)/K (the splitting viewpoint).

§5 Hilbert class field

Definition 5.1: The Hilbert class field of K is the largest abelian field extension of K
unramified over K at all places. (For infinite places this means that no real embedding
becomes complex.) It is denoted HK .

The large Hilbert class field of K is the largest abelian field extension of K unramified
over K at all finite places, with no restrictions for infinite places (i.e. they are allowed to
ramify). It is denoted H+

K .

Note if K is already totally complex then HK = H+
K .

Proposition 5.2: The Hilbert class field and large Hilbert class field exist, and the global
reciprocity map gives isomorphisms

G(HK/K) ∼= CK

G(H+
K/K) ∼= C+

K .

Proof. The Hilbert class field is exactly the ray class field corresponding to the modulus 1,
and the narrow Hilbert class field is exactly the ray class field corresponding to the modulus
m =

∏
v real v. Indeed, by global class field theory the fields corresponding to congruence

subgroups of CK(1) are just the fields unramified over K, and the fields corresponding to
congruence subgroups of CK(m) are just the fields unramified at every infinite place.

The global reciprocity map gives the desired isomorphisms.

The most interesting property of the Hilbert class field is the following.

Theorem 5.3: Let K be a global field. Every fractional ideal of K becomes principal in
the Hilbert class field L of K.

Proof. Let M be the Hilbert class field of L. By Proposition 5.2, the global reciprocity map

gives CK
∼=−→ G(L/K) and CL

∼=−→ G(M/L). We will transfer the map CK → CL to the Galois
groups. By definition, L is the maximal unramified abelian extension of K; since M is also
unramified over K, L is the maximal abelian subextension of M/K. But by Galois theory,
intermediate Galois extensions correspond to quotient groups of G(M/K). This means that

G(L/K) = G(M/K)/G(M/L)
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is the largest abelian quotient of G(L/K). From group theory this means that G(M/L) is
the derived subgroup (G(L/K))′.

The following diagram commutes by compatibility of the Artin map (the last diagram in
Theorem 26.4.10 together with Theorem 27.5.1)

CK
φL/K

∼=
//

��

G(L/K)ab

V
��

CL
φM/L

∼=
// G(M/L)ab

where V is the transfer.
However, the transfer map is 0 by Theorem 24.11.13 and the fact that G(M/L) =

G(L/K)′. Hence the map CK → CL is trivial, i.e. every fractional ideal of K becomes
trivial in L.

§6 Primes represented by quadratic forms

We now give a complete characterization of which primes can be represented by which binary
(positive definite integral) quadratic forms. First consider the form x2 + ny2.

A prime is in the form p = x2 + ny2 iff p splits as pp = (x+ y
√
n)(x− y

√
n) in Z[

√
−n],

with its factors being principal ideals. We can think of this as saying that p goes to 0 in
the ideal class group of Z[

√
−n]. Unfortunately, this is not the same class group as CK .

However, this class group is essentially a quotient of a ray class group (Theorem 16.6.2).
But by class field theory, we can find a field extension L such that the Artin map to G(L/K)
is an isomorphism. The primes in the kernel of the Artin map are exactly those that split
completely in L, so this relates the equation x2 +ny2 to the splitting of primes in the Hilbert
class field.

Definition 6.1: Let O be an integral quadratic order and f := disc(O).

1. Suppose f < 0. The field L corresponding to the congruence subgroup

PK(Z, f) := {(a) ∈ IK(f) : a (mod f) ∈ Z (mod f)} ⊆ IK(f)

is called the ring class field of O.

2. Suppose f > 0. The field L corresponding to the congruence subgroup

PK(Z,∞f) := {(a) ∈ IK(f) : a (mod f) ∈ Z (mod f)} ⊆ IK(f)

is called the ring class field of O.

The reason for this definition is that IK(f)/PK(Z,∞f) ∼= I(O)/P+(O) = C+(O) via
the map a 7→ a ∩ O, by Theorem 16.6.2. (Ignore the ∞ when K is imaginary; in this case
C+(O) = C(O).)
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Example 6.2: When O = OK , with K/Q a quadratic extension, then the ring class field is
just the large Hilbert class field of K, because I(O)/P+(O) = C+

K .

Theorem 6.3: Let n ≥ 1. Let Q be a quadratic form that corresponds to a ⊆ R under
the Gauss correspondence 16.5.1, let K = Frac(R), and let p be an odd prime not dividing
f := disc(R). Let b be the ideal corresponding to a under the map IK(f)/PK(Z,∞f) →
I(O)/P+(O) = C+(O). Let L be the ring class field of R and suppose (L/K, b) = σ. Then

f represents p ⇐⇒ (L/Q, p) = [σ]

where [σ] denotes the conjugacy class of σ in G(L/Q).

Proof. Let K = Q(
√
−n). We have the following string of equivalences.

1. Q represents p.

2. pR = pp in R for some ideal p in the same ideal class as a.

3. pOK = pp for p ∼ b where the ideals are considered in IK(f)/PK(Z,∞f).

4. pOK = pp for (L/K, p) = σ.

5. (L/Q, p) = [σ].

The equivalence (1) ⇐⇒ (2) follows from Proposition 16.5.4. We have (2) ⇐⇒ (3) by
Theorem 16.6.2, which gives an isomorphism IK(f)/PK(Z,∞f) → I(O)/P+(O) = C+(O)
by sending a to a ∩ O. By definition of ring class field, the Artin map is an isomorphism
IK(f)/PK(Z,∞f)→ G(L/K), so (3) ⇐⇒ (4).

For (4) ⇐⇒ (5), note by definition of the Artin symbol that (4) is equivalent to

p splits in OK and σ(α) ≡ α|k| (mod P) for all α ∈ L

where P is any prime dividing p in L. Since p is unramified, p splits in OK iff [k : Fp] = 1,
iff |k| = p. Hence the above is equivalent to

σ(α) ≡ αp (mod P)

This says exactly that (L/Q, p) = [σ].

Corollary 6.4: Suppose n 6= 0 is an integer.

1. Let L be the ring class field of Z[
√
−n]. Then p can be represented as

p = x2 + ny2, x, y ∈ Z

if and only if p splits completely in L.

2. For −n ≡ 1 (mod 4), let L′ be the ring class field of Z
[

1+
√
−n

2

]
. Then p can be

represented as

p = x2 + xy +
1− n

2
y2

iff p splits completely in L′.
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Remark 6.5: It is not hard to show that we can replace the conditions by the following
uniform statement: 4p can be represented as 4p = x2 + dy2 iff p splits completely in the
order of discriminant −d.

Proof. These quadratic forms correspond to the principal ideals in Z[
√
−n] and Z

[
1+
√
−n

2

]
,

respectively (Example 16.5.3), so the theorem says p can be represented by the quadratic
forms iff

(L/K, p) = 1.

This is true iff p splits completely in L (Proposition 23.1.3).

How is this useful? Algorithmically, there are fast ways to find solutions to p = x2 + ny2

(Cornacchia’s algorithm), so we can obtain primes splitting completely in the Hilbert class
field HK . This means that the minimal polynomial of HK/K factors completely modulo p.
As we will in Chapter 39, the roots are the j-invariants of CM elliptic curves; the fact that
they are in Fp gives us an easy way to calculate the action of the class group on elliptic
curves.

Additionally, this description of solutions to p = x2 + ny2 gives a way to find the density
of primes represented by a quadratic form.

Theorem 6.6: Let Q be a primitive positive definite quadratic form of discriminant D < 0,
and let S be the set of primes represented by Q. Then the density of primes d(S) represented
by S is

d(S) =

{
1

2h(D)
, Q properly equivalent to its opposite,

1
h(D)

, else,

where h(D) is the class number of the quadratic ring with discriminant D. In particular, Q
represents infinitely many prime numbers.

Note “Q properly equivalent to its opposite” is equivalent to saying that the ideal class
corresponding to Q has order dividing 2.

Example 6.7: h(−27) = 3 so 1
6

of all primes can be represented by the form x2 + 27y2.

In fact, the ring class field of Z[
√
−27] is Q(ζ3,

3
√

2), so p = x2+27y2 iff p splits completely
in Q(ζ3,

3
√

2). This shows Example 4.2 in a different way.

Proof of Theorem 6.6. Let K be the quadratic field of discriminant D.
By Theorem 6.3, p is represented by Q iff (L/Q, p) = [σ] where L is the ring class field

of the order corresponding to Q and Q corresponds to σ under the Gauss correspondence.
We need to find [σ], so we first need to understand G(L/Q).

Since C(O) ∼= IK(f)/PK(Z, f) ∼= G(L/K) via the Artin map,

[L : K] = |C(O)| = h(D) =⇒ [L : Q] = 2h(D).

Next we show G(L/Q) = G(L/K) o G(K/Q) where, denoting complex conjugation by
σ ∈ G(K/Q), we have στσ−1 = τ−1 for all τ ∈ G(L/K). Let m be the modulus corresponding
to fOK , where f is the conductor. By construction of L, it is the unique field such that
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ker(ψL/K) = PK(Z, f). However, because the Artin map commutes with Galois action (see
the third diagram in Theorem 4.10),

ker(ψσ(L)/K) = σ ker(ψL/K) = σPK(Z, f) = PK(Z, f).

Uniqueness hence gives σ(L) = L, i.e. σ ∈ L. Hence |G(L/Q)| = 2|G(L/K)| = [L : Q],
giving that L/Q is Galois. Given τ ∈ G(L/K), by surjectivity of the Frobenius map 27.2.8,
τ = (L/K, p) for some p. Then by Lemma 23.1.2,

στσ−1 = σ(L/K, p)σ−1 = (L/K, σp) = (L/K, p) = (L/K, p)−1 = τ−1,

as needed.
From the structure of G(L/Q), we see that the conjugacy class of any element σ is

{σ, σ−1}. By the Chebotarev density theorem 23.3.2, the density of primes such that
(L/Q, p) = [σ] = {σ, σ−1} is hence

|[σ]|
[L : Q]

=

{
1

2h(D)
, σ = σ−1,

1
h(D)

, else,

as needed.

§7 Introduction to the Langlands program

In this section, we’ll give the big picture, and be content with morally, rather than mathe-
matically correct, statements.

Much of modern number theory is occupied with the relationship between the following
three objects.

1. Algebraic varieties, i.e. polynomial equations.

2. Galois representations, i.e. continuous functions from G(K/K) to algebraic groups
such as GLn(C).

3. Automorphic forms, i.e. continuous functions defined on an algebraic group on the
ideles, such as GLn(AK), and satisfying certain conditions.

The relationship between Galois representations and automorphic forms is known as the
Langlands correspondence. More precisely, there is a conjectural correspondence

cuspidal automorphic
representations of GLn(AK)

algebraic at ∞

↔


irreducible continuous
G(K/K)→ GLn(C)

algebraic at `
.


We can define L-series from both Galois representations and automorphic forms. L-series

from Galois representations arise more naturally in number theory (because it is relatively
easy to go from algebraic varieties to Galois representations), but as automorphic forms are
analytic objects, L-series of automorphic forms are known to satisfy more properties. The
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Langlands correspondence allows us to show that L-series of Galois representations arise
from automorphic forms, hence have nice analytic properties as well. This allows us to prove
various results about algebraic varieties, such as density theorems on the number of solutions
over finite fields, for example the Sato-Tate conjecture.

We first give some more precise definitions, then describe this relationship in the 1-
dimensional abelian case (which we have in fact proved!), and then give an overview of how
it generalizes.

7.1 Definitions

Definition 7.1: Let k be a topological field (for instance, C or Q`), and let V ∼= kn be a
n-dimensional vector space over k. A n-dimensional Galois representation of K over k is
a continuous homomorphism

ρ : G(Ks/K)→ GL(V ) = GLn(k).

Let p be a prime of K. We say ρ is unramified at p if Ip(K
s/K) ⊆ ker(ρ).

Let K be a number field. Let Frob(p) be a Frobenius element of p in Kp (defined in
G(Kp/Kp) up to I(Kp/Kp)). Define the (modified) characteristic polynomial of ρ at p
to be

Pρ(X) := det(1−X · ρ(Frob(p))|V I(Kp/Kp)).

(Here, V I(Kp/Kp) denotes the subspace of V fixed by the inertia group. Pρ(X) is well-defined
because Frob(p) is defined up to I(Kp/Kp), and I(Kp/Kp) ⊆ ker(ρ|

V I(Kp/Kp)). In particular,

if ρ is unramified at p, then V = V I(Kp/Kp).)

We can now define the L-function associated to a Galois representation.

Definition 7.2: In the above, suppose V is a complex vector space and K is a number field.
The local L-factor at a prime p is

Lp(ρ, s) = Pρ(Np−s)−1.

The Artin L-function of ρ is4

L(ρ, s) =
∏
p

Lp(ρ, s).

We have the following conjecture.

Conjecture 7.3 (Artin’s conjecture): Every Artin L-function has analytic continuation to
C and satisfies a functional equation.

7.2 Class field theory is 1-dimensional Langlands

For a different take on some of these ideas, with concrete examples, see Dalawat [?].

4Sometimes infinite places are included. The factors at infinite places take more thought to define so we
exclude them here.
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Galois representations are automorphic representations

We rephrase global class field theory in the form that generalizes under the Langlands pro-
gram.

Theorem 7.4 (Rephrase of GCFT): There is a bijection between continuous homomor-
phisms χ : A×K/K×(K×∞)0 → C× and continuous homomorphisms ρ : G(K/K) → GL1(C),
given by the following.

{χ : A×K/K×(K×∞)0 → C×} ↔ {ρ : G(K/K)→ GL1(C)}
χ 7→ χ ◦ φ−1

K

Proof. From Theorem 23.6.5, the Artin map gives a topological isomorphism A×K/K×(K×∞)0 →
G(Kab/K). It remains to note that any function G(K/K) → GL1(C) factors through
G(K/K)ab = G(Kab/K), since GL1(C) is abelian.

The functions on the left side have a special name.

Definition 7.5: A Hecke character is a continuous homomorphism A×K/K×(K×∞)0 → C×,
or equivalently, a homomorphism

χ : CK → S1 := {x ∈ C : |x| = 1}

with finite image. The conductor of χ is the smallest modulus m such that χ factors
through A×K/K×UK(1,m) ∼= CK(m).

The homomorphisms χ : A×K/K×(K×∞)0 → C are “automorphic functions” on GL1(AK),
a.k.a. Hecke characters, and the homomorphisms ρ : G(K/K)→ GL1(C) are 1-dimensional
“Galois representations.” Our correspondence is unsatisfactory, however, because we would
like to get all continuous homomorphisms A×K/K× → C×, not just those factoring through

A×K/K×(K×∞)0. Since G(Kab/K) has the profinite topology, any continuous homomorphism
G(K/K)→ GL1(C) must have finite image, while functions A×K/K× → C× can have infinite
image. To remedy this, we introduce functions G(K/K)→ GL1(C) with infinite image (no
longer continuous under the complex topology).

For simplicity, we just consider the case of Q.

Example 7.6: We say a function π : A×Q/Q× → C is algebraic at ∞ if π(iR(x)) =
sign(x)m|x|n for some m ∈ {0, 1} and n ∈ Z. We characterize all the continuous homomor-
phisms π : A×K/K× → C× (“Grössencharacters”) that are algebraic at ∞.

It is enough to introduce 1 more character. Let ` be a prime of Q. Let | · | : A×Q/Q× → C×
denote the map |x| =

∏
v∈VQ |xv|v, and define χ` by

χ` : G(Q/Q) // // G(Qab/Q) = G(Q(ζ∞)/Q)
∼= // Ẑ× =

∏
p Z×p // // GL1(Z`).

(We say χ` is “algebraic at `.” Note there is a noncanonical field isomorphism Q`
∼= C, so

we can think of GL1(Z`) as being “inside” GL1(C).)
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Every continuous homomorphism π : A×K/K× → C× algebraic at ∞ is in the form
| · |n · χ, where χ is a Hecke character. We can extend the correspondence in Theorem 7.4
by associating | · | with χ`:

π = | · |n · χ↔ χn` · (χ ◦ φ−1
K )

where the right-hand side is now viewed in Q` instead of C.

Artin L-functions are Hecke L-functions

Associated to each Hecke character is a L-function.

Definition 7.7: Let χ be a Hecke character and m be the conductor of χ. The L-function
associated to χ is

L(χ, s) :=
∏
p-m

1

1− χ(p)Np−s
.

Because χ admits a modulus, Hecke L-series have nice analytic properties.

Theorem 7.8 (Hecke, Tate): Every Hecke L-series admits an analytic continuation to C
and satisfies a functional equation.

For the details, see Tate’s thesis in [8].

Theorem 7.9: Any 1-dimensional Artin L-function is a Hecke L-function. Hence it has
analytic continuation and satisfies a functional equation.

Proof. Let ρ : G(K/K) → GL1(C) be a 1-dimensional representation. By Theorem 7.4,
ρ(Φp) = χ(p) for some Hecke character χ : A×K/K× → C×. Let m be the modulus of ρ; note
it is also the conductor for χ. Then

L(ρ, s) =
∏
p-m

1

1− ρ(Φp)Np−1
=
∏
p-m

1

1− χ(p)Np−s
= L(χ, s).

This theorem is another way of saying that the Artin map factors through a modulus,
and this is basically what allowed us to get all the density results in this chapter.

Algebraic varieties and Galois representations

We give examples of how to get Galois representations from algebraic varieties.

First consider the variety Q× =
{
x ∈ Q : x 6= 0

}
. It is a group under multiplication,

and the torsion points Q×[m] are exactly the roots of unity µm. We can define a Galois
representation by considering the action of G(Q/Q) on the l-power roots of unity. Define

the Tate module of Q× by

T`(Q
×

) = lim←−
n

Q×[`n] = lim←−
n

µ`n ∼= Z`.
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Then G(Q/Q) acts naturally on T`(Q
×

) so we get a representation

ρ : G(Q/Q)→ Aut(T`(Q
×

)) ∼= Aut(Z`) ↪→ GL1(Q`)

sending the element φQ(p) to p. The corresponding L-function is just a translate of the ζ
function, missing the factor `:

∏
p 6=`

1
1−p1−s . This construction is a good analogy for what

we will eventually do with elliptic curves, although it is a bit too “trivial” to capture any
significant number theory facts.

We give another example, with equations in 1 variable, which is a bit less natural but
show more of the number theory. Consider the variety defined by f(X) = 0 where f ∈ K[X]
is a irreducible polynomial. Let α be a root, and L be the Galois closure of K(α) over
K. Let α1, . . . , αn be the roots of f in L. G(K/K) acts by permuting the αi, so we get
a representation G(K/K) → Sn. We can embed Sn in some general linear group, to get
ρ : G(K/K) → GLm(k) for some k. Then to find how many roots f has modulo p, we can
look at the trace of ρ(Frob(p)).

For example, consider f(X) = X3−X−1 over Q. We get a representation ρ : G(K/K)→
S3 → GL2(C), where we embed S3 ↪→ GL2(C) as follows: we have a natural permutation
representation S3 ↪→ GL3(C); now take out the trivial representation to get S3 ↪→ GL2(C).
From this description we have Np(f) = Tr(ρ(Frob(p))) + 1, so we can get the number of
solutions of X3 −X − 1 ≡ 0 (mod p) from looking at the trace of Frobenius. Constructing
the L-function, the trace of Frobenius becomes the coefficient of 1

ps
. Now ρ comes from

an automorphic form, so L comes from a 2-dimensional automorphic form, i.e. a modular
form. We can write this modular form explicitly using theta functions or as an eta quotient.
At the end of the day, we have this striking fact: For p 6= 23, the number of solutions of
X3 −X − 1 ≡ 0 (mod p) is Np(f) = ap + 1, where ap is the coefficient of the modular form

q
∞∏
k=1

(1− qk)(1− q23k) =
1

2

∑
(x,y)∈Z2

(qx
2+xy+6y2 − q2x2+xy+3y2

) =
∞∑
n=1

anq
n.

(See Serre’s article [?].) In this example we have traced out a relationship

(algebraic variety)→(Galois representation)→(automorphic form).

7.3 Elliptic curves and 2-dimensional Langlands

Galois representations and automorphic representations

Definition 7.10: A 2-dimensional automorphic form is a continuous function GL2(Q)\GL2(AQ)
satisfying certain conditions.

A large class of 2-dimensional automorphic forms can be related to modular forms. A
holomorphic function f(z) : H → C is a modular function of weight k for a congruence
subgroup Γ ⊆ GL2(Z) if

f(γz) = (cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ.
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If Γ = Γ0(N) :=

{
M ∈ SL2(Z) : M ≡

(
∗ ∗
0 ∗

)
(mod N)

}
, we say f is of level N . Here H

denotes the upper half-plane {z : =(z) > 0} and γz = az+b
cz+d

.
A modular function is a modular form if it is holomorphic at cusps of H∗ = H∪P1(Q).

A cusp form is a modular form that vanishes at the cusps.

There is a way to go from modular forms to Galois representations; this is better under-
stood than going in the opposite direction. One of the biggest theorems in the 2-D case is
Serre’s conjecture, now a theorem, that tells us that we can go from Galois representations
to modular forms in certain cases.

Definition 7.11: We say a Galois representation is modular if there exists a cusp form f
of some level N and a finite set S such that

f =
∞∑
n=1

anq
n, Tr(ρ(Frob(p))) = ap for p 6∈ S.

Theorem 7.12 (Serre’s conjecture; Khare, Wintenberger): Any irreducible odd Galois rep-
resentation ρ : G(Q/Q)→ GL2(Fp) is modular.

Elliptic curves and Galois representations

Given an elliptic curve, we can define a Galois representation by looking at its torsion points.

Definition 7.13: Let E be an elliptic curve over a number field K. It is known that the
m-torsion points E[m] over K satisfy

E[m] ∼= Z/m× Z/m.

(See Silverman [31, III.6.4].)
Define the `-adic Tate module of E by

T`E := lim←−
n

E[`n] ∼= Z2
` .

As G(K/K) acts on E[`n] for each n, it acts on T`E, so we get a map

G(K/K)→ AutT`E = GL2(Z`) ↪→ GL2(Q`),

called the `-adic Galois representation of E.5

Thus we can define the L-series of an elliptic curve, by defining it as the L-series of the
corresponding Galois representation. (Roughly speaking, this definition is independent of

5Alternatively, let V`E := T`E ⊗Q and consider G(K/K) as acting on V`E.
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the choice of `.) We’ll flesh out this definition in Section 39.7. Thus we have the (tentative)
correspondences

(Elliptic curves) 99K (Galois representations) 99K (cusp forms) (28.10)

(L-series of elliptic curve) 99K (L-series of modular form). (28.11)

Again, more is known about L-series of modular forms since modular forms have nice ana-
lytic properties and transformation properties. The theory of Jacquet-Langlands establishes
analytic continuation and functional equations for L-series coming from modular forms.

This relationships in (28.10) and (28.11) are involved in the proof of two big theorems.

1. We now know the dotted lines in (28.10) are true, thanks to the following.

Theorem 7.14 (Modularity Theorem; Taniyama-Shimura-Weil): All elliptic curves
are modular.

The heart of this proof is in showing that the Galois representations associated to the
elliptic curves come from modular forms. This theorem (or rather, its earlier version
with semistable elliptic curves) is what allowed the proof of Fermat’s last theorem:
there is no nontrivial solution to an + bn = cn for n > 2. A nontrivial solution would
give rise to an elliptic curve associated to a modular form that does not exist.

2. By working with L-functions of the elliptic curves, and reinterpreting them as L-
functions of certain automorphic forms as in (28.11), one can prove the following.

Theorem 7.15 (Sato-Tate conjecture; Barnet-Lamb, Geraghty, Harris, Taylor): Let
E be an elliptic curve without complex multiplication, and let E(Fp) denote the set of
solutions to E over Fp. The density of primes p with |E(Fp)| ∈ [p+1+a

√
p, p+1+b

√
p],

for −1 ≤ a ≤ b ≤ 1 is

d({p : |E(Fp)| ∈ [p+ 1 + a
√
p, p+ 1 + b

√
p]}) =

2

π

∫ b

a

√
1− x2 dx.

By the correspondence between elliptic curves and modular forms, another way to
phrase this theorem is that the distribution of coefficients of certain modular forms is
the same “semicircle” distribution.

This theorem is like the elliptic curve analogue of the Dirichlet’s theorem on the dis-
tribution of primes in congruence classes.

§8 Problems

3.1 (from Serre, [?]) Using Chebotarev’s Density Theorem, prove the following.

Theorem: Let f ∈ Z[X] be an irreducible polynomial of degree n ≥ 2. Let Np(f)
denote the number of zeros of f in Fp. Then the set P0(f) of primes with Np(f) = 0
has a density c0(f). Moreover, c0(f) ≥ 1

n
, with strict inequality if n is not a prime

power.
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You may use the following theorem from group theory.

Theorem (Jordan): Let G is a group acting transitively on a finite set S with n ≥ 2
elements. There exists g ∈ G having no fixed point in S. If n is not a prime power,
then there exist at least 2 such g.

3.2 (All primes divide some coefficient of ∆) Let ` be a given prime, and K` be the maximal
extension of Q ramified only at `. Given that there is a continuous homomorphism
(a.k.a. Galois representation)

ρ̃` : G(K`/Q)→ GL2(F`)

such that
Tr(ρ̃`(FrobK`/Q(p))) = τ(p)

for all p 6= `, and that there is an element in im(ρ̃`) with trace 0, prove that a positive
proportion of primes p have the property that

` | τ(p).

Note. Here τ is Ramanujan’s tau function, the coefficients of a certain modular form
∆. For more on the relationship between Galois representations and congruences for
coefficients of modular forms, see Birch and Swinnerton-Dyer [?].

4.1 In Section 4, we showed that L/K is abelian iff the primes that split can be character-
ized by a modular condition. In this problem, we do more: given a Galois extension
L/K, characterize the maximal abelian subextension by looking at the primes that
split.

(a) Let m be a modulus for K, and suppose L/K is a Galois extension. Let Hm be
the subset of the ray class field CK(m) defined as follows:

Hm = {K : There exists p ∈ K such that p splits completely in L} .

Show that Hm is a subgroup of CK(m).

(b) Suppose we are given the groups Hm for all m. Characterize the maximal abelian
subextension of L/K.

6.1 Prove an analogue of Theorem 6.6 for positive discriminants.
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Chapter 29

Elementary estimates for primes

§1 Chebyshev’s Theorem

Today we prove some asymptotic results about the distribution of prime numbers. Specifi-
cally, we derive estimates for the prime-counting functions

ϑ(x) =
∑
p≤x

ln(p)

ψ(x) =
∑
pk≤x

ln(p)

π(x) =
∑
p≤x

1

Note that we will always use p to denote a prime.
Lacking the tools of complex analysis, it is difficult to find the exact asymptotic formulas;

however, our elementary methods suffice to determine the asymptotics up to a constant
multiple. Our main result is Chebyshev’s Theorem:

Theorem 1.1: [?, Theorem 6.3] There exist positive constants c1 and c2 such that

c1x ≤ ϑ(x) ≤ ψ(x) ≤ π(x) ln(x) ≤ c2x. (29.1)

for all x ≥ 2. Moreover,

lim inf
x→∞

ϑ(x)

x
= lim inf

x→∞

ψ(x)

x
= lim inf

x→∞

π(x) ln(x)

x
≥ ln(2) (29.2)

lim sup
x→∞

ϑ(x)

x
= lim sup

x→∞

ψ(x)

x
= lim sup

x→∞

π(x) ln(x)

x
≤ 2 ln(2) (29.3)

We will prove this in three steps.

1.1 Comparing the three functions

Since all terms in the sum defining ϑ(x) are included in the sum defining ψ(x), ϑ(x) ≤ ψ(x).

For a given p there are
⌊

ln(x)
ln(p)

⌋
choices for k so that pk ≤ x, so

ψ(x) =
∑
pk≤x

ln(p) =
∑
p≤x

⌊
ln(x)

ln(p)

⌋
ln(p) ≤

∑
p≤x

ln(p) = π(x) ln(x).
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This shows the middle two inequalities in (29.1).
Given ϑ(x) ≤ ψ(x) ≤ π(x) ln(x), to show that the three quantities in (29.2) and (29.3)

are equal it suffices to show that

lim inf
x→∞

ϑ(x)

x
≥ lim inf

x→∞

π(x) ln(x)

x
, lim sup

x→∞

ϑ(x)

x
≥ lim sup

x→∞

π(x) ln(x)

x
(29.4)

To compare ϑ(x) =
∑

p≤x ln(p) and π(x) ln(x) =
∑

p≤x ln(x), note that for p “close” to x, we
have ln(p) “close” to ln(x) and relatively large, while the terms for small p will not contribute
much to either sum. Thus we can just consider the terms with p > x1−δ, where δ ∈ (0, 1).

ϑ(x) ≥
∑

x1−δ<p≤x

ln(p)

≥
∑

x1−δ<p≤x

ln(x1−δ)

= ln(x1−δ)(π(x)− π(x1−δ))

= (1− δ) ln(x)(π(x)− π(x1−δ))

≥ (1− δ) ln(x)(π(x)− x1−δ)

Hence
ϑ(x)

x
≥ (1− δ)π(x) ln(x)

x
− (1− δ) ln(x)

xδ
.

Letting δ → 0 gives (29.4).

1.2 Upper Bound

We show that ϑ(x) ≤ 2x ln(x). Instead of thinking about bounding ϑ(x), it is easier to think
about bounding eϑ(x) =

∏
p≤x p.

Lemma 1.2: [1, 3.?] For any x ∈ N, ∏
p≤x

p ≤ 4x−1 (29.5)

Proof. Use strong induction on x. For x = 1, 2 the statement holds. The induction step
from odd x > 1 to x+ 1 is obvious, since x+ 1 is not a prime.

Consider the induction step from even x to x+ 1. Let x = 2n. The key idea is that there
cannot be “too many” primes between n+ 2 and 2n+ 1, because...

1. These primes all divide
(

2n+1
n

)
= (2n+1)!

n!(n+1)!
.

2.
(

2n+1
n

)
can easily be bounded from above:(

2n+ 1

n

)
=

1

2

((
2n+ 1

n

)
+

(
2n+ 1

n+ 1

))
≤ 1

2

n∑
i=0

(
2n+ 1

i

)
= 4n.
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Then ∏
p≤x+1

p =
∏

p≤n+1

p
∏

n+2≤p≤2n+1

p ≤ 4n ·
(

2n+ 1

n

)
≤ 42n.

Taking the logarithm of both sides of (29.5) gives ϑ(x) ≤ (x− 1) ln(4) ≤ 2x ln(x).

1.3 Lower Bound

We show that lim infx→∞
π(x) ln(x)

x
≥ ln(2). First consider when x is even, say equal to 2n.

Like in Section 3, we consider a binomial coefficient, this time
(

2n
n

)
. We show that each

prime cannot appear as a factor in
(

2n
n

)
“too many” times, so it can be bounded above by

(2n)π(2n). We can easily bound
(

2n
n

)
below:(

2n

n

)
≥ 22n

2n

since it is the largest among 2,
(

2n
1

)
, . . . ,

(
2n

2n−1

)
. Putting these two bounds together will give

the desired bound for π(2n).
We need the following to count the highest prime powers dividing

(
2n
n

)
:

Lemma 1.3: [1, Lemma 6.3] For every positive integer n,

vp(n!) =

b ln(n)
ln(p)c∑
k=1

⌊
n

pk

⌋
,

where vp(m) denotes the largest integer i such that pi|m.

Proof. There are
⌊
n
pk

⌋
multiples of pk less than or equal to n. In the sum

∑
k≥1

⌊
n
pk

⌋
, each

multiple of pk less than n is counted k times, once each as a multiple of p, p2, . . . , pk.

From Lemma 1.3, we get

vp

((
2n

n

))
= vp

(
(2n)!

n!2

)
= vp((2n)!)− 2vp(n!) =

b ln(2n)
ln(p) c∑
k=1

⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
Since each term of the sum is at most 1,

vp

((
2n

n

))
≤
⌊

ln(2n)

ln(p)

⌋
≤ ln(2n)

ln(p)
.

Thus
22n

2n
≤
(

2n

n

)
=
∏
p≤2n

pvp((
2n
n )) ≤ (2n)π(2n).

Taking logs and remembering x = 2n gives x ln(2) − ln(x) ≤ π(x) ln(x), which gives the

desired bound. For odd x, the value of π(x) ln(x)
x

can be compared to the value for x− 1.
Finally, (29.2) and (29.3), and the fact that all the prime-counting functions are positive

for x ≥ 2, show the existence of c1 and c2 in (29.1). This finishes the proof of Theorem 1.1.
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1.4 The nth prime

We found an estimate for the number of primes less than or equal to a given number; we
can use this bound to find an estimate for the nth prime number.

Theorem 1.4: Let pn denote the nth prime number. Then there exist constants c3, c4 such
that

c3n ln(n) ≤ pn ≤ c4n ln(n)

for all n ≥ 2.

Proof. From Theorem 1.1,
c1pn

ln(pn)
≤ π(pn) = n ≤ c2pn

ln(pn)
, (29.6)

so
n ln(pn)

c2

≤ pn ≤
n ln(pn)

c1

.

The LHS is at least c3n ln(n) by the trivial bound n ≤ pn. On the RHS, use the LHS of (29.6)

again to get ln(pn) ≤ ln
(
n ln(pn)
c1

)
, giving ln(pn) ≤ c ln(n) for some c.
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Chapter 30

Crash course in complex analysis

Complex analysis is calculus on the complex numbers. The main functions of study are
complex differentiable functions.

Reference books: Lang or Ahlfors

§1 Holomorphic functions

Definition 1.1: Let U ⊆ C be an open set and f : U → C be a function. The derivative
of f is

f ′(z) := lim
∆z→0

f(z + ∆z)− f(z)

∆z

if it exists. f is holomorphic if its derivative exists at every point of U . f is meromorphic
if it is defined and holomorphic on U except at a discrete set of points.

Write f(x+ iy) = u(x, y) + iv(x, y). Note that f being differentiable is a much stronger
condition than being simply u and v being differentiable, because the limit of f as ∆z → 0
along the real and complex directions must be equal:

∂u

∂x
+
∂v

∂x
=

1

i

(
∂u

∂y
+ i

∂v

∂y

)
.

Thus we get the Cauchy-Riemann criteria: If f is differentiable as a function of (x, y), then
f is holomorphic iff

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Another way to think about complex differentiability is that holomorphic maps preserve
angles (i.e. are conformal); we have

f(z + reiθ)− f(z) ≈ reiθf ′(z).

Because complex differentiability is such a strong property, holomorphic functions have
many nice properties. Hence it is often useful to take functions defined on the reals and
extend them as far as possible on C. Some of the good properties are the following (to be
explained in the rest of the chapter); note they are not necessarily true for real differentiable
functions!
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• A function is holomorphic iff it is analytic (has a power series expansion).

• A sequence of holomorphic functions with good convergence properties converges to a
holomorphic function.

• A bounded entire function is constant.

• If two holomorphic functions agree on a set containing a limit point, then they are
equal. Thus analytic continuations are unique.

• Bounds on a function give bounds on the derivative. Hence we can “differentiate”
asymptotic formulas.

• We can expand holomorphic functions into products or sums depending on their poles
and zeros—in much the same way that rational functions can be expanded into partial
fractions or factored.

§2 Complex integration

We now give two definitions of the integral.

Definition 2.1: A path is a continuous function γ : [a, b] → C. It is called a loop if
γ(a) = γ(b). Let f be a holomorphic function on U and γ be a path in U .

1. If γ is differentiable (except possibly at a finite number of points), define∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

2. Define an (indefinite) integral of f on a set V to be a function F on V such that
F ′(z) = f(z). Given holomorphic f , choose points t0, . . . , tn such that there exist open
sets Uj ⊇ f(γ([tj−1, tj])) such that f has an integral Fj on Uj. Define∫

γ

f(z) dz =
n∑
k=1

[Fj(γ(tj))− Fj(γ(tj−1)].

Note that unlike in the real case, indefinite integrals may not exist globally, for example,
ln t is locally an integral for 1

t
but cannot be extended holomorphically to C\{0}. We need

to establish the well-definedness of the second definition.

Theorem 2.2 (Cauchy’s Theorem, version 1): Let f be holomorphic on a closed rectangle
R, with boundary ∂R. Then (using the first definition),∫

∂R

f = 0.
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From this one can show that integrals exist locally by defining

F (z) =

∫ z

z0

f(s) ds

where the integral is along horizontal and vertical lines; moreover one gets well-definedness
in the second definition.

We can now define the logarithm of a function.

Definition 2.3: Let f be a holomorphic function on a simply connected set U (see Defini-
tion 3.1), with f(z) 6= 0 on U . Choose z0 ∈ U and a0 such that ea0 = z0.

(ln f)(z) =

∫ z0

z

f ′

f
(z) dz.

Note different definitions of the logarithm will differ by integer multiples of 2πi, and
e(ln f)(z) = f(z). The motivation comes from the fact that one would expect the derivative
of ln f(z) to be f ′

f
(z). We write (ln f)(z) to emphasize that this is not simply a composite

of functions: We could have f(z1) = f(z2) but (ln f)(z1) 6= (ln f)(z2).1

We seek a generalization of Theorem 2.2 to meromorphic functions and arbitrary paths.

§3 Cauchy’s Theorem

Definition 3.1: Two paths γ and η : [a, b]→ C are homotopic if there exists a continuous
map

γs(t) : [0, 1]× [a, b]→ C

such that γ0(t) = γ(t) and γ1(t) = η(t).
A subset of C is simply connected if it is pathwise connected and every loop in C is

homotopic to a point.

Theorem 3.2: Let U be a simply connected open set containing z0. Every path γ around
z0 in U\{z0} is homotopic to a circle going around z0 n times for some n ∈ Z. This n can
be calculated by

n = W (γ, z0) :=
1

2πi

∫
γ

f(z)

z − z0

dz

and is called the winding number.

Theorem 3.3 (Global Cauchy’s formula): Let U be a simply connected open set and f :
U → C be holomorphic. Suppose γ is a loop in U . Then

1

2πi

∫
γ

f(z)

z − z0

dz = W (γ, z0)f(z0).

1Consider, for example, the case where f(z) = z2 on C\R≤0, and z1 = i, z2 = −i.
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§4 Power series and Laurent series

As complex differentiability is a much stronger condition than differentiability for real func-
tions, holomorphic functions enjoy nicer properties. The most important one is the following.

Definition 4.1: A function f : U → C is analytic at z0 if it can be written as a power
series in a neighborhood around z0:

f(z) =
∞∑
n=0

an(z − z0)n.

If f is given by its power series representation then we must have an = f (n)(z)
n!

.

Theorem 4.2: A function f : U → C is analytic iff and only iff it is holomorphic.

Note this is not true for real functions: for example, e−
1
x2 has Taylor expansion equal to 0

at 0, but is not the zero function. This kind of irregularity does not happen for holomorphic
functions.

Corollary 4.3: A holomorphic function has infinitely many derivatives.

The following theorem says that for holomorphic functions, the radius of convergence is
“as large as it could possibly be.”

Theorem 4.4: Suppose f is holomorphic on a disc Nr(z0) of radius r around z0. Then the
Taylor series around z0 converges absolutely to f on Nr(z0).

Proof. Estimate coefficients using Cauchy’s theorem. Complex Analysis, Lang III.7.3.

We can generalize power series to allow terms with negative exponents.

Theorem 4.5: Suppose f is defined on an annulus A = {z : r < |z − z0| < R}. Let C be
the circle of radius r′ ∈ (r, R) around z0. Then f has a Laurent expansion on A:

f(z) =
∞∑

n=−∞

an(z − z0)n, an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz.

If f is defined on {z : |z − z0| < R} then

f (n)(z0) =
n!

2πi

∫
C

f(z)

(z − z0)n+1
dz.

The coefficient a−1 is called the residue of f at z0:

Resz0(f) = a−1.

The following theorem controls the size of the derivatives of a complex analytic function by
its values of the function in a circle. Note that in the real analytic case we can’t make such
a statement!
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Corollary 4.6: Suppose f is defined on {z : |z − z0| < R}, and let C be a circle of radius
r < R around z0. Then

|f (n)(z)| ≤ n!

rn
max
z∈C

f(z)

and the nth coefficient in the power series expansion satisfies

an ≤
1

rn
max
z∈C

f(z).

Proof. Simply note that in the integral
∫
C

f(z)
(z−z0)n+1 dz, the denominator has constant absolute

value rn+1, the numerator is bounded by maxz∈C f(z), and the arc length is 2πr.

Corollary 4.7 (Liouville): A bounded entire function is constant.

Proof. We can take r →∞ in the inequality for n = 1 to find that f ′(z) = 0 everywhere.

4.1 Cauchy’s residue formula

Using residues, we can state the most comprehensive form of Cauchy’s formula:

Theorem 4.8 (Residue formula): Suppose f is meromorphic on simply connected open U ,
and γ is a loop in U . Then∫

γ

f(s) ds = 2πi
∑

z pole of f

W (γ, z) Resz(f).

One useful application of this is counting zeros and poles of a function f .

Definition 4.9: Define the order of f at z0 to be the least integer so that the Laurent
expansion of f at z0 has am 6= 0:

ordf (z0) = m.

Note that ordf (z0) > 0 signals a zero and ordf (z0) < 0 signals a pole.

Corollary 4.10: Suppose f is meromorphic on simply connected open U , and γ is a loop
in U . Then

1

2πi

∫
γ

f ′

f
(s) ds =

∑
ρ

W (γ, ρ) ordf (ρ).

Proof. If f has Laurent expansion am(z − z0)m + · · · at z0 then f ′

f
has Laurent expansion

mam(z − z0)m−1 + · · ·
am(z − z0)m + · · ·

= m(z − z0)−1 + · · ·
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§5 Convergence

Unlike in the real case, holomorphic functions behave nicely under infinite sums and pointwise
convergence. This is because by Cauchy’s theorem we can write f as an integral, and integrals
preserve convergence.

Theorem 5.1 (Holomorphic functions converge to holomorphic functions): Let {fn}∞n=1 be
a sequence of holomorphic functions on U .

1. Suppose fn → f uniformly on compact subsets of U . Then f is holomorphic.

2. Suppose
∑∞

n=1 fn = f converges absolutely and uniformly on compact subsets of U .
Then f is holomorphic.

§6 Series and product developments

We know that locally, we can write a meromorphic function f as a Laurent series
∑∞

n=−∞ anx
n.

There are two other representations that are useful, depending on what information we have
about the function f .

1. If we know the poles of f , we can write f as a sum of rational functions

f(z) =
∞∑
n=1

[
Pn

(
1

z − zn

)
−Qn(z)

]
+ g(z).

2. If f is entire and we know the zeros of f , we can write f as an infinite product

f(z) = zmeg(z)
∞∏
n=1

(
1− z

zn

)
ePn(

z
zn

).

(Think of this as “factoring” f , much like a polynomial can be factored as in the
fundamental theorem of algebra.) These representations come about from convergence
properties of holomorphic functions—so we can be sure the infinite products converge
to holomorphic functions—and by Liouville’s theorem—if we engineer a function that
is close enough to f then it must be equal to f .

Theorem 6.1 (Mittag-Leffler): Let zn be a sequence with limn→∞ |zn| = ∞ (or a finite
sequence), and Pn polynomials without constant term.

1. (Existence) There is a meromorphic function f with poles exactly at zn, with Laurent

expansion Pn

(
1

z−zn

)
+ · · · at zn.

2. (Uniqueness) Fix polynomials Qn. Then all such f are in the form

∞∑
n=1

(
Pn

(
1

z − zn

)
−Qn(z)

)
+ g(z)

where g(z) is analytic.
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Definition 6.2: The order of an entire function f is the smallest α ∈ [0,∞] such that

|f(z)| -ε e|z|
α+ε

for all ε > 0.

Theorem 6.3: Let zn be a sequence with limn→∞ |zn| =∞. If f is entire with order α <∞
with zeros z1, z2, . . . (with multiplicity, not including 0), then it has a product formula

f(z) = zreg(z)
∞∏
n=1

(
1− z

zn

)
e
z
zn

+ 1
2( z

zn
)

2
+···+ 1

m( z
zm

)
m

, (30.1)

where

• m = bαc,

• r is the order of vanishing of f at 0, and

• g is a polynomial of degree at most a.

The product converges uniformly locally. Moreover,

| {k : zk} < R| -ε Rα+ε. (30.2)

Conversely, if a = bαc and zk is a sequence satisfying (30.2), then the RHS of (30.1) defines
an entire function of order at most α.

Hence the order of a entire function gives an asymptotic bound for the number of zeros.2

§7 Gamma function

To prove basic properties of the zeta function in the next chapter, we need to know the
properties of the gamma function.

Definition 7.1: Define the gamma function by

Γ(s) =

∫ ∞
0

xse−x
dx

x
, <s > 0.

We will begin by analytically continuing the gamma function and giving its basic prop-
erties.

Proposition 7.2 (Facts about Γ):

1. Γ(s) can be analytically continued to a meromorphic function with poles −n, n ∈ N,

with residue (−1)n

n!
.

2A function which grows faster is allowed to have more zeros—much like a polynomial with lots of zeros
grows fast simply because it has higher degree.
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2. Γ(s) = limn→∞
nsn!

s(s+1)···(s+n)
when s 6∈ −N.

3. 1
Γ(s)

= seCs
∏∞

n=1

(
1 + s

n

)
e−

s
n .

4. Γ(s+ 1) = sΓ(s) so Γ(n+ 1) = n!, n ∈ N0.

5. Γ(s)Γ(1− s) = π
sinπs

.

6. Γ(s)Γ
(
s+ 1

m

)
· · ·Γ

(
s+ m−1

m

)
= (2π)

m−1
2 m

1
2
−msΓ(ms). In particular, Γ(s)Γ

(
s+ 1

2

)
=

π
1
2 21−2sΓ(2s).

From the product development 6.3 we get the following.

Theorem 7.3 (Product development of Γ): We have

Γ(s) =
e−γs

s

∞∏
k=1

e
s
k

1 + s
k

.

In the region
Rε = C\({s : arg(s) ∈ [π − ε, π + ε]} ∪ {0}),

i.e. C with a wedge containing R≤0 deleted, we can define the function (ln Γ)(s). By the
product formula, it equals

(ln Γ)(s) = −γs− ln s+
∞∑
k=1

( s
k
− ln

(
1 +

s

k

))
.

The following asymptotic formulas will be useful.

Theorem 7.4 (Stirling’s approximation): Let P1(t) = {t} − 1
2
. For s ∈ Rε,

(ln Γ)(s) =

(
s− 1

2

)
ln s− s+

1

2
ln(2π)−

∫ ∞
0

P1(t)

z + t

=

(
s− 1

2

)
ln s− s+

1

2
ln(2π) +Oε(|s|−1)

Γ′(s)

Γ(s)
= ln s− 1

2s
+Oε(|s|−2)

Γ(s) ∼ ss−
1
2 e−s
√

2π
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Chapter 31

Dirichlet series

For proofs see [3].

§1 Dirichlet series, convergence

Dirichlet series are the “power series of number theory.” As such, we will first need to get
acquainted with their analytic properties.

Definition 1.1: A Dirichlet series is a series of the form

F (s) =
∞∑
n=1

f(n)

ns

where f(n) is an arithmetical function. Following convention, we let s = σ + it, with σ, t
real.

Let {λ(n)} be a sequence strictly increasing to ∞. A general Dirichlet series with
exponents {λ(n)}∞n=1 is in the form

F (s) =
∞∑
n=1

f(n)e−sλ(n).

An ordinary Dirichlet series has λ(n) = ln(n). 1

Theorem 1.2 (Half-plane of convergence): Convergence: If the series
∑∞

n=1 |f(n)e−sλ(n)|
does not converge or diverge for all n, then there exists a real number σc, called the abscissa
of convergence, such that

∑∞
n=1 f(n)n−s

• converges locally uniformly for σ > σc, but

• does not converge for σ < σc.

In fact, if the series diverges for all s with σ < 0, then

σc = lim sup
n→∞

ln |
∑n

k=1 a(k)|
λ(n)

.

1A further generalization is given by the Laplace-Stieltjes transform,
∫∞

0
e−stdα(t), where α is a measure.

The “step” part of α gives a Dirichlet while the continuous part gives a Laplace transform.
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Absolute convergence: If the series
∑∞

n=1 |e−sλ(n)| does not converge or diverge for
all n, then there exists a real number σa, called the abscissa of absolute convergence,
such that

∑∞
n=1 f(n)n−s

• converges locally uniformly absolutely for σ > σa, but

• does not converge absolutely for σ < σa.

In fact, if the series diverges for all s with σ < 0, then

σa = lim sup
n→∞

ln
∑n

k=1 |a(k)|
λ(n)

.

In particular, for ordinary Dirichlet series (that diverge when σ < 0),

σa = lim sup
n→∞

n
∑n
k=1 |a(k)|.

§2 Basic properties

Proposition 2.1 (General facts): Let F (s) =
∑∞

n=1 f(n)n−s.

1. limσ→∞ F (σ + it) = f(1) uniformly

2. (Uniqueness) If F (s) = G(s) are absolutely convergent for σ > σa and are equal for s
in an infinite sequence {sk} with σk →∞, then f(n) = g(n).

3. (Non-vanishing in half-plane) Suppose F (s) 6= 0 for some s with σ > σa. Then there
is a half-place σ > c ≥ σa in which F (s) is never 0.

Proposition 2.2: (Operations on Dirichlet series) Let F (s) =
∑∞

n=1 f(n)n−s and G(s) =∑∞
n=1 g(n)n−s. Then

F (s)G(s) =
∞∑
n=1

h(n)

ns

where
h(n) = (f ∗ g)(n) =

∑
d|n

f(d)g
(n
d

)
.

Proof. Formally, by grouping together terms where mn is constant,

F (s)G(s) =
∑
m,n∈N

f(m)

ns
g(n)

ns

=
n∑
k=1

( ∑
m,n∈N,mn=k

f(m)g(n)

)
1

ks
.

Since the sums for F and G converge absolutely, so does the double sum above, and the
rearrangement of terms is valid.
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Theorem 2.3 (Euler products): Let f be a multiplicative arithmetical function such that∑∞
n=1 f(n) converges absolutely. Then when <s > σa,

∞∑
n=1

f(n)n−s =
∏
p

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
.

If f is completely multiplicative,

∞∑
n=1

f(n)

ns
=
∏
p

1

1− f(p)p−s
.

Proposition 2.4 (Derivatives): The derivative is

F ′(s) = −
∞∑
n=1

f(n) lnn

ns
.

Theorem 2.5 (Landau): Suppose F (s) is a holomorphic function that can be represented
in σ > c by the Dirichlet series

F (s) =
∞∑
n=1

f(n)n−s

with f(n) ≥ 0 for all n ≥ n0. If F (s) is analytic in some disc of radius r around s = c, then
F (s) converges in σ > σ − ε for some ε > 0.

Hence, F (s) has a singularity at s = σc.

Proof. We reinterpret in terms of power series and apply Theorem 4.4.
Take a = c + r

2
. Since F is analytic at in Nr(a) ⊆ Nr(c) ∪ {z : <z > c}, it equals its

Taylor expansion there:

F (s) =
∞∑
k=1

F (k)(a)

k!
(s− a)k.

From Proposition 2.4, F (k)(a) = (−1)k
∑∞

n=1 f(n)(lnn)kn−s. Plugging in and noting that
the sum converges absolutely (since f(n) ≥ 0 for large n), we have, for s ∈ Nr(a),

F (s) =
∞∑
k=0

[(
(−1)k

k!

∞∑
n=1

f(n)(lnn)kn−a

)
(s− a)k

]

=
∞∑
n=1

[(
∞∑
k=0

(s− a)k(lnn)k

k!

)
n−a

]

=
∞∑
n=1

f(n)e(a−s) lnnn−a.

This converges for c−ε ∈ Nr(a). But because it has nonnegative real coefficients, this shows
σc > c− ε.
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Proposition 2.6 (Logarithms): Assume f(1) 6= 0. if F (s) 6= 0 for σ > σ0 ≥ σa, then for
σ > σ0,

lnF (s) = ln f(1) +
∞∑
n=1

f ′ ∗ f−1(n)

lnn
n−s.

Also talk about log diff of Euler product

§3 Dirichlet generating functions

Definition 3.1: Let f : N → C be an arithmetic function. The Dirichlet generating
function of f is

F (s) =
∞∑
n=1

f(n)

ns
.

To get the generating function of g(n) =
∑

d|n f(n), by Proposition 2.2, we simply mul-

tiply by ζ(s):

F (s)ζ(s) =

(∑
n

f(n)

ns

)(∑
n

1

ns

)
=
∑
n

∑
d|n

f(d)

 1

ns
.

Note that the inverse of ζ(s) is

∏
p

(1− p−s) =
∞∑
n=1

µ(n)

n−s
.

Hence by matching coefficients of

(F (s)ζ(s))
1

ζ(s)

we get the Mobius inversion formula.

§4 Summing coefficients

Lemma 4.1: For y, c, T > 0,2∣∣∣∣ 1

2πi

∫ c+iT

c−iT
ys
ds

s

∣∣∣∣ ≤ yc min

(
1

πT | ln y|
,
1

2

)
, 0 < y < 1∣∣∣∣ 1

2πi

∫ c+iT

c−iT
ys
ds

s
− 1

2

∣∣∣∣ ≤ yc

πT
, y = 1∣∣∣∣ 1

2πi

∫ c+iT

c−iT
ys
ds

s
− 1

∣∣∣∣ ≤ yc min

(
1

πT | ln y|
, 1

)
, y > 1

2The integral 1
2πi

∫ c+∞i
c−∞i f(s)dss is called the Mellin transform of f .
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Proof. First suppose y < 1. Take d > c. By Cauchy’s theorem, since ys

s
is analytic in the

region below, we have∫ c+iT

c−iT
ys
ds

s
+

∫ d+iT

c+iT

ys
ds

s
+

∫ d−iT

d+iT

ys
ds

s
+

∫ c−iT

d−iT
ys
ds

s
= 0

where the path of integrations are those shown in the picture.

Hence, ∣∣∣∣∫ c+iT

c−iT
ys
ds

s

∣∣∣∣ =

∣∣∣∣∫ d+iT

c+iT

ys
ds

s
+

∫ c−iT

d−iT
ys
ds

s
+

∫ d−iT

d+iT

ys
ds

s

∣∣∣∣
≤ 2

∫ d

c

yσ
dσ

T
+

∣∣∣∣∫ d−iT

d+iT

ys
ds

s

∣∣∣∣ .
Note that the last integral goes to 0 as d → ∞, because |ys| = |yd| → 0. Hence, taking
d→∞ gives ∣∣∣∣∫ c+iT

c−iT
ys
ds

s

∣∣∣∣ ≤ 2

∫ ∞
c

yσ

T
dσ = − 2yc

T ln y
=

2yc

T | ln y|
.

This gives
∣∣∣ 1

2πi

∫ c+iT
c−iT ys ds

s

∣∣∣ ≤ yc

πT
| ln y|.

By Cauchy’s theorem applied to the smaller segment bounded by <s = c and the circle
with radius R =

√
c2 + T 2, we have∣∣∣∣∫ c+iT

c−iT
ys
ds

s

∣∣∣∣ =

∣∣∣∣∫
C

ys
ds

s

∣∣∣∣
≤ πR

yc

R
= πyc,

since y < 1 and <s > c on the arc. Hence
∣∣∣ 1

2πi

∫ c+iT
c−iT ys ds

s

∣∣∣ ≤ yc

2
.

For y > 1, take d < 0. Note ys

s
is analytic in the region below except for a simple pole at

0 with residue 1 (since ys = 1 when s = 0). Hence by Cauchy’s Theorem,∫ c+iT

c−iT
ys
ds

s
+

∫ d+iT

c+iT

ys
ds

s
+

∫ d−iT

d+iT

ys
ds

s
+

∫ c−iT

d−iT
ys
ds

s
= 2πi.
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Then ∣∣∣∣∫ c+iT

c−iT
ys
ds

s
− 1

∣∣∣∣ =

∣∣∣∣∫ d+iT

c+iT

ys
ds

s
+

∫ c−iT

d−iT
ys
ds

s
+

∫ d−iT

d+iT

ys
ds

s

∣∣∣∣
≤ 2

∫ c

d

yσ
dσ

T
+

∣∣∣∣∫ d−iT

d+iT

ys
ds

s

∣∣∣∣ .
The last term goes to 0 as d → −∞, so the same argument applies as in the first part to

show
∣∣∣ 1

2πi

∫ c+iT
c−iT ys ds

s
− 1
∣∣∣ ≤ yc

πT ln y
.

By Cauchy’s theorem applied to the larger segment bounded by <s = c and the circle
with radius R =

√
c2 + T 2, we have∫ c+iT

c−iT
ys
ds

s
+

∫
C

ys
ds

s
= 2πi∣∣∣∣∫ c+iT

c−iT
ys
ds

s
− 1

∣∣∣∣ ≤ ∣∣∣∣∫
C

ys
ds

s

∣∣∣∣
≤ 2πR

yc

R
= 2πyc,

since y > 1 and <s < c on the arc. Hence
∣∣∣ 1

2πi

∫ c+iT
c−iT ys ds

s

∣∣∣ ≤ yc.

Proof for y = 1 omitted.

Corollary 4.2: The partial sum of the coefficients of a Dirichlet series is given by

∑
n<x

an +
ax
2

(x ∈ N0) =
1

2πi
lim
T→∞

∫ c+iT

c−iT
xsf(s)

ds

s
.

The error from truncating the integral is∣∣∣∣∣
(∑
n<x

an +
ax
2

(x ∈ N0)

)
−
(

1

2πi

∫ c+iT

c−iT
xsf(s)

ds

s

)∣∣∣∣∣ ≤
∞∑
n=1

(x
n

)c
an min

(
1,

1

T
∣∣ln (x

n

)∣∣
)
.
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Chapter 32

Zeta functions and the prime number
theorem

§1 Prime number theorem: Outline

Definition 1.1: Define the prime-counting function

π(x) = | {p ≤ x : p prime} |.

Our goal in this chapter is to prove the following famous theorem (in all its error-bounded
glory).

Theorem 1.2 (Prime number theorem): There is an effective constant C > 0 such that

π(x) = li(x) +O(xe−C
√

lnx)

for all x ≥ 1.

Here li(x) denotes the logarithmic integral

li(x) =

∫ x

2

dt

ln t
.

Note that li(x) = x
lnx

+O
(

x
(lnx)2

)
as x→∞, since integration by parts gives

li(x) =

∫ x

2

dy

ln y
+O(1) =

x

lnx
+

∫ x

2

dy

(ln y)2
+O(1)

=
x

lnx
+O

(
x

(lnx)2

)
. (32.1)

The main steps in the proof are as follows.

1. When we have a Dirichlet series

F (s) =
∞∑
n=0

ann
−s,
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we can get estimates for
∑N

n=0 an by “plucking out” those coefficients: The equation

1

2πi
lim
T→∞

∫ c+iT

c−iT
ys
ds

s
=


1, if y > 1
1
2
, if y = 1

0, if y < 1.

gives
1

2πi
lim
T→∞

∫ c+iT

c−iT
xsf(s)

ds

s
=
∑
n<x

an +
ax
2

(x ∈ N0).

We use the more precise statement giving error bounds (Corollary 31.4.2).

We want a Dirichlet series where the sum of the first N terms is related to π(N). Let

ζ(s) =
∏

p prime

1

1− p−s
=
∞∑
n=1

1

ns
.

We consider the function

−ζ
′(s)

ζ(s)
=
∑
p prime

(ln p)p−s

1− p−s
=
∞∑
n=1

Λ(n)n−s.

We use this function because ψ(x) =
∑

n<x Λ(n) gives information on π(x), and − ζ′

ζ

continues into a meromorphic function on C (since ζ does). We now have the estimate

ψ(x) =
1

2πi

∫ c+iT

c−iT
−ζ
′(s)

ζ(s)
xs
ds

s
+ (error).

2. We know ζ has analytic continuation (Theorem 2.2). Hence we can move the path
of integration to c < 0. From Cauchy’s integral formula, we get extra terms from
the horizontal integrals (integrals involving − ζ′

ζ
) and terms xρ

ρ
from Cauchy’s integral

theorem from the zeros of ζ(s). This is why we care about its zeros! Zeros with large
real part contribute large error terms. We will need the following.

(a) We apply the product development (Theorem 30.6.3) on ξ(s) = π−
s
2 ζ(s)Γ

(
s
2

)
to

obtain
ζ ′(s)

ζ(s)
=

∑
ρ zero of ζ

(
1

s− ρ
+

1

ρ

)
+ · · ·

(Theorem 2.5).

(b) Using the above equation for ζ′

ζ
, we calculate the asymptotics of N(T ), the number

of zeros in {σ + it : (σ, t) ∈ [0, 1]× [−T, T ]} (Theorem 3.2).

(c) From (a) to (b) we get a zero-free region for ζ (which includes <s ≥ 1) (Theo-
rems 3.1 and 3.3).

From the zero-free region we get a bound for
∑

xρ

ρ
, as well as the horizontal integrals.

If the Riemann hypothesis is true, then we can enlarge our zero-free region to <s > 1
2
,

which is even better.

3. Finally we use the estimate for ψ(x) to get an estimate for π(x) (Lemma 4.2).
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§2 Riemann zeta function

Definition 2.1: The Riemann zeta function is defined by

ζ(s) =
∞∑
n=1

1

ns

when <s > 1. This will be generalized to L-functions L(s, χ) in Definition 33.2.1.

By Theorem 2.3 and by unique factorization in Z, we can write

ζ(s) =
∏

p prime

1

1− p−s
.

By taking the logarithmic derivative, we have

−ζ
′(s)

ζ(s)
=
∑
p

d

ds
ln(1− p−s) =

∑
p

(ln p)
p−s

1− p−s
=
∑
p

ln p
∞∑
k=1

p−ks.

Interchanging order of summation gives

− ζ ′(s)

ζ(s)
=
∞∑
n=1

Λ(n)n−s, <s > 1, (32.2)

where the von Mangoldt function Λ(n) is defined as

Λ(n) =

{
ln p, n = pr, p prime, r ∈ N.
0, else

The most important property of ζ is its analytic continuation and functional equation.

Theorem 2.2: ζ(s) can be analytically continued to a meromorphic function with a simple
pole at s = 0, 1. It satisfies the functional equation

ζ(s) = 2(2π)s−1Γ(1− s) sin
(πs

2

)
ζ(1− s).

Letting ξ(s) = π−
s
2 ζ(s)Γ

(
s
2

)
, we have1

ξ(s) = ξ(1− s).

Moreover, ζ(s) has zeros −2N (the trivial zeros); all other zeros are in the critical strip
0 ≤ <s ≤ 1.

To prove this, we first need the transformation law for the theta function; we will show
the functional equation for ζ by writing it in terms of θ. As we will prove a more generalized
transformation law, we will postpone the proof for θ.

1The factor Γ
(
s
2

)
can be thought of as coming from the infinite place—see Chapter 34.
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Definition 2.3: Define the theta function by

θ(u) =
∑
n∈Z

e−πn
2u, <u > 0.

Proposition 2.4 (Transformation law for θ): For all u with <u > 0,

θ

(
1

u

)
= u

1
2 θ(u).

This is a special case of Proposition 33.2.4.

Proof of Theorem 2.2. We first analytically continue ζ to <s > 0, show the functional equa-
tion is true for 0 < <s < 1, and use it to establish analytic continuation to C.

Note

ζ(s) =
1

s− 1
+
∞∑
n=1

[
n−s −

∫ n+1

n

x−s dx

]
=

1

s− 1
+
∞∑
n=1

∫ n+1

n

(n−s − x−s) dx (32.3)

Since for n ≤ x ≤ n+ 1 we have

|n−s − x−s| =
∣∣∣∣∫ x

n

sx−s−1 dx

∣∣∣∣ ≤ |s|n−s−1∣∣∣∣∫ n+1

n

n−s − x−s dx
∣∣∣∣ ≤ |s|n−s−1, (32.4)

the sum (32.3) converges uniformly locally for <s > 0 and extends ζ to an analytic function
for <s > 0.

We claim that

2ξ(s) =

∫ ∞
0

(θ(u)− 1)u
s
2
du

u
, <s > 1 (32.5)

Indeed, we have∫ ∞
0

(θ(u)− 1)u
s
2
du

u
=

∫ ∞
0

2
∞∑
n=1

e−πn
2uu

s
2
du

u

= 2
∞∑
n=1

∫ ∞
0

e−πn
2uu

s
2
du

u

= 2
∞∑
n=1

∫ ∞
0

e−u
( u

πn2

) s
2 du

u
u←[

u

πn2

= 2π−
s
2

(
∞∑
n=1

1

ns

)(∫ ∞
0

e−uu
s
2
du

u

)
= 2π−

s
2 ζ(s)Γ

(s
2

)
= 2ξ(s).
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The theta transformation law 2.4 give that for <s > 1,

2ξ(s) =

∫ 1

0

(θ(u)− 1)u
s
2
du

u
+

∫ ∞
1

(θ(u)− 1)u
s
2
du

u

=

∫ ∞
1

(
θ

(
1

u

)
− 1

)
u
s
2
du

u
+

∫ ∞
1

(θ(u)− 1)u
s
2
du

u
u←[

1

u

=

∫ ∞
1

(
u−

1
2 θ

(
1

u

)
− 1

)
u

1−s
2
du

u
+

∫ ∞
1

(u
1−s

2 − u−
s
2 )
du

u
+

∫ ∞
1

(θ(u)− 1)u
s
2
du

u

= −2

s
− 2

1− s
+

∫ ∞
1

(θ(u)− 1)u
1−s

2
du

u
+

∫ ∞
1

(θ(u)− 1)u
s
2
du

u
.

The last expression converges for all <s > 0, so in fact equals 2ζ(s) for all <s > 0 by
uniqueness of analytic continuation. Since the last expression is symmetric under 1− s 7→ s,
the functional equation for ξ follows.

The functional equation for ξ gives

ζ(s) = π
s
2 Γ
(s

2

)−1

π−
1−s

2 Γ

(
1− s

2

)
ζ(1− s)

= πs−
1
2

Γ
(

1−s
2

)
Γ
(
s
2

) ζ(1− s)

= πs−
1
2 Γ

(
1− s

2

)
Γ
(

1− s

2

) sin
(
πs
2

)
π

ζ(1− s) by Proposition 30.7.2(5)

= 2(2π)s−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) by Proposition 30.7.2(6)

Finally, the statement about zeros follows from the fact that ζ has no zeros with <s > 1
(as ζ′

ζ
is holomorphic there) and the functional equation, noting sin

(
πs
2

)
= 0 exactly when s

is an even integer, with the zero at s = 0 cancelled by the pole at 1 of ζ.

Theorem 2.5 (Product development of ξ): The function (s2 − s)ξ(s) is entire of order 1,
and ξ(s) has the product expansion

ξ(s) =
eA+Bs

s2 − s
∏

ρ zero of ζ

(
1− s

ρ

)
e
s
ρ .

Then ζ′

ζ
(s) has the partial-fraction expansion

ζ ′

ζ
(s) = B − 1

s− 1
+

1

2
ln(π)− 1

2

Γ′

Γ

(s
2

+ 1
)

+
∑

ρ nontrivial zero of ζ

(
1

s− ρ
+

1

ρ

)
.

From now on, unless otherwise specified, when we say zero of ζ we mean nontrivial zero.

Proof. Note (s2 − s)ξ(s) is entire because ξ only has 2 simple poles at 0, 1. To show it has
order 1 we need two inequalities.
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Step 1: There is no constant C so that (s2 − s)ξ(s) - eC|s|: Indeed, for real s and any
constant C, by Stirling’s approximation 30.7.4 we have

(s2 − s)ξ(s) = (s2 − s)π−
s
2 Γ
(s

2

)
ζ(s)

% s−
1
2

( s

2eπ

) s
2
% eCs.

Step 2: There is a constant C so that (s2 − s)ξ(s) - eC|s| ln |s|: e|s| ln |s| ≥ 1 for all s so it
suffices to prove this for sufficiently large s. By the integral and sum formulas for Γ and ξ,
and the fact that |xs| = |x<s|, we have

|ξ(σ + ti)| ≤ π−
σ
2 Γ
(σ

2

)
ζ(σ), σ > 1.

By symmetry of ξ is suffices to consider σ ≥ 1
2
. (“Nudging” |s| in eC|s| ln |s| by a constant

changes it by at most a constant factor.) Consider 2 cases.

1. σ > 2: Then π−
σ
2 < 1 and ζ(σ) < ζ(2) so by Stirling’s approximation 30.7.4,

|ξ(σ + ti)| - Γ
(σ

2

)
= e|(ln Γ)(σ)| = e(

σ
2
−1) ln σ

2
−σ

2
+O(1)

from which the result follows.

2. 1
2
≤ σ ≤ 2: From (32.4), we have for s bounded away from 1,

ζ(s) ≤ O(1) + |s|
∞∑
n=1

n−
3
2 = O(|s|).

This time Γ
(
σ
2

)
= O(1) so

|(s2 − s)ξ(s)| ≤
∣∣∣s2π−

σ
2 ζ(s)Γ

(σ
2

)∣∣∣ = O(|s|3) - eC|s| ln |s|.

This shows (s2 − s)ξ(s) has order 1.

Step 3: By the product development 30.6.3, noting the the zeros of (s2−s)ξ are the nontrivial
zeros of ζ (since Γ has no zeros and trivial zeros of ζ come from the poles of Γ in the definition
of ξ), we get

(s2 − s)ξ(s) = eA+Bs
∏

ρ zero of ζ

(
1− s

ρ

)
e
s
ρ .

Dividing by s2 − s and log-differentiating gives

ξ′

ξ
(s) = B − 1

s
− 1

s− 1
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

Since ζ(s) = π
s
2 Γ
(
s
2

)−1
ξ(s), we get

ζ ′

ζ
(s) =

1

2
lnπ +

1

2

Γ′

Γ

(s
2

)
+B − 1

s
− 1

s− 1
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
=

1

2
lnπ +

1

2

Γ′

Γ

(s
2

+ 1
)

+B − 1

s− 1
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
, Γ(z) =

Γ(z + 1)

z
.
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§3 Zeros of zeta

Note that from the function equation, ζ(s) has simple zeros at −2N. We call these trivial
zeros. More importantly for us are the zeros with real part in [0, 1].

Denote by N(T ) be the number of zeros of ζ in {σ + it : (σ, t) ∈ [0, 1]× [−T, T ]}, count-
ing multiplicity. We first give asymptotics on the vertical distribution of zeros of ζ (von
Mangoldt’s formula, Theorem 3.2), then give a zero-free region for ζ (Theorem 3.3).

Lemma 3.1: Define L(t) = ln(|t|+ 2). For s = σ + it with σ ∈ [−1, 2], we have2

ζ ′(s)

ζ(s)
= − 1

s− 1
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
+O(L) (32.6)

= − 1

s− 1
+

∑
|=(s−ρ)|<1

1

s− ρ
+O(L).

Moreover, there are O(L) zeros ρ with |=(s−ρ)| < 1, i.e. the number of zeros with imaginary
part in [t, t+ 1] is O(ln t), as t→∞.

Note this gives N(T ) = O(T lnT ). The next theorem will give an improvement of this
estimate.

Proof. Our strategy is this: at a point where we know ζ′

ζ
is bounded (s = 2 + it), we use

Theorem 2.5 to get information on how many zeros of ζ can be close to s. Then we use
compare ζ′

ζ
(σ + it) with ζ′

ζ
(2 + it) to get the general estimate.

Step 1: Theorem 2.5 gives us

ζ ′(s)

ζ(s)
= − 1

s− 1
+B +

1

2
ln π︸ ︷︷ ︸

O(1)

−1

2

Γ′

Γ

(s
2

+ 1
)

︸ ︷︷ ︸
(A)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
︸ ︷︷ ︸

(B)

. (32.7)

From Stirling’s approximation 30.7.4, (A) equals

ln

∣∣∣∣σ2 + 1 + i
t

2

∣∣∣∣+O(1) = O(L) (32.8)

These two equations show (32.6).
Now suppose s = 2 + it. Note that∣∣∣∣ζ ′(2 + it)

ζ(2 + it)

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

Λ(n)n−2−it

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
n=1

(lnn)n−2

∣∣∣∣∣ <∞,
so the LHS of (32.7) is O(1). Hence (32.7) becomes

O(L) =
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (32.9)

2Note 1
s−1 = O(1) when s is bounded away from 1.

425



Number Theory, §32.3.

We estimate the terms with |=(s−ρ)| < 1 by a constant to show that there aren’t too many
of them. From (32.9) and (32.8),

O(L) = <
∑
ρ

(
1

2 + it− ρ
+

1

ρ

)
≥ <

∑
ρ

(
(2−<ρ)− (t−=ρ)i

(2−<ρ)2 + (t−=ρ)2

)
since <

(
1

ρ

)
> 0

≥
∑
ρ

1

4 + (t−=ρ)2
since 0 ≤ <ρ ≤ 1

≥ 1

5
| {ρ : |=(s− ρ)| < 1} |+ 1

5

∑
|=(s−ρ)|≥1

1

(t−=ρ)2
. (32.10)

This proves the second part of the lemma.

Step 2: Now we consider general s = σ + it, by comparing it to 2 + it. We have by (32.7)
and (32.8) that

ζ ′

ζ
(s)− ζ ′

ζ
(2 + it)︸ ︷︷ ︸
O(1)

= − 1

s− 1
+O(1) +

1

2

(
ln

∣∣∣∣σ2 + 1 +
t

2
i

∣∣∣∣− ln

∣∣∣∣2 +
t

2
i

∣∣∣∣)︸ ︷︷ ︸
O(1)

+
∑
ρ

(
1

s− ρ
− 1

2 + it− ρ

)

= − 1

s− 1
+O(1) +

∑
|=(s−ρ)|<1

1

s− ρ
−

∑
|=(s−ρ)|<1

1

2 + it− ρ︸ ︷︷ ︸
O(L)

+
∑

|=(s−ρ)|≥1

(2− σ)

(s− ρ)(2 + it− ρ)︸ ︷︷ ︸
O(L)

.

The first O(L) is because there are at most O(L) terms and each term is at most 1 in absolute
value; the second is from

∑
|=(s−ρ)|≥1

2− σ
(s− ρ)(2 + it− ρ)

= O

 ∑
|=(s−ρ)|≥1

1

=(s− ρ)2

 = O(L);

the first equality is from 2−σ = O(1) and =(s−ρ) = =(2+it−ρ); the second is by (32.10).

Theorem 3.2 (von Mangoldt): (∗) As T →∞,

N(T ) =
T

π
ln

(
T

2π

)
− T

π
+O(lnT ).

Proof. As ζ has only a countable number of zeros, we may assume T is not the imaginary
part of any zero.

426



Number Theory, §32.3.

Let

R = {σ + it : (s, t) ∈ [−1, 2]× [−T, T ]}

and let C be the boundary of R. From ξ(s) = π−
s
2 ζ(s)Γ

(
s
2

)
, we see that ξ has the

same zeros as ζ in this region, and simple poles at 0 and 1. Hence by Cauchy’s residue
formula 30.4.8,

1

2πi

∮
C

ξ′(s)

ξ(s)
ds = 2N(T )− 2.

Noting that ξ(s) = ξ(s) and ξ(s) = ξ(1 − s), changes of variable show that the integral on
each of the sections of C between 2, 1

2
+ iT , −1, and 1

2
− iT are the same.3 Let C ′ be the

part from 1 to 1
2

+ iT . Thus the above equals

2

πi

∫
C′

ξ′(s)

ξ(s)
ds =

2

πi

∫
C′
− lnπ

2
+
ζ ′(s)

ζ(s)
+

(
Γ
(
s
2

))′
Γ
(
s
2

) ds
(
∏n

k=1 fk)
′∏n

k=1 fk
=

n∑
k=1

f ′k
fk

=
2

π
=
∫
C′
− lnπ

2
+
ζ ′(s)

ζ(s)
+

(
Γ
(
s
2

))′
Γ
(
s
2

) ds (expression is real).

We break this up into 3 integrals and estimate each part separately.

1. =
∫
C′
− lnπ

2
ds = −T

2
ln π.

2. Using the estimate for ζ′

ζ
in Lemma 3.1, we evaluate the second integral. Note that

ln ζ is defined for <s > 1 and is uniformly bounded for <s = 2:

(ln ζ)(s) =
∑
p prime

ln(1− p−s)

|(ln ζ)(2 + it)| ≤
∑
p prime

2p−2.

(Just bound ln linearly near 1, or expand in Taylor series.) Note ln(x−ρ) is well-defined
on C ′ for any ρ. Hence by Theorem 3.1,

=
∫
C′

ζ ′

ζ
(s) ds = (=(ln ζ)(2 + iT )−=(ln ζ)(2)) +

∫ 1
2

+iT

2+iT

ζ ′

ζ
(s) ds

= O(1) +

∫ 1
2

+iT

2+iT

=

 ∑
|=(s−ρ)|<1

1

s− ρ

+O(lnT ) ds

= O(lnT ) +
∑

|=(s−ρ)|<1

=(ln(x− ρ))|
1
2

+T i

2+T i

≤ O(lnT ) + 2πO(lnT )

since there are at most lnT terms in the sum.

3We used ξ because its symmetry allows us to do this.
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3. We estimate the last integral using Stirling’s formula 30.7.4. (Note that ln Γ is well-
defined for s ∈ C ′.)∫

C′

(
Γ
(
s
2

))′
Γ
(
s
2

) =
[
=(ln Γ)

(s
2

)] 1
2

+T i

2

= =(ln Γ)

(
1

4
+
T

2
i

)
= =

[(
−1

4
+
T

2
i

)
ln

(
1

4
+
T

2
i

)
−
(

1

4
+
T

2
i

)
+O(1)

]
=
T

2
ln

(
T

2

)
− T

2
+O(1).

Now put everything together to get

N(T )− 2 =
2

π

(
−T

2
ln π +O(lnT ) +

(
T

2
ln

(
T

2

)
− T

2
+O(1)

))
N(T ) =

T

π
ln

(
T

2π

)
− T

π
+O(lnT ).

Theorem 3.3 (Zero-free region for ζ): There are no zeros of ζ with <s ≥ 1. Moreover,
there is a constant c > 0 such that for |t| > 2, every zero σ + it satisfies

σ < 1− c

ln |t|
.

Proof. We already noted ζ has no zero for <s > 1 (Theorem 2.2), so for the first part it
suffices to prove that no zero has real part 1.

If ζ had a zero 1+it, then ζ′

ζ
would have a pole of positive residue at 1+it. For s = σ+it,

σ > 1 we have − ζ′

ζ
(s) =

∑∞
n=1

Λ(n)
ns

, so this means that as σ → 1+, many of the important

terms would have n−it “close” to −1, to make it blow up in the negative direction. For those
terms, we have n−2it “close” to 1. This would force − ζ′

ζ
(σ + 2ti) to have a pole of positive

residue at 1 + 2ti, i.e ζ to have a pole at 1 + 2ti, contradicting the fact that it is analytic
there.

We now make this idea precise. What we want is an inequality between some function of
an angle and its double, so that if one is small it forces the other to be large. So we consider

0 ≤ 2(1 + cos θ)2 = 3 + 4 cos θ + cos 2θ.

This gives

0 ≤ 3 + 4<(n−it) + <(n−2it).

Multiplying by Λ(n)n−σ and summing, we get

0 ≤ 3

(
−ζ
′

ζ
(σ)

)
+ 4<

(
−ζ
′

ζ
(σ + ti)

)
+ <

(
−ζ
′

ζ
(σ + 2ti)

)
, σ > 1. (32.11)
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Letting r be the degree of the zero at 1 + ti, we have by Lemma 3.1

0 ≤
(

3

σ − 1
+O(1)

)
−
(

4r

σ − 1
+O(L)

)
+ <

(
−ζ
′

ζ
(σ + 2ti)

)
as σ → 1+.

If r ≥ 1, then this gives − ζ′

ζ
(σ + 2ti)→∞ as σ → 1+, contradiction. Hence r = 0; 1 + it is

not a zero.
For the second statement, we have to use the partial fraction decomposition 2.5. Suppose

ρ = (1− δ) + it is a zero. By Lemma 3.1, we have

−ζ
′(s)

ζ(s)
= O(ln |t|)−

∑
ρ

(
1

s− ρ
+

1

ρ

)
≤ O(ln |t|)− 1

s− ρ
.

Then

−<ζ
′

ζ
(σ + ti) ≤ O(ln |t|)− 1

σ + δ − 1

−<ζ
′

ζ
(σ + 2ti) ≤ O(ln |2t|) = O(ln |t|).

For σ > 1, plugging this into (32.11) gives

0 ≤ 3

σ − 1
+O(ln |t|)− 4

σ + δ − 1

=⇒ 4

σ + δ − 1
<

3

σ − 1
+ C1 ln |t|

for some C1. Now take σ = 1 + 4δ to get

4

5δ
<

3

4δ
+ C1 ln |t|,

giving

δ >
1

20C1 ln |t|
as needed.

§4 Prime number theorem: proof

Now we gather everything together to prove the prime number theorem. We first show the
following.

Theorem 4.1 (von Mangoldt’s formula): For an integer x > 2 and x ≥ T ,

ψ(x) = x−
∑

|=(ρ)|<T

xρ

ρ
+O

(
x(lnx)2

T

)
. (32.12)
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Proof. Step 1: We estimate ψ(x) using Theorem 31.4.2. Suppose x is an integer; the theorem
gives ∣∣∣∣ψ(x)−

(∫ c+iT

c−iT
xs
(
−ζ
′

ζ
(s)

ds

s

))∣∣∣∣ ≤ Λ(x) +
∑

n≥1, n 6=x

(x
n

)c
Λ(n)

1

T
∣∣ln (x

n

)∣∣
≤ ln(x) +

∑
n≥1, n 6=x

(x
n

)c ln(n)

T
∣∣ln (x

n

)∣∣ .
Take

c = 1 +
1

lnx
.

Note that this makes xc = ex = O(x). To estimate the sum we split it into several parts.

1. 1 ≤ n < x
e
: We have ∑

1≤n<x
e

(x
n

)c lnn

T
∣∣ln (x

n

)∣∣ - x lnx

T

∑
1≤n<x

1

n

∼ x(lnx)2

T
.

2. x
e
≤ n < ex: We have∑

x
e
≤n<ex, n 6=x

(x
n

)c
lnn

1

T
∣∣ln (x

n

)∣∣ - ∑
x
e
≤n<ex, n 6=x

���
�

e1+ 1
ln x

lnn

T
∣∣ln (x

n

)∣∣
-

1

T

∑
x
e
≤n<ex, n 6=x

lnx∣∣1− x
n

∣∣ using ln x ∼ x− 1 when x ≈ 1

-
x lnx

T

∑
x
e
≤n<ex,n 6=x

1

|n− x|

-
x lnx

T

∑
1≤n<(e−1)x

1

n

∼ x(lnx)2

T
.

3. n ≥ ex: We have∑
n≥ex

(x
n

)c lnn

T
<
x

T

∫ ∞
ex−1

ln y

yc
dy

ln y

yc
decreasing for y > e

=
x

T

[
−y−c+1 ln y

c− 1
− y−c+1

(c− 1)2

]∞
ex−1

∼ x(lnx)2

T
.
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Putting everything together gives∣∣∣∣ψ(x)−
(∫ c+iT

c−iT
xs
(
−ζ
′

ζ
(s)

)
ds

s

)∣∣∣∣ = O

(
x(lnx)2

T
+ lnx

)
. (32.13)

Step 2: We move the line of integration to <s = −1. Assuming that T is not the imaginary
part of any root, by Cauchy’s residue theorem 4.8∫ c+iT

c−iT

xs

s

ζ ′

ζ
(s) ds+

∫ −1+iT

c+iT

xs

s

ζ ′

ζ
(s) ds︸ ︷︷ ︸

Ih,1

+

∫ −1−iT

−1+iT

xs

s

ζ ′

ζ
(s) ds︸ ︷︷ ︸

Iv

+

∫ c−iT

−1−iT

xs

s

ζ ′

ζ
(s) ds︸ ︷︷ ︸

Ih,2

=
ζ ′

ζ
(0)−x+

∑
|=ρ|<T

xρ

ρ
.

Here xρ

ρ
are the resuides at the zeros, −x comes from the pole of ζ at 1, and ζ′

ζ
(0) comes

from the pole of 1
s
. Then

∫ c+iT

c−iT

xs

s

(
−ζ
′

ζ
(s)

)
ds− x = 1 + Ih,1 + Ih,2 + Iv −

∑
=ρ<T

xρ

ρ
. (32.14)

We estimate each summand.

1. For the horizontal integrals, we use the estimate 3.1 to get

∣∣∣∣ζ ′ζ (s)

∣∣∣∣ =

∣∣∣∣∣∣
∑

|=(s−ρ)|<1

1

s− ρ

∣∣∣∣∣∣+O(lnT ), s = σ + Ti

≤
∑

|=(s−ρ)|<1

1

=(s− ρ)
+O(lnT ).

We would like to bound =(s− ρ) away from 0. To do this, note that there are O(lnT )
roots in with =ρ ∈ [T, T + 1] by Lemma 3.1. Hence by tweaking T slightly4, we can
assume |=(s− ρ)| > C

lnT
for all ρ. Also by Lemma 3.1 there are at most O(lnT ) terms

in the sum, so the sum is O((lnT )2). Integrating gives∣∣∣∣∫ −1±Ti

c±T i

xs

s

ζ ′

ζ
(s)ds

∣∣∣∣ = O((lnT )2)O

(
1

T

)∫ −1

c

|xs| ds

= O

(
(lnT )2

T

)
O(x)

= O

(
x(lnx)2

T

)
.

4Changing T by a constant does not change the error term of (32.12); moreover the change in the LHS

sum is O
(
x
T lnT

)
= O

(
x(ln x)2

T

)
.
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2. For the vertical integral, we use the same estimate, this time noting that |s − ρ| > 1
for every root ρ, since every zero satisfies <ρ > 0. This gives that ζ′

ζ
(s) = O(lnT ), and∣∣∣∣∫ −1−T i

−1+T i

xs

s

ζ ′

ζ
(s) ds

∣∣∣∣ = O(lnT )

∫ −1+T i

−1−T i

x−1

|s|
ds

= O

(
lnT

x

)∫ T

−T

1√
t2 + 1

dt

= O

(
lnT

x

)∫ T+1

1

1

t
dt

= O

(
(lnT )2

x

)
= O

(
x(lnx)2

T

)
.

Equations (32.13) and (32.14) together with the above two estimates give the theorem.

The final ingredient in the proof of the Prime Number Theorem is the estimate for∑
|=(ρ)|<T

xρ

ρ
using the zero-free regions for ζ and the estimate for number of zeros of ζ.

Proof of Theorem 1.2. First, note there can only be a finite number of zeros of ζ with
|=(ρ)| < 2, so

∑
|=(ρ)|<2

xρ

ρ
= O(xr) for some fixed r < 1.5 We estimate

∑
2≤|=(ρ)|<T

xρ

ρ

in two steps.

1. By Theorem 3.3, there is c such that for ρ with 2 ≤ |=(ρ)| < T ,

|xρ| = x<ρ ≤ x1− c
lnT = xe−

c ln x
lnT .

2. Using N(T ) = O(T lnT ) (Theorem 3.2 or the weaker remark after Lemma 3.1),∑
2≤|=(ρ)|<T

1

|ρ|
≤

∑
2≤|=(ρ)|<T

1

=(ρ)

≤
∫ T

2

dN(t)

t
(Riemann-Steltjes integral)

=
N(T )

T
− N(2)

2
+

∫ T

2

N(t)

t2
dt integration by parts

= O(lnT ) +

∫ T

2

O

(
ln t

t

)
dt

= O(lnT ) +O((lnT )2) = O((lnT )2). (32.15)

Putting these two estimates together,∣∣∣∣∣∣
∑

|=(ρ)|<T

xρ

ρ

∣∣∣∣∣∣ ≤ O(xr) + max
2≤|=(ρ)|<T

(|xρ|)
∑

2≤|=(ρ)|<t

1

|ρ|

≤ O(xr) +O
(
xe−

c ln x
lnT (lnT )2

)
. (32.16)

5In fact, there are zero such zeros.
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Combining with Theorem 4.1, and setting T = e
√

lnx (so that xe−
ln x
lnT = x

T
), we get

|ψ(x)− x| = O

(
xr + xe−

c ln x
lnT (lnT )2 +

x(lnx)2

T

)
= O

(
xr + xe−c

√
lnx lnx+ x(lnx)2e−

√
lnx
)

= O(xe−C
√

lnx),

for some C > 0. This shows
ψ(x) = x+O(xe−C

√
lnx). (32.17)

Finally, we extract the asymptotics of π from the following.

Lemma 4.2: We have the following estimates:

π(x) =
ψ(x)

lnx
+

∫ x

2

ψ(y)
dy

y(ln y)2
+O(x

1
2 ),

ψ(x) = π(x) lnx−
∫ x

2

π(y)

y
dy +O(x

1
2 lnx).

Proof. Define

γ(n) =

{
1, n prime,

0, n not prime,
Λ1(n) =

{
lnn, n prime,

0, n not prime,

and
ψ1(x) =

∑
n≤x

Λ1(n).

First note

|ψ(x)− ψ1(x)| =
∑

2≤r≤log2(x)

∑
p| pr≤x

ln p

≤
∑

2≤r≤log2(x)

x
1
r lnx

= O(x
1
2 lnx+ x

1
3 (lnx)2) = O(x

1
2 lnx). (32.18)

Part 1: By partial summation 3.7.1 with u = Λ1, U = ψ1, and v = 1
lnx

,

π(x) =
∑
n≤x

γ(n)

=
∑
n≤x

Λ1(n)
1

lnn

=
ψ1(x)

lnx
+

∫ x

2

ψ1(t)
dt

t(ln t)2

=
ψ(x)

lnx
+O(x

1
2 ) +

∫ x

2

ψ(t)
dt

t(ln t)2
+

∫ x

2

O(t−
1
2 ) dt by (32.18)

=
ψ(x)

lnx
+

∫ x

2

ψ(t)
dt

t(ln t)2
+O(x

1
2 ).
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Part 2: By partial summation,

ψ1(x) =
∑
n≤x

γ(n) ln(n)

= π(x) lnx−
∫ x

2

π(t)

t
dt.

Combining with (32.18) gives the result.

Putting (32.17) into Lemma 4.2,

π(x) =
x

lnx
+O

(
xe−C

√
lnx

lnx

)
+

∫ x

2

(
1

(ln y)2
+O

(
e−C

√
ln y

(ln y)2

))
dy +O(x

1
2 )

= li(x) +O(xe−C
√

lnx). by (32.1)

§5 The Riemann hypothesis

The following conjecture is worth one million dollars:

Conjecture 5.1 (Riemann hypothesis): All nontrivial zeros s of ζ(s) satisfy <s = 1
2
.

Note that for no ε > 0 has it been proved that all zeros satisfy <s < 1− ε. Our zero-free
region, sadly, has a boundary approaching real part 1 as t→∞.

One reason that the Riemann hypothesis is important is that it gives a strong error bound
in the prime number theorem (as well as many other theorems of analytic number theory).

Theorem 5.2: Suppose 1
2
≤ θ < 1. The following are equivalent.

1. ζ(s) has no zeros with <s > θ.

2. π(x) = li(x) +O(xθ lnx).

3. π(x) = li(x) +O(xθ+ε) for every ε > 0, where the constant depends on ε.

In particular, the Riemann hypothesis is equivalent to π(x) = li(x) +O(x
1
2 lnx).

Proof. (1) =⇒ (2): Suppose ζ(s) has no zeros with <s > θ. Then using the estimate
in (32.15), we have

∑
|=(ρ)|<T

xρ

ρ
≤ max

ρ
|xρ|

∑
|=(ρ)|<T

1

|ρ|

≤ xθ(lnT )2.
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Now take T = x to find that

|ψ(x)− x| = O

(
xθ(lnT )2 +

x(lnx)2

T

)
= O(xθ(lnx)2).

Then using Lemma 4.2 and (32.1),

π(x) =
ψ(x)

lnx
+

∫ x

2

ψ(y)
dy

y(ln y)2
+O(y

1
2 )

= li(x) +O

(
xθ(lnx)2

lnx

)
+

∫ x

2

O

(
x

1
2
−1(lnx)2

(lnx)2

)
dx

= li(x) +O(xθ lnx).

(2) =⇒ (3): Item 2 is stronger than item 3.

(3) =⇒ (1): Going the other way in Lemma 4.2,

ψ(x) = π(x) lnx−
∫ x

2

π(y)

y
dy +O(x

1
2 lnx)

=

(
x

lnx
+

∫ x

2

dy

(ln y)2
+O(xθ+ε)

)
lnx−

∫ x

2

(
1

lnx
+

1

y

∫ y

2

dt

(ln t)2
+
O(yθ+ε)

y

)
dy +O(x

1
2 lnx)

= x+O(xθ+ε
′
)−

∫ x

2

dy

ln y
+

∫ x

2

dy

(ln y)2
lnx−

∫ x

2

(∫ y

2

dt

(ln t)2
· 1

y

)
dy︸ ︷︷ ︸

0

for any ε′ > ε. Note the integrals above sum to 0 by integration by parts (u = ln y,
dv = dy

(ln y)2 ).
By partial summation, for σ > 1,

−ζ
′

ζ
(s) =

∑
n

Λ(n)n−s

= −
∫ ∞

1

ψ(n)sn−s−1 ds

=
s

s− 1
+ s

∫ ∞
1

(ψ(x)− x)︸ ︷︷ ︸
O(xθ+ε′ )

x−s−1 dx.

The last integral converges whenever σ > θ + ε′, so ζ′

ζ
has analytic continuation to σ > θ.

This means ζ has no zeros for σ > θ.

435



Number Theory, §32.5.

436



Chapter 33

L-functions and Dirichlet’s theorem

§1 Outline

Our goal in this chapter is to study the asymptotics of

π(x, a mod N) = | {p ≤ x : p prime, p ≡ a (mod N)} |

where a is relatively prime to N . We define ψ(x, a mod N) =
∑

n≤x, n≡a (mod N) Λ(n).

To study the distribution of primes in the arithmetic progression n ≡ a (mod N), we
study the asymptotics of ψ(x, a mod N). However, this does not come from a Dirichlet series
that we can easily estimate and that has nice multiplicative properties, like ψ(x) comes from
ζ(x) =

∏
p

1
1−p−s (after logarithmic differentiation and extracting coefficients).

The solution is to write ψ(x, a mod N) in terms of Dirichlet series whose coefficients are
multiplicative. For example, when considering primes p ≡ 1 (mod 4), we consider

L(s, χ1) =
1

1s
+

1

3s
+

1

5s
+

1

7s
+

1

9s
· · · =

∏
p

1

1− p−s
.

L(s, χ2) =
1

1s
− 1

3s
+

1

5s
− 1

7s
+

1

9s
· · · =

∏
p≡1 (mod 4)

1

1− p−s
∏

p≡3 (mod 4)

1

1 + p−s

The multiplicative structure is from the fact that the coefficients come from group homo-
morphisms (Z/NZ)× → C, i.e. Dirichlet characters (see Definition 12.1.8).

Logarithmic differentiation gives

−L
′

L
(s, χ1) =

Λ(1)

1s
+

Λ(3)

3s
+

Λ(5)

5s
+

Λ(7)

7s
+

Λ(9)

9s
· · ·

−L
′

L
(s, χ2) =

Λ(1)

1s
− Λ(3)

3s
+

Λ(5)

5s
− Λ(7)

7s
+

Λ(9)

9s
· · ·

1

2

(
−L

′

L
(s, χ1)− L′

L
(s, χ2)

)
=

Λ(1)

1s
+

Λ(3)

3s
+

Λ(5)

5s
+

Λ(7)

7s
+

Λ(9)

9s
· · ·

Taking the partial sum of coefficients of the last Dirichlet series gives the desired result. In
general, we can always estimate ψ(x, a mod N) using an average of these L-functions.

The main steps in the proof are the same, except with ζ replaced by L and an extra
recombination step at the end using character theory. The main steps are the following.
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1. Functional equation and analytic continuation for L, Theorem 2.5.

2. Product development, Theorem 2.6.

3. Estimates on L′

L
and asymptotics on number of zeros N(T, χ), Lemma 3.1.

4. Zero-free region for L, Theorem 3.3.

5. von Mangoldt’s formula 4.1.

If we conly cared about bounds for a fixed modulus N , then that’s all there is to it.
However, to obtain error bounds independent ofN , we need a zero free region independent

of N (Theorem 3.3). While in Theorem 32.3.3 we had the luxury of restricting to large |t|,
here we have to work with small |t|, and our resulting region may miss an “exceptional”
zero. We show there is at most 1 exception (Theorem 4.2) and prove a version of the Prime
Number Theorem for arithmetic progressions (Theorem 4.4). Later we prove a stronger but
ineffective bound on the “exceptional zero” (Theorem 5.4) and obtain improved asymptotics
(Theorem 5.1).

§2 L-functions

Definition 2.1: Let χ be a Dirichlet character. Define the L function

L(s, χ) :=
∞∑
n=1

χ(n)

ns
, <s > 1.

By multiplicativity of χ, L has a product expansion

L(s, χ) =
∏
p

1

1− χ(p)p−s
.

Only the factors with p - N contribute. Note that if χ is of level N and χ = χ1χ2 with χ1

primitive of level N1, then

L(s, χ) = L(s, χ1)
∏

p|N, p-N1

(1− χ(p)p−s). (33.1)

Thus for convenience we can often just prove results about primitive characters.
By logarithmic differentiation we have

L′

L
(s, χ) = −

∑
p

(ln p)χ(p)p−s

1− p−s
= −

∞∑
n=1

χ(n)Λ(n)

ns
.

Theorem 2.2 (Generalized Poisson summation): Let g be a function Z/NZ → R, and
suppose f is a C2 function satisfying

|f(x)|, |f̂(x)| ≤ C(1 + |x|)−1−δ
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for some C, δ > 0. Then ∑
m∈Z

f
(m
N

)
g(m) =

∑
n∈Z

f̂(n)ĝ(n).

In particular, if χ is a primitive multiplicative character modulo N , then∑
m∈Z

χ(m)f
(m
N

)
= G(χ, χ+

1 )
∑
n∈Z

χ(−n)f̂(n).

where χ+
j (k) := e

2πijk
N .

Here f̂(n) denotes the Fourier transform

f̂(y) =

∫ ∞
−∞

f(x)e−2πixy dx

and ĝ(n) denotes the finite Fourier transform

ĝ(n) =
∑

m (mod N)

g(m)e−
2πim
N .

Proof. Consider the function

F (x) =
∑
m∈Z

f(x+m).

Note this sum converges absolutely to a continuous function by the given conditions. Since
F (x) has period 1 and is continuous, we can expand it in Fourier series:

F (x) =
∞∑
n=0

ane
2πinx,

an =

∫ 1

0

F (x)e−2πinx dx =

∫ 1

0

∑
m∈Z

f(x+m)e−2πinx dx =

∫ ∞
−∞

f(x)e−2πinx dx = f̂(n).

Plugging in x = a
N

gives

F
( a
N

)
=
∑
n∈Z

f̂(n)e2πin( a
N ).

Now we calculate ∑
m∈Z

f
(m
N

)
g(m) =

∑
a (mod N)

g(a)F
( a
N

)
=

∑
a (mod N)

g(a)
∑
n∈Z

f̂(n)e2πin( a
N )

=
∑
n∈Z

f̂(n)
∑

a (mod N)

g(a)e2πin( a
N )

=
∑
n∈Z

f̂(n)ĝ(n).
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For the second part, note that∑
m∈Z

χ(m)f
(m
N

)
=
∑
n∈Z

χ̂(n)f̂(m)

=
∑
n∈Z

G(χ, χ+
1 )χ(n)f̂(n).

We apply Poisson summation to derive a transformation law for generalized theta func-
tions.

Definition 2.3: Let χ be a multiplicative character modulo N . Define

θχ(u) =
∑
n∈Z

χ(n)e−πn
2u

ϑχ(u) =
∑
n∈Z

χ(n)ne−πn
2u.

Note we need to work with ϑχ(u) when χ is odd, since in this case θχ(u) = 0 and we
cannot express L(s, χ) in terms of θχ.

Proposition 2.4 (Transformation law for θχ): Suppose χ is primitive. Then

θχ(u) =
G(χ, χ+

1 )

N
√
u

θχ

(
1

N2u

)
ϑχ(u) = −G(χ, χ+)i

N2u
3
2

ϑχ

(
1

N2u

)
.

Proof. Note the Fourier transform of e−πx
2

is itself; moreover, if f(x) = g(ax) then f̂(y) =
ĝ
(
y
a

)
. Hence

F(e−πu(Nx)2

) =
1

N
√
u
e−

πy2

uN2 .

By the Poisson summation formula 2.2,

θχ(u) =
∑
n∈Z

χ(n)e−πn
2u

=
G(χ, χ+

1 )

N
√
u

∑
n∈Z

χ(−n)e−
πn2

uN2

=
G(χ, χ+

1 )

N
√
u

θχ

(
1

N2u

)
.

For the second part, note first that f̂ ′(y) = 2πixf̂(y). Hence

F(Nxe−πu(Nx)2

) =

(
− 1

2πuN

)
F
(
d

dx
(xe−πu(Nx)2

)

)
= − 1

��2πuN
·��2πiy 1

N
√
u
e−

πy2

uN2 = − i

N2u
3
2

e−
πy2

uN2 .
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Then by Poisson summation,

ϑχ(u) =
∑
n∈Z

χ(n)ne−πn
2u

= −G(χ, χ+
1 )i

N2u
3
2

∑
n∈Z

χ(−n)ne−
πn2

uN2

= −G(χ, χ+
1 )i

N2u
3
2

ϑχ

(
1

N2u

)
.

From this we get the functional equation for the L-function. The proof is similar to that
of Theorem 2.2.

Theorem 2.5: Let χ be any character modulo N . Then L(s, χ) has an meromorphic con-
tinuation to C. If χ is principal then L(s, χ) has a single pole at 1, and if χ is nonprincipal
then L(s, χ) is entire.

Now supose χ is primitive. Defining

ξ(s, χ) :=
( π
N

)− s+a
2

Γ

(
s+ a

2

)
L(s, χ),

where

a =

{
0, if χ(−1) = 1

1, if χ(−1) = −1,

we have

ξ(s, χ) :=
G(χ, χ+

1 )

ia
√
q

ξ(1− s, χ).

Moreover, for any χ, L(s, χ) has zeros at −2N + a (the trivial zeros) and all other zeros
are in the critical strip 0 ≤ <s ≤ 1.

Note that for χ nonprincipal, partial cancellation in the Dirichlet series removes the pole
at s = 1.

Proof. Note that it suffices to prove all statements for χ primitive, in light of (33.1). If χ is
principal, the result follows from the result for ζ, so suppose χ is nonprincipal. Use partial
summation 3.7.1 to find that for for s > 1,

L(s, χ) =

∫ ∞
1

S(x)sx−s−1 dx (33.2)

where S(x) =
∑

n≤x χ(n). (We use the fact that limN→∞ S(N)N−s = 0 when s > 1.) Since
χ(1) + · · · + χ(N) = 0 by Corollary 12.1.7, χ(1) + · · · + χ(n) ≤ N . Then for <s > 0, the
above integral converges absolutely, extending L(s, χ) holomorphically to <s > 0.

Case 1: Suppose χ(−1) = 1; then χ(−n) = χ(n). We calculate∫ ∞
0

θχ(u)u
s
2
du

u
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in two different ways.1 When 0 < <s < 1,

∫ ∞
0

θχ(u)u
s
2
du

u
=

∫ ∞
0

∑
n∈Z

χ(n)e−πn
2uu

s
2
du

u

= 2
∞∑
n=1

∫ ∞
0

χ(n)e−πn
2uu

s
2
du

u
χ(−n) = χ(n), χ(0) = 0

= 2
∞∑
n=1

∫ ∞
0

χ(n)e−u
( u

πn2

) s
2 du

u
u← [

u

πn2

= 2π−
s
2

(
∞∑
n=1

χ(n)

ns

)(∫ ∞
0

e−uu
s
2
du

u

)
= 2π−

s
2L(s, χ)Γ

(s
2

)
.

Now using the transformation law 2.4,

∫ ∞
0

θχ(u)u
s
2
du

u
=

∫ ∞
0

G(χ, χ+
1 )

N
√
u

θχ

(
1

N2u

)
u
s
2
du

u

=
G(χ, χ+

1 )

N

∫ ∞
0

θχ

(
1

N2u

)
u
s
2
− 1

2
du

u

=
2G(χ, χ+

1 )

N

∞∑
n=1

∫ ∞
0

χ(n)e−
πn2

uN2 u
s
2
− 1

2
du

u

=
2G(χ, χ+

1 )

N

∞∑
n=1

∫ ∞
0

χ(n)e−u
(
πn2

uN2

) s
2
− 1

2 du

u
u←[

πn2

uN2

=
2G(χ, χ+

1 )π
s
2
− 1

2

N s

∞∑
n=1

χ(n)

n(1−s)

∫ ∞
0

e−uu
1−s

2
du

u

=
2G(χ, χ+

1 )π
s
2
− 1

2

N s
L(1− s, χ)Γ

(
1− s

2

)
.

Equating these two calculations gives the result.

Case 2: Suppose χ(−1) = −1. We work with ϑχ instead of θχ. To compensate for the extra

factor of n in ϑχ, we need an extra factor of u
1
2 . We calculate

∫ ∞
0

ϑχ(u)u
s+1

2
du

u

1Unlike in Theorem 32.2.2, there is no “−1” since χ(0) = 0.
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in two different ways. First,∫ ∞
0

θχ(u)u
s+1

2
du

u
=

∫ ∞
0

∑
n∈Z

χ(n)ne−πn
2uu

s+1
2
du

u

= 2
∞∑
n=1

∫ ∞
0

χ(n)ne−πn
2uu

s+1
2
du

u
−nχ(−n) = nχ(n), χ(0) = 0

= 2
∞∑
n=1

χ(n)n

∫ ∞
0

e−u
( u

πn2

) s+1
2 du

u
u←[

u

πn2

= 2π−
s+1

2

∞∑
n=1

χ(n)

ns

∫ ∞
0

e−uu
s+1

2
du

u

= 2π−
s+1

2 L(s, χ)Γ

(
s+ 1

2

)
.

Now using the transformation law 2.4,∫ ∞
0

θχ(u)u
s+1

2
du

u
=

∫ ∞
0

−G(χ, χ+)iy

N2u
θχ

(
1

N2u

)
u
s+1

2
du

u

= −G(χ, χ+)i

N2

∫ ∞
0

θχ

(
1

N2u

)
u
s
2
−1du

u

= −2G(χ, χ+)i

N2

∞∑
n=1

nχ(n)

∫ ∞
0

e−
πn2

uN2 u
s
2
−1du

u

= −2G(χ, χ+)i

N2

∞∑
n=1

∫ ∞
0

χ(n)ne−u
(
πn2

uN2

) s
2
−1
du

u
u←[

πn2

uN2

= −2G(χ, χ+)iπ
s
2
−1

N2Nn−2

∞∑
n=1

χ(n)

n1−s

∫ ∞
0

e−uu1− s
2
du

u

= −2G(χ, χ+)iπ
s
2
−1

N s
L(1− s, χ)Γ

(
1− s

2

)
.

Again matching the two calculations gives the result.
From Proposition 30.7.2(5), Γ has no zeros, so we find that L(s, χ) is defined whenever

L(s, χ) is defined; this L is entire. The description of the zeros of L follow from the functional
equation and the fact that Γ has poles at −N0.

Theorem 2.6 (Product development of ξ(s, χ)): Suppose χ is primitive of level N > 1. The
function ξ(s, χ) is entire of order 1 and has the product expansion

ξ(s, χ) = ξ(0, χ)eBs
∏

ρ zero of ξ(s,χ)

(
1− s

ρ

)
e
s
ρ .

Then L′

L
(s, χ) has the partial-fraction expansion

L′

L
(s, χ) = B +

1

2
ln

(
N

π

)
− 1

2

Γ′

Γ

(
s+ a

2

)
+

∑
ρ nontrivial zero of ζ

(
1

s− ρ
+

1

ρ

)
.
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From now on, we only talk about nontrivial zeros of ζ.

Proof. We proceed as in Theorem 32.2.5. The argument is the same, the only major differ-
ences being that ξ(s, χ) has no poles at s = 0, 1, and the slight difference in definition of
ζ(s, χ) in terms of L(s, χ), versus the definition of ξ(s) in terms of ζ(s). (Namely, we have

s+ a instead of s, and an extra N−
s+a

2 . For completeness we give the proof.
To show it has order 1 we need two inequalities.

Step 1: There is no constant C so that ξ(s, χ) - eC|s|: Indeed, for real s and any constant
C ′ we have

ξ(s) =
( π
N

)− s+a
2

Γ

(
s+ a

2

)
L(s, χ)

% s−
1
2

(
(s+ a)N

2eπ

) s+a
2

% eC
′s.

Step 2: There is a constant C so that ξ(s, χ) - eC|s| ln |s|: e|s| ln |s| ≥ 1 for all s so it suffices
to prove this for sufficiently large s. By the integral and sum formulas for Γ and ξ, and the
fact that |xs| = |x<s|, we have

|ξ(σ + ti, χ)| ≤
( π
N

)−σ+a
2

Γ

(
σ + a

2

)
L(σ, χ), σ > 1.

By symmetry of ξ is suffices to consider σ ≥ 1
2
. (We have ξ(s, χ) = G(χ,χ+)

ia
√
q
ξ(1 − s, χ), and

the multiplier has absolute value 1.) Consider 2 cases.

1. σ > 2: Then π−
σ+a

2 < 1 and L(σ, χ) < ζ(2) so we have by Stirling’s approxima-
tion 30.7.4 that

|ξ(σ+ti, χ)| -
∣∣∣∣N σ+a

2 Γ

(
σ + ti+ a

2

)∣∣∣∣ = N
σ+a

2 e|(ln Γ)(σ+a)| = N
σ+a

2 e(
σ+a−1

2 ) ln σ+a
2
−σ+a

2
+O(1)

from which the result follows.

2. 1
2
≤ σ ≤ 2: For s bounded away from 1, from (33.2),

L(s, χ) = O(|s|).

This time Γ
(
σ+a

2

)
= O(1) so

|L(s, χ)| ≤
∣∣∣∣( πN )−σ+a

2
L(s, χ)Γ

(
σ + a

2

)∣∣∣∣ = O(|s|) - eC|s| ln |s|.

This shows ξ(s) has order 1.
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Step 3: By the product development 6.3, noting the the zeros of ξ(s, χ) are the nontrivial
zeros of L(s, χ), we get

ξ(s, χ) = ξ(0, χ)eBs
∏

ρ zero of L(s,χ)

(
1− s

ρ

)
e
s
ρ .

Logarithmic differentiation gives

ξ′

ξ
(s, χ) = B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
.

Since L(s, χ) =
(
π
N

) s+a
2 Γ

(
s+a

2

)−1
ξ(s, χ), we get

L′

L
(s, χ) =

1

2
ln
( π
N

)
− 1

2

Γ′

Γ

(
s+ a

2

)
+B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
.

§3 Zeros of L

Lemma 3.1: Define L = lnN(|t| + 2). Let χ be a primitive character of level N . For
s = σ + it with σ ∈ [−1, 2], we have

L′

L
(s, χ) =

∑
ρ

(
1

s− ρ
+

1

ρ

)
+O(L)

=
∑

|=(s−ρ)|<1

1

s− ρ
+O(L).

Moreover, there are O(ln |Nt|) zeros ρ with |=(s − ρ)| < 1, i.e. the number of zeros with
imaginary part in [t, t+ 1] is O(lnNt), as t→∞.

Note this gives N(T ) = O(T ln(NT )).

Proof. We follow the proof of Theorem 32.3.1. The case N = 1 follows from there so we
assume N > 1.
Step 1: Theorem 2.6 gives us

L′

L
(s, χ) = B +

1

2
ln

(
N

π

)
︸ ︷︷ ︸

O(1+lnN)

−1

2

Γ′

Γ

(
s+ a

2

)
︸ ︷︷ ︸

(A)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
︸ ︷︷ ︸

(B)

. (33.3)

From Stirling’s approximation 30.7.4, (A) equals

ln

∣∣∣∣σ + a

2
+
t

2
i

∣∣∣∣+O(1) = O(L). (33.4)
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Now suppose s = 2 + it. Note that∣∣∣∣L′L (s, χ)

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

χ(n)Λ(n)n−2−it

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
n=1

(lnn)n−2

∣∣∣∣∣ <∞,
so the LHS of (33.3) is O(1). Hence (33.3) becomes

O(L) =
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (33.5)

Now finish the same way as in Theorem 32.3.1 to conclude the first step.

Step 2: Now we consider general s = σ + it, by comparing it to 2 + it. We have by (33.3)
and (33.4) that

L′

L
(s, χ)−L

′

L
(2 + it)︸ ︷︷ ︸
O(1)

= O(1)+
∑

|=(s−ρ)|<1

1

s− ρ
+

∑
|=(s−ρ)|<1

1

2 + it− ρ︸ ︷︷ ︸
O(L)

+
∑

|=(s−ρ)|≥1

(2− σ) + it

(s− ρ)(2 + it− ρ)︸ ︷︷ ︸
O(L)

.

Finish as in Theorem 32.3.1, the only difference being that ln |t| is replaced by ln |Nt|.

Theorem 3.2 (von Mangoldt): (∗) As T →∞,

N(T, χ) =
T

π
ln

(
NT

2π

)
− T

π
+O(lnNT ).

where the constant is independent of N .

Proof. The proof is similar to Theorem 32.3.2. We’ll only need the weaker estimateN(T, χ) =
O(T lnNT ) so we omit the proof.

Theorem 3.3 (Zero-free region for L): There exists a constant c > 0, independent of χ and
N , such that the following holds for all primitive χ of level N .

1. If χ is nonreal, and s = σ + it is a zero of L(s, χ), then

σ < 1− c

L
. (33.6)

2. If χ is real, then with at most 1 exception (counting multiplicity), all zeros satisfy (33.6).
If it exists, the exceptional zero is real.

Unlike in Theorem 32.3.3, we have to worry about small |t|. Fortunately, L(s, χ) has no
pole at s = 1 to screw us up. Things are not so easy, however.

Proof. We may assume N ≥ 2.
As in Theorem 32.3.3, we have 0 ≤ 3 + 4 cos θ + cos 2θ, so

0 ≤ 3 + 4<(χ(n)n−it) + <(χ(n)2n−2it).
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Multiplying by Λ(n)n−σ and summing, we get

0 ≤ 3

(
−L

′

L
(σ, χ0)

)
+ 4<

(
−L

′

L
(σ + ti, χ)

)
+ <

(
−L

′

L
(σ + 2ti, χ2)

)
, σ > 1. (33.7)

Suppose 1 < σ < 2 and ρ = (1− δ) + ti is zero. First we have

− L′

L
(σ, χ0) = −ζ

′

ζ
(σ, χ0)−

∑
p|N

(ln p)p−s

1− p−s
=

1

σ − 1
+O(lnN). (33.8)

Next, we use the partial fraction decomposition 2.6. By Theorem 3.1 we have

<
(
−L

′

L
(s, χ)

)
≤ O(L)−

∑
ρ

<
(

1

s− ρ

)
. (33.9)

1. Suppose χ2 is not principal, i.e. χ is not real. Now (33.9) gives

<
(
−L

′

L
(σ + ti, χ)

)
≤ O(L)− 1

σ + δ − 1
. (33.10)

Also by Theorem 3.1

<
(
−L

′

L
(σ + 2ti, χ2)

)
≤ O(L(2t)) = O(L). (33.11)

The remainder of this case follows the lines of Theorem 32.3.3.

2. If χ2 is principal, then we have

−L
′

L
(σ + 2ti, χ2) = −ζ

′

ζ
(σ + 2it) +

∑
p|N

ln p · p−(σ+2ti)

1− p−(σ+2ti)︸ ︷︷ ︸
O(1) when σ≥1

<
(
−L

′

L
(σ + 2ti, χ2)

)
≤ O(ln(|t|+ 2)) + <

(
1

(σ + 2ti)− 1

)
+O(lnN), (33.12)

the last inequality following from Lemma 32.3.1.

Putting (33.8), (33.9), and (33.12) into (33.11) give

0 ≤
(

3

σ − 1
+O(L)

)
+

(
−4
∑
ρ

<
(

1

σ + ti− ρ

)
+O(L)

)
+

(
<
(

1

σ + 2ti− 1

)
+O(L)

)
(33.13)

Fix C ′ > 0; when s = σ+ it and |t| ≥ C′

lnN
then 1

σ+2ti−1
= O(lnN) so (33.11) holds and

we proceed as in item 1.

Hence we consider t < C′

lnN
. We use a different approach. Note

−L
′

L
(σ, χ0) ≥ L′

L
(σ, χ) when σ ≥ 1

447



Number Theory, §33.4.

because the coefficients their coefficients are Λ(n) ≥ −χ(n)Λ(n) (and they are real)2.
Putting in (33.8) and (33.9) give

1

σ − 1
≥
∑
ρ

<
(

1

σ − ρ

)
+O(lnN). (33.14)

Let σ = 1 + 2δ
lnN

; we estimate the sum in terms of the real parts of σ− ρ. For any zero
ρ we have

|=ρ| ≤ δ

lnN
=

1

2

2δ

lnN
≤ <(σ − ρ)

|σ − ρ|2 = [=(σ − ρ)]2 + [<(σ − ρ)]2 (33.15)

≤
(

1

4
+ 1

)
<(σ − ρ)2 =

5

4
<(σ − ρ)2. (33.16)

Hence (33.14) gives, for some constant A,(
A+

1

2δ

)
lnN =

1

1− σ
+ A lnN ≥

∑
|=(ρ)|< δ

lnN

<
(

1

σ − ρ

)

=
∑

|=(ρ)|< δ
lnN

<(σ − ρ)

|σ − ρ|2

≥
∑

|=(ρ)|< δ
lnN

4

5

∑
ρ

1

1 + 2δ
lnN
−<(ρ)

by (33.15).

If <(ρ) > 1 − c
lnN

then it contributes 4
5

lnN
2δ+c

to the RHS sum. If there are two zeros
(counting multiplicity), then

8

5

1

2δ + c
≤ A+

1

2δ
.

This would be a contradiction if

c <
2δ(3− 10Aδ)

5(2δA+ 1)
.

Now choose δ small enough and c so that it works for case 1 and satisfies the above
inequality.

Finally, note ζ(s, χ) = ζ(s, χ) for real characters, so if s is an (exceptional) zero so is
s. Since there is at most one exceptional zero, it can only be real.

§4 Prime number theorem in arithmetic progressions

Theorem 4.1 (von Mangoldt’s formula): For integer x > 2, x ≥ T , and χ primitive of level
N > 1,

ψ(x, χ) = −
∑

|=(ρ)|<T

xρ

ρ
+O

(
x[(lnx)2 + (lnNT )2]

T

)
.

2Alternatively, put in t = 0 in (33.11).
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If χ has associated primitive character χ1, then for x ≥ 1,

|ψ(x, χ)− ψ(x, χ1)| = O(lnN lnx).

Note that unlike in Theorem 4.1, we have ψ(x, χ) ≈ 0 as opposed to ψ(x) ≈ x. Remember
this is expected because the average of values for a nontrivial character is 0, so there is
cancellation in the sum. Moreover, there is no pole at s = 1 for L as there was in ζ, so the
application of Cauchy’s Theorem in Step 2 will not give the x term.

Proof. Step 1: We estimate ψ(x) using Theorem 31.4.2. Suppose x is an integer; the theorem
gives∣∣∣∣ψ(x, χ)−

(∫ c+iT

c−iT
xs
(
−L

′

L
(s, χ)

)
ds

s

)∣∣∣∣ ≤ Λ(x) +
∑

n≥1, n 6=x

(x
n

)c
χ(n)Λ(n)

1

T
∣∣ln (x

n

)∣∣
≤ ln(x) +

∞∑
n≥1, n 6=x

(x
n

)c ln(n)

T
∣∣ln (x

n

)∣∣ .
The difference is O

(
x(lnx)2

T

)
exactly as in (32.13).

Step 2: We move the line of integration to <s = −1. Assuming that T is not the imaginary
part of any root, by Cauchy’s theorem∫ c+iT

c−iT

xs

s

L′

L
(s, χ) ds+

∫ −1+iT

c+iT

xs

s

L′

L
(s, χ) ds︸ ︷︷ ︸

Ih,1

+

∫ −1−iT

−1+iT

xs

s

L′

L
(s, χ) ds︸ ︷︷ ︸

Iv

+

∫ c−iT

−1−iT

xs

s

L′

L
(s, χ) ds︸ ︷︷ ︸

Ih,2

=
L′

L
(0, χ)−

∑
|=ρ|<T

xρ

ρ
. (33.17)

so ∫ c+iT

c−iT

xs

s

(
−L

′

L
(s)

)
ds = Ih,1 + Ih,2 + Iv +

L′

L
(0, χ)−

∑
=ρ<T

xρ

ρ
. (33.18)

We estimate each summand.

1. For the horizontal integrals, we use the estimate 3.1 to get

∣∣∣∣ζ ′ζ (s)

∣∣∣∣ =

∣∣∣∣∣∣
∑

|=(s−ρ)|<1

1

s− ρ

∣∣∣∣∣∣+O(lnNT ), s = σ + Ti

≤
∑

|=(s−ρ)|<1

1

=(s− ρ)
+O(lnNT ).

We would like to bound =(s− ρ) away from 0. To do this, note that for |T | > 2 large
there are O(lnNT ) roots in with =ρ ∈ ±[T, T + 1] by Lemma 3.1. Hence by tweaking
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T slightly we can assume |=(s − ρ)| > C
ln |NT | . Also by Lemma 3.1 there are at most

O(lnNT ) terms in the sum, so the sum is O((lnNT )2). Integrating gives∣∣∣∣∫ −1±T i

c±T i

xs

s

L′

L
(s, χ) ds

∣∣∣∣ = O((lnNT )2)O

(
1

T

)∫ −1

c

|xs| ds

= O

(
x(lnNT )2

T

)
.

2. For the vertical integral, we use the same estimate, this time noting that |s − ρ| > 1
for every nontrivial zero ρ, since <ρ > 0. This gives that ζ′

ζ
(s) = O(lnNT ) and

∫ −1−T i

−1+T i

xs

s

L′

L
(s, χ) ds = O(lnNT )

∫ −1+Ti

−1−T i

x−1

|s|
ds

= O

(
ln(NT ) ln(T )

x

)
= O

(
x(lnNT )2

T

)
.

3. Note by Lemma 3.1 that L′

L
(0, χ) = O(L) = O(ln(N + 1)).

Step 1 and (33.18) together with the above estimates give the first part of the theorem.

For the second part, note that

ψ(x, χ1)− ψ(x, χ) =
∑

1≤n≤x

(χ1(n)− χ(n))Λ(n)n−s

≤
∑

1≤n≤x, n=pr, p|N

Λ(n)

≤
∑
p|N

⌊
lnx

ln p

⌋
ln p

≤
∑
p|N

lnx ln p = lnx lnN.

Theorem 4.2: There is a constant c > 0 such that for any distinct real χ1 and χ2 to moduli
N1 and N2, at most one of L(s, χ1) and L(s, χ2) has a zero β > 1− c

ln(N1N2)
.

Corollary 4.3: There is a constant c > 0 such that the following holds: Fix a level N .
There is at most 1 character χ of level N such that L(s, χ) has a zero with σ ≥ 1− c

L .

Proof of Theorem 4.2. The product χ1χ2 is a character with modulus N1N2. By Theo-
rem 3.1, −L′

L
(σ, χ) < O(lnN1N2) for 1 < σ < 2. Let

F (s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2).
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Then by logarithmic differentiation,

−F
′

F
(s) = −ζ

′

ζ
(s)− L′

L
(s, χ1)− L′

L
(s, χ2)− L′

L
(s, χ1χ2)

=
∞∑
n=1

(1 + χ1(n) + χ2(n) + χ1(n)χ2(n))Λ(n)n−s

=
∞∑
n=1

(1 + χ1(n))(1 + χ2(n))Λ(n)n−s ≥ 0 (33.19)

(33.20)

since the coefficients are nonnegative.
Suppose β1, β2 are exceptional zeros of L(s, χ1), L(s, χ2); then putting Lemma 3.1 into (33.20)

gives

O(lnN1N2) +
1

σ − 1
− 1

σ − β1

− 1

σ − β2

≥ 0.

Let δ = min(1− β1, 1− β2). Take σ = 1 + 2δ to get 1
6δ
≤ O(lnN1N2), i.e. δ % lnN1N2 with

constant independent of N1, N2, i.e. there is an appropriate choice of constant so that χ1, χ2

are not both exceptional for level N1N2.

Proof of Corollary 5.2. Fix a primitive character χ of level N . Suppose χ′ is of level N ,
whose corresponding primitive characters has level N ′. Then the theorem gives c such that
at most one of L(s, χ′) and L(s, χ) has a zero β > 1− c

lnN ′N
≥ 1− c

lnN
.

Theorem 4.4 (Prime number theorem in arithmetical progressions): Let C > 0 and suppose
x > eC(lnN)2

. If there is no exceptional zero for level N , there exists C ′ > 0 such that

π(x, a mod N) = (1 +O(e−C
′√lnx))

li(x)

ϕ(N)
.

If there is an exceptional zero β of level N with associated character χ,

π(x, a mod N) =
1

ϕ(N)
(li(x)− χ(a) li(xβ) +O(xe−C

′√lnx)).

Proof. We have by column orthogonality 12.1.6 that

ψ(χ, a mod N) =
∑

n≤x, n≡a (mod N)

χ(n)Λ(N) =
∑
n≤x

1

ϕ(N)

∑
χ∈ ̂(Z/NZ)×

χ(a)χ(n)Λ(n) =
1

ϕ(N)

∑
χ

χ(a)ψ(x, χ).

(33.21)
Letting χ1 be the primitive character associated to χ, by Theorem 4.1 we have

ψ(x, χ) =

{
−
∑

ρ zero of ψ(x,χ1)
xρ

ρ
+O

(
x[(lnx)2+(lnNT )2]

T
+ lnN lnx

)
, χ nontrivial

ψ(x) +O(lnN lnx), χ trivial.
(33.22)

We estimate
∑

ρ nonexceptional zero of ψ(x,χ1)
xρ

ρ
in two steps.3 Assume T ≥ 2.

3Here “nonexceptional” means with respect to level N .
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1. By Theorem 3.3, there is a constant c such that for all |=(ρ)| < T ,

|xρ| = x<ρ ≤ x1− c
lnNT = xe−

c ln x
lnNT

2. Note the zero free region in Theorem 3.3 means there is a constant d0, independent of
N,χ, so that for all nonexceptional roots ρ, |ρ| ≥ d0. Hence using N(T ) = O(T lnNT )
(Lemma 3.1 or Theorem 3.2),∑
|=(ρ)|<T

1

|ρ|
≤

∑
|=(ρ)|<T

1

max(=(ρ), d0)

≤
∫ T

0

dN(t)

max(t, d0)
(Riemann-Steltjes integral)

=
N(T )

max(T, d0)
+

∫ T

d0

N(t)

t2
dt integration by parts

= O(lnNT ) +

∫ T

d0

O

(
lnNt

t

)
dt

= O(lnNT ) +O((lnNT )2) = O((lnNT )2).

Putting these two estimates together,∣∣∣∣∣∣
∑

|=(ρ)|<T, ρ nonexceptional

xρ

ρ

∣∣∣∣∣∣ ≤ max
|=(ρ)|<T

(|xρ|)
∑
|=(ρ)|<t

1

|ρ|

≤ O
(
e−

c ln x
lnNT (lnNT )2

)
.

Combining with Theorem 4.1, setting T = e
√

lnx, and using N < eC
√

lnx we get

|ψ(x, χ)− x| = O

(
xe−

c ln x
lnNT (lnNT )2 +

x[(lnx)2 + (lnNT )2]

T
+
x(lnT )2

T

)
−x

β

β
− x1−β

1− β

= O
(
xe−

c
√

ln x
C+1 (C + 1)2 lnx+ xe−

√
lnx((lnx)2 + (C + 1)2 lnx) + C(lnx)

3
2

)
−x

β

β

= O(xe−C1

√
lnx)−x

β

β
(33.23)

for some C1 > 0 independent of N,χ, where the implied constant is independent of N,χ.
For the trivial character, (33.22) and (32.17) give

ψ(x, χ) = x+O(xe−C2

√
lnx + lnx lnT ) = x+O(xe−C2

√
lnx) (33.24)

Using (33.21), (33.23), and (33.24), we get

ψ(χ, a mod N) =
1

ϕ(N)

(
x−χ(a)xβ

β
+O(xe−C3

√
lnx)

)
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where the grayed-out portion appears only if there is an exceptional zero. (Note this can
happen for at most 1 character by Lemma 4.2.) It remains to transfer the asymptotics of ψ
to that for π.

The same argument as in Lemma 4.2 shows that

π(x, a mod N) =
ψ(x, a mod N)

lnx
+

∫ x

2

ψ(y)
dy

y(ln y)2
+O(x

1
2 ),

giving the estimate for π.

§5 Siegel zero

In this section we obtain bounds on the exceptional zero to get a better error bound for
prime number theorem on arithmetic progressions. We proceed in 2 steps.

1. Show that L′(β, χ) is small for β close to 1.

2. Bound L(1, χ) away from 0.

From this, we get that L(β, χ) cannot be 0 for β too close to 1.
Then we will be able to show the following improved form of Theorem 4.4.

Theorem 5.1 (Siegel-Walfisz): Given any C there exists a constant C ′ depending only on
C so that

π(x, a mod N) =
li(x)

ϕ(N)
+O(xe−C

′(lnx)
1
2 )

whenever
N ≤ (lnx)C .

Unfortunately, this bound is ineffective; the proof does not give a way to compute a
suitable value of C ′.

Of course, if the Riemann hypothesis were true then it would solve all our problems.

Theorem 5.2: If the Extended Riemann hypothesis holds (all nontrivial zeros of L(s, χ)
satisfy <s = 1

2
), then

π(x, a mod N) =
li(x)

ϕ(N)
+O(x

1
2 (lnx)2)

for x > N2, where the constant is independent of N .

5.1 L′(β, χ) is not too large

Lemma 5.3: There exists an absolute constant C such that

|L′(σ, χ)| < C(lnN)2

for any nontrivial Dirichlet character χ modulo N and any σ with 1− 1
lnN
≤ σ ≤ 1.
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Proof. Because L(σ, χ) =
∑∞

n=1
χ(n)
nσ

, by Proposition 31.2.4 we can simply differentiate term-
by-term to get

L′(σ, χ) = −
∞∑
n=1

χ(n) lnn

nσ
.

Now we bound this sum by breaking it up into two parts.
First note that for n ≤ N , we have

1− σ ≤ 1

lnN
≤ 1

lnn
.

Hence
1

nσ
=

1

n
n1−σ ≤ 1

n
n

1
lnn =

e

n
. (33.25)

Step 1: We bound the sum from n = 1 to N . By (33.25),∣∣∣∣∣
N∑
n=1

χ(n) lnn

nσ

∣∣∣∣∣ ≤
N∑
n=1

e lnn

n
< C1(lnN)2 (33.26)

for some C1. The last step follows from estimating using the integral
∫ N

1
lnx
x
dx = 1

2
(lnN)2.

Step 2: Now we consider the sum from N + 1 to ∞. Let U(n) :=
∑n

m=L+1 χ(m) and

v(n) = lnn
nσ

. By partial summation 3.7.1, we have

∞∑
n=N+1

χ(n) lnn

nσ
= lim

L→∞

[
−U(L)v(L) +

L∑
n=N+1

U(n− 1)(v(n)− v(n− 1))

]
.

Since v(n) decreases to 0 and |U(n)| ≤ N (as
∑k+N−1

n=k χ(n) = 0 for any k), the first term
goes to 0 and we get the bound∣∣∣∣∣

∞∑
n=N+1

χ(n) lnn

nσ

∣∣∣∣∣ ≤ Nv(N) = N
lnN

Nσ
≤ N(lnN)

e

N
= e lnN. (33.27)

where in the last step we used (33.25).

Adding (33.26) and (33.27) together gives the desired bound.

5.2 L(1, χ) is not too small

Theorem 5.4 (Siegel’s inequality): For each ε > 0 there exists Cε > 0 such that

L(1, χ) > CεN
−ε

for all real Dirichlet characters χ modulo N .
Thus there exists C ′ε > 0 such that any real zero β of L(s, χ) satisfies 1− β > C ′εN

−ε.
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First we prove the following lemma.

Lemma 5.5: Let χ1 and χ2 be real primitive characters with modulus N1 and N2, let

F (s) := ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2),

and let
λ = L(1, χ1)L(1, χ2)L(1, χ1χ2).

Then the following inequality holds:

F (s) >
1

2
− Cλ

1− s
(N1N2)8(1−s),

7

8
< s < 1.

Note the technique of getting information about a L-function of a single character by
looking at F (s)—a function defined using two characters—is a lot like what we did in showing
Corollary using Theorem 4.2. We’ll comment more later on why we looked at F (s).4

Proof. The main idea is to expand F (s) in power series and bound its coefficients (equiv-
alently, bound the derivatives of F (s)) using the inequality from Cauchy’s formula, orol-
lary 30.4.6.

We have

lnF (s) = ln ζ(s) + lnL(s, χ1) + lnL(s, χ2) + lnL(s, χ1χ2)

=
∑
p

(
ln

1

1− p−s
+ ln

1

1− χ1(p)p−s
+ ln

1

1− χ2(p)p−s
+ ln

1

1− χ1(p)χ2(p)p−s

)

=
∑
p

∞∑
m=1

(
1

m
p−ms +

1

m
χ1(pm)p−ms +

1

m
χ2(pm)p−ms +

1

m
χ1(pm)χ2(pm)p−ms

)

=
∑
p

∞∑
m=1

1

m
(1 + χ1(pm))(1 + χ2(pm))p−ms.

This means lnF (s) is a Dirichlet series with all coefficients positive. Because the power
series of ex has positive coefficients, this means that F (s) also has all coefficients positive.

Suppose F (s) =
∑∞

n=1
f(n)
ns

.
Now we expand F (s) in Taylor series at s = 2. (We can’t do it at s = 1 because F (s)

has a pole there.) We have

F (s) =
∞∑
m=0

am(2− s)m, am = (−1)m
F (m)(2)

m!
.

We calculate the coefficients using 31.2.4 and get

am =
∞∑
n=1

f(n)(lnn)m

n2
≥ 0.

4A deeper reason why we often look at F (s) is that it is the zeta function of a biquadratic field. Thus
we can prove nice facts about F (s) by combining algebraic and analytic theory. We’ll give proofs that don’t
require this knowledge.
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In particular, for m = 1 we have am ≥ 1 since f(1) ≥ 1.

Because we know F (s) has a pole of residue λ = L(1, χ1)L(1, χ2)L(1, χ1χ2), we consider
the function

F (s)− λ

s− 1
= F (s)− λ

1− (2− s)
=

∞∑
m=0

(am − λ)(2− s)m.

Let Ω be the circle of radius 3
2

(not its interior) centered at 2. Then for any χ of modulus N ,
|L(s, χ)| ≤ C1N for some C1, for all s in a bounded region away from 0 because by (33.2)

|L(s, χ)| =
∣∣∣∣∫ ∞

1

S(x)sx−s−1 dx

∣∣∣∣ ≤ N

∫ ∞
1

|sx−s−1| dx, S(x) =
∑
n≤x

χ(n).

Therefore,

|F (s)| ≤ (C1N1)(C1N2)(C1N1N2) = C2(N1N2)2, C2 = C4
1 (33.28)

and for s ∈ Ω, ∣∣∣∣( λ

s− 1

)∣∣∣∣ ≤ 2L(1, χ1)L(1, χ2)L(1, χ1χ2) ≤ 2C2(N1N2)2. (33.29)

Now we use the inequality from Cauchy’s formula, Corollary 30.4.6, to get

|am − λ| ≤
1(

3
2

)m max
z∈Ω

F (s) ≤ C3N
2
1N

2
2

(
2

3

)m
.

To bound F (s)− λ
s−1

=
∑∞

m=0(bm − λ)(2− s)m when 7
8
< s < 1, we first bound the sum

from some M (to be determined) to ∞.

Firstly,

∞∑
m=M

|am − λ|(2− s)m ≤
∞∑

m=M

C3N
2
1N

2
2

∣∣∣∣23(2− s)
∣∣∣∣m

≤
∞∑

m=M

C3N
2
1N

2
2

(
3

4

)m
,

7

8
< s < 1

≤ C4N
2
1N

2
2

(
3

4

)M
≤ C4N

2
1N

2
2 e
−M/4, e−1/4 ≈ 0.78.

We choose M so that C4N
2
1N

2
2 e
−M

4 ∈
[

1
2
e−

1
4 , 1

2

]
. Note the lower bound rearranges to

M ≤ 8 lnN1N2 + C5. Then because the coefficients am are all nonnegative, we can drop
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some of them in the inequality to get

F (s)− λ

s− 1
≥ 1− λ

M−1∑
m=0

(2− s)m − C4N
2
1N

2
2 e
−M/4

> 1− λ

1− s
[(2− s)M − 1]− 1

2
, C4N

2
1N

2
2 e
−M

4 ≤ 1

2

=⇒ F (s) >
1

2
− λ

1− s
(2− s)M

≥ 1

2
− λ

1− s
eM(1−s), ex ≤ 1 + x

>
1

2
− C6λ

1− s
(N1N2)8(1−s), M ≤ 8 lnN1N2 + C5.

This finishes the proof of the lemma.

Proof of Theorem 5.4. Fix ε > 0. We want to choose χ1 so that 0 ≥ F (s). Consider two
cases.

1. For some χ, L(s, χ) has a real zero in the range
(
1− 1

16
ε, 1
)
. Then choose χ1 to be

this character and β1 to be this zero. We then have F (β1) = 0.

2. Else, let χ1 be any primitive character and β1 ∈
(
1− 1

16
ε, 1
)
. Note the following:

• In this case there are no zeros for any L-function in
(
1− 1

16
ε, 1
)
, so they all have

the same sign as their value at 1. The value at 1 is nonnegative (in fact, positive)
because the product expansion gives that the L-function is positive for σ > 1.

• ζ(s) < 0 for 0 < s < 1, and

Thus F (β1) < 0.

In either case F (β1) ≤ 0, and the choice of β1 depends only on ε. From Lemma 5.5, we now
get the inequality

0 ≤ 1

2
− Cλ

1− β1

(N1N2)8(1−β1).

λ > Cε,1(N1N2)−8(1−β1)

for some Cε,1 depending only on ε. Now we also have an upper bound for λ:

λ = L(1, χ1)L(1, χ2)L(1, χ1χ2)

< (C1 lnN1)L(1, χ2)(C1 lnN1N2).

Now suppose that N2 ≥ N1. Combining the two inequalities and noting that lnN1 is a
constant depending only on ε and is less than lnN2, we have

L(1, χ2) > Cε,2N
−8(1−β1)
2 (lnN2)−1

> Cε,2N
− ε

2
2 (lnN2)−1

> Cε,3N
−ε.
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By choosing the constant to be smaller, we may ensure that this bound also works for
N2 < N1.

Finally, combining Lemma 5.3 and the bound L(1, χ) > CεN
−ε immediately gives the

fact that any real zero of L(s, χ) must satisfy β < 1− C ′εN−ε.

Note that it was essential to work with F (s) rather than G(s) = ζ(s)L(s, χ): Something
like Lemma 5.5 would go through, but if we used G(s) then G(s) may have a zero close to
s = 1 so we don’t know the region where G(s) is nonpositive, and we may have to take
s = β1 arbitrarily close to 1. This kills the proof because of the term 1

1−s . When we work
with F (s), the case where there is a zero close to 1 is dealt with nicely.

5.3 Proof of Siegel-Walfisz

Proof of Theorem 5.1. Suppose there is an exceptional zero β. By Siegel’s inequality 5.4, for
any ε > 0 we have

β − 1 < −CεN−ε.

The prime number theorem in arithmetic progressions 4.4 gives

π(x, a mod N) =
1

ϕ(N)
(li(x)− χ(a) li(xβ) +O(xe−C

′√lnx)).

We show that li(xβ) gets absorbed into the O term. Indeed, we have

x−CεN
−ε ≤ e−C

′√lnx

⇐⇒ (lnx)CεN
−ε ≥ C ′

√
lnx

⇐⇒
√

lnx ≥ C ′

Cε
N ε

⇐⇒
(
Cε
C ′

) 1
ε

(lnx)
1
2ε ≥ N.

Now given N ≤ (lnx)C , choose ε = 1
2C

. For large enough C ′, the equivalences above give

x−CεN
−ε ≤ e−C

′√lnx. Therefore,

li(xβ) = O

(
x
xβ−1

β lnx

)
= O(x · x−CεN−ε) = O(xe−C

′√lnx)

for some C ′ > 0, as needed.
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Chapter 34

Zeta and L-functions in number fields

In this chapter we will define zeta and L-functions in number fields, to obtain density theo-
rems for primes in those fields, in particular:

1. Prime Number Theorem for number fields, and

2. Chebotarev Density Theorem.

To define L-functions, we will have to generalize our definition of characters.
As in the previous two chapters, we need a functional equation and analytic continuation

of the L-function in order to get good asymptotic estimates. This presents a significant
challenge. There are two approaches:

1. (Hecke) Generalize the proof for the L-functions over Q. Namely, use a higher-
dimensional analogue of theta functions.

2. (Tate) This is an illustration of the local-to-global principle. First define L-functions
over local (complete) fields. This is easier because there is only a single prime to work
with. Then put these L-functions together to get a L-function for the global field.

Note that L-functions over complete fields are much simpler—provided that you have the
background in measure theory and functional analysis. We will give the required background
in Section 5.

As an illustration, note that the functional equation for ζ (and similarly L) becomes more
transparent (ξ(s) = ξ(1− s)) after we define ξ:

ξ(s) = π−
s
2 Γ
(s

2

)
ζ(s) = π−

s
2 Γ
(s

2

)
︸ ︷︷ ︸

?

∏
p prime

1

1− p−s
.

The presence of the term in front seems quite mysterious. However, we can think of it as
coming from the infinite place; so instead of thinking of ξ as a product over primes we should
think of it as coming from a product over places. We will define the zeta-function over a
local field K by

ζ(f, s) =

∫
K×

f(a) ‖a‖sv da

where we choose for f a function that is its own Fourier transform (to get a good transfor-
mation law). Note that the measure here is the Haar measure on K×. For the case K = Qp,
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f is a characteristic function; by calculating this integral on the sets {a : vp(a) = n}, n ∈ Z
and summing, we get a geometric series which becomes the factor 1

1−p−s up to a constant.

For the real place, we choose f(x) = 1
2π
e−2πx2

and get π−
s
2 Γ
(
s
2

)
out. Magic.

§1 Zeta and L-functions

§2 Class number formulas

§3 Density theorems (weak form)

§4 Analytic continuation: Hecke’s proof

§5 Measure theory and functional analysis

5.1 Measure theory

For a set E 6= φ define the power set

P(E) = 2E = {Γ : Γ ⊆ E}.

Definition 5.1: A subset B ⊆ P(E) is a σ-algebra it satisfies the following properties:

1. E ∈ B.

2. B is closed under complementation: Γ ∈ B implies Γc = E\Γ ∈ B.

3. {Γn : n ≥ 1} ⊆ B implies
⋃∞
n=1 Γn ∈ B.

Note that items 2 and 3 imply that a countable intersection of elements in B is in B, and
a difference of sets in B is in B.

Definition 5.2: We call (E,B) is a measurable space. A measure on (E,B) is a map
µ : B → [0,∞] such that

1. µ(φ) = 0.

2. (Countable additivity) If {Γn : n ≥ 1} is a family of pairwise disjoint subsets of E,
then

µ

(
∞⋃
n=1

Γn

)
=
∞∑
n=1

µ(Γn),

i.e. the volume of the whole is the sum of the volume of the parts.

Compare this to the definition of a topological space—measurable spaces have measure-
able sets while topologies have open sets.
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Example 5.3: Define a measure µ on the integers Z by associating some µi ≥ 0 for each
integer i, and setting

µ(Γ) =
∑
i∈Γ

µi.

Our strategy is to start with some class of nice, well-defined subsets, and generate more.

Definition 5.4: For a family of subsets C ⊆ P(E), define the σ-algebra generated by
C, denoted by σ(C), to be the smallest σ-algebra containing C. In other words it is the
intersection of all σ-algebras containing C. (This is well-defined since the power set is a
σ-algebra containing C.)

If E is a topological space and C = {Γ ⊆ E : Γ open} then σ(C) = BE is called the Borel
σ-algebra. (The sets are called Borel sets.)

Lebesgue showed that there exists a unique measure on BRN such that µRN (I) = vol(I)
for rectangles I.

DEFINE integrals given a measure... DEFINE Lr...

The following shows that given one measure, “essentially” all other measures can be
written in terms of an integral.

Theorem 5.5 (Riesz representation): Suppose that (E,B, ν) is a σ-finite measure space
and µ is a finite measure on (E,B) with µ ≤ ν. Then there is a unique ϕ ∈ L1(ν;R) such
that

µ(Γ) =

∫
Γ

ϕdν

for all Γ ∈ B.

Proof. Stroock [add reference], 8.1.2.

Definition 5.6: Let µ be a Borel measure on a locally compact Hausdorff space X and E
be a subset. µ is outer regular on E if µ(E) = inf {µ(U) : U ⊇ E,U open} and inner
regular on E if µ(E) = sup {µ(K) : K ⊆ E,K compact}.

A Radon measure on X is a Borel measure that is finite on compact sets, regular on
all Borel sets, and inner regular on all open sets.

5.2 Haar measure

Definition 5.7: Let G be a topological group and µ a Borel measure. µ is left translation
invariant if for all Borel subsets E of G, µ(sE) = µ(E). Ditto for right translation invariant.

Let G be a locally compact topological group. A left (right) Haar measure on G is a
nonzero Radon measure µ on G that is left (right) translation-invariant. A bi-invariant Haar
measure is a Haar measure that is both left and right invariant.

Theorem 5.8: Let G be a locally compact group. Then there exists a left/right Haar
measure, unique up to scalar multiple.
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Proof. [26], Theorem 1.8.

5.3 Fourier inversion and Pontryagin duality

Definition 5.9: LetG be an abelain topological group. A continuous complex character
on G is continuous homomorphism G→ S1, where S1 = {z ∈ C : |z| = 1}.1

Under multiplication, the continuous complex characters form a group Ĝ, called the
Pontryagin dual of G. Give it the compact-open topology, i.e. the topology such that

W (K,V ) =
{
χ ∈ Ĝ : χ(K) ⊆ V

}
, K compact, V open

is a neighborhood base for the trivial character.

Definition 5.10: Let G be a locally compact topological group. A Haar-measurable func-
tion ϕ : G → C in L∞(G) is of positive type if for any f ∈ Cc(G) (continuous, compact
support), ∫∫

G×G
ϕ(s−1t)f(s) dsf(t) dt ≥ 0.

Definition 5.11: Let f ∈ L1(G). The Fourier transform of f is the function f̂ : Ĝ→ C
defined by

f̂(χ) =

∫
G

f(y)χ(y) dy.

Definition 5.12: Define V (G) to be the complex span of continuous functions of positive
type ib G and V 1(G) = V (G) ∩ L1(G).

Theorem 5.13 (Fourier inversion): There exists a Haar measure on Ĝ such that for all
f ∈ V 1(G),

f(y) =

∫
Ĝ

f̂(χ)χ(y) dχ.

The Fourier transform f 7→ f̂ identifies V 1(G) with V 1(Ĝ).

Example 5.14: The Pontryagin dual of R is R, via the identification y 7→ e2πixy. The
Fourier transform is

f̂(y) =

∫
R
f(x)e−ixy dx.

The Fourier inversion formula reads

f(x) = CONSTANT

∫
R
f̂(y)eixy dx

The Pontryagin dual of R/Z is Z, via the identification e2πinx. The Fourier transform is

f̂(y) =

∫
R/Z

f(x)e−2πixy dx

1Alternatively, G→ R/Z, thought of additively.
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and the Fourier inversion formula reads

f(y) = CONSTANT
∑
n∈Z

f̂(y)e2πiny.

The Pontryagin dual of an abelain group G can be identified (noncanonically) with G
itself. Fourier inversion formula gives character formula! Connect with stuff in chapter on
characters.

Theorem 5.15 (Pontryagin duality): The map α : G→ ̂̂
G defined by

α(y)(χ) = χ(y)

is an isomorphism of topological groups. Hence G and Ĝ are mutually dual.

Measure on local fields. Relate to metric. Ostrowski’s theorem again.

Theorem 5.16: Suppose

G =
′∏
v

(Gv, Hv)

is a restricted direct product of locally compact abelian groups Gv with respect to open
subgroups Hv. Then

Ĝ ∼=
′∏
Ĝv.

APPLY TO IDELES/ADELES!

§6 Analytic continuation: Tate’s thesis

The main steps of the proof are as follows.

1. Define an additive and multiplicative measure on local fields, and classify all characters
on these fields. We divide into three cases: real, complex, and p-adic.

2. Define local L-functions and prove a functional equation for them. This functional
equation comes directly from the Fourier inversion formula applied to the local fields.
Compute the functional equation in each of the three cases.

3. Show that the adele ring—a restricted direct product of local fields—behaves nicely as
a product. That is, the following hold.

(a) The measure is the product of local measures.

(b) Products of nice (continuous, L1) functions on the Kv give nice functions on K.

(c) The Fourier transform of a product is the product of the Fourier transforms.

Moreover, the adele is self-dual, because it is a restricted product of self-dual spaces.
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4. Establish the Poisson formula and Riemann-Roch Theorem. Embed K into AK and
think of K as a “lattice” in AK to apply the Riemann-Roch Theorem. The local
functional equations plus the Riemann-Roch Theorem give the analytic continuation
and functional equation for the global L-function. This formula gives a relationship
between a character and its dual, but we know that AK is self-dual.

5. Specialize to the case of Hecke characters to obtain the classical functional equation.

We now carry out this program.

6.1 Haar measure on local fields

6.2 Local functional equation

Definition 6.1: Let f be a NICE function. Define the local L-function of f to be the
function on quasi-characters with positive exponent given by

L(f, c) =

∫
K

f(x)c(x) d×x.

Traditionally, we think of L functions as functions of a complex variable. We recover this
viewpoint if we write c in the form

c(x) = c0(x)|x|s = c0(x)|x|σ+it,

where c0(x) is a character in the same equivalence class as c(x). Then fixing c0, we can think
of L(f, c) as a function in s:

L(f, c0, s) := L(f, c0| · |s).

Lemma 6.2: For any f, g NICE and any quasi-character c with exponent in (0, 1),

L(f, c)L(ĝ, ĉ) = L(f̂ , ĉ)L(g, c).

Here ĉ(x) = |x|c(x)−1.

In other words, where it is defined L(f,c)

L(f̂ ,ĉ)
is a function determined only by c. Thus we get

the following.

Theorem 6.3 (Local functional equation for L): A local L-function has analytic continua-
tion to the domain of all quasi-characters given by a functional equation

L(f, c) = ρ(c)L(f̂ , ĉ),

where ρ(c) is a function independent of f .

We now calculate the functional equations for K real, complex, and p-adic. To calculate
ρ(c), it suffices to choose a nice f and compute

ρ(c) =
L(f, c)

L(f̂ , ĉ)

since this function is independent of f . The results are summarized in the following table.
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Theorem 6.4: The quasi-characters for K are given in the top row of the table. Defining
the corresponding functions f as in the second row, th Fourier transforms of those functions
f̂ are those given in the third row, the ζ-functions are given in the fourth row, and the
functions ρ(c) are given in the fifth row.

R C Kp

c |x|s
sign(x)|x|s

cn(α)|x|s
where cn(reiθ) = einθ

cn(α) character
of conductor f = pn

f f(s) = e−πs
2

f±(s) = se−πs
2

fn(s) ={
s|n|e−2π|s|2 , n ≥ 0

s|n|e−2π|s|2 , n ≤ 0

fn = e2πiλ(s)1(df)−1

f̂ f̂(y) = f(y)

f̂±(y) = if±(y)

f̂n(y) = i|n|f−n(y) f̂n = (Nd)
1
2Nf11+f

L L(f, |·|s) = π−
s
2 Γ
(
s
2

)
L(f±, |·|s) = π−

s+1
2 Γ

(
s+1

2

)
L(f̂ , |̂·|s) = π

s−1
2 Γ

(
1−s

2

)
L(f̂±, ±̂ |·|s) =

iπ
s−2

2 Γ
(

2−s
2

)

L(fn, cn |·|s) =

(2π)1−s+ |n|
2 Γ
(
s+ |n|

2

)
L(f̂n, ĉn |·|s) =

i|n|(2π)s+
|n|
2 Γ
(

1− s+ |n|
2

)
L(fn, cn |·|s) =

Nd−sNdsG

(
cne

2πi
(

•
πordp(df)

))
L(f̂n, ĉn |·|s) = Nd

1
2µ×(1 + f)

ρ ρ(|·|s) =
21−sπ−s cos

(
πs
2

)
Γ(s)

ρ(± |·|s) =
−i21−sπ−s sin

(
πs
2

)
Γ(s)

ρ(cn |·|s) =

(−i)n (2π)1−sΓ(s+ |n|2 )
(2π)sΓ((1−s)+ |n|

2 )

ρ(|·|s) = Nds−
1
2

1−Nps−1

1−Np−s

ρ(|·|s) =

N(df)s−
1
2Nf−

1
2G

(
c, e

2πi
(

•
πordp(df)

))

§7 Density theorems (strong form)
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Chapter 35

Theta and elliptic functions

§1 Theta functions

Definition 1.1: A theta function of degree n on [ω1, ω2] with parameter b 6= 0 is an entire
function f(z) such that

f(z + ω1) = f(z), f(z + ω2) = be
− 2πinz

ω1 f(z).

We aim to classify all such functions. For simplicity assume ω1 = 1 and ω2 = τ , with
=τ > 0. (Rescale.)

Proposition 1.2: The space of theta functions of degree n and parameter b forms a n-
dimensional space. They are in the form

∞∑
k=0

akq
k

where q = e2πiz, a0, . . . , an−1 can be freely chosen, and the coefficients satisfy the recursive
relation

am+pn = b−pq
mp+

np(p−1)
2

0 am, q0 = e−2πiτ .

In particular, the following is a theta function of degree 1 and parameter b:

θ(z) =
∑
k∈Z

(−1)kq
k(k−1)

2 e2πikz = C(q0)
∞∏
n=0

(1− qn0 q)(1− qn+1
0 q−1).

We have the following analogue of the fundamental theorem of algebra.

Theorem 1.3: Any theta function of degree n is in the form

f(z) = Kθ(z − z1) · · · θ(z − zn)qr

for some z1, . . . , zn ∈ C and r ∈ Z.
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1.1 Transformation law

§2 Elliptic functions

Definition 2.1: An elliptic function on the lattice Λ is a meromorphic function f(z) on
C such that

f(z + ω) = f(z) for all ω ∈ Λ, z ∈ C.

Denote the space of all such functions by C(Λ).

There are nice relationships involving the zeroes and poles of elliptic functions.

Theorem 2.2: Let f be an elliptic function on Λ.

1.
∑

w∈C/Λ Resw(f) = 0.

2.
∑

w∈C/Λ ordw(f) = 0, i.e. in a fundamental parallelogram there are as many zeros as
poles, counting multiplicities.

3.
∑

w∈C/Λ ordw(f)w ∈ Λ.

Proof. 1.

2.

3. Label the edges of the fundamental parallelogram as follows.

α + ω2
C2 // α + ω1 + ω2

C3ww

α

C1

;;

α + ω1C4

oo

We calculate
∫
∂P

zf ′(z)
f(z)

dz in two ways.

Way 1:∫
∂P

zf ′(z)

f(z)
dz =

[∫
C1

zf ′(z)

f(z)
dz +

∫
C3

zf ′(z)

f(z)
dz

]
+

[∫
C2

zf ′(z)

f(z)
dz +

∫
C4

zf ′(z)

f(z)
dz

]
.

Noting that C3 is just C1 shifted by ω1 and reversed, and that C2 is just C4 shifted by
ω2 and reversed, this equals∫
∂P

zf ′(z)

f(z)
dz =

∫
C1

[
zf ′(z)

f(z)
− (z + ω1)f ′(z + ω1)

f(z + ω1)

]
dz+

∫
C4

[
zf ′(z)

f(z)
− (z + ω2)f ′(z + ω2)

f(z + ω2)

]
dz.

Since f is elliptic, f(z) = f(z + ω1) = f(z + ω2), giving∫
∂P

zf ′(z)

f(z)
dz = −ω1

∫
C1

f ′(z)

f(z)
dz − ω2

∫
C4

f ′(z)

f(z)
dz.
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Now ln(f(z)) can be defined in a neighborhood around C1 and C4, since f has no poles
or zeros on ∂P . Since f(α) = f(α+ω1) = f(α+ω2), we have ln(f(α+ω1))−ln(f(α)) =
2πic1 and ln(f(α))− ln(f(α+ω2)) = 2πic2 for some integers c1 and c2. But these equal
the above integrals by definition of ln f(z), so∫

∂P

zf ′(z)

f(z)
dz = −2πi(ω1c1 + ω2c2). (35.1)

Way 2: Note Resa
f ′(z)
f(z)

= orda f so Resa
zf ′(z)
f(z)

= a orda f . Letting ak be the poles and
zeros of f in P , we get by Cauchy’s Theorem that∫

∂P

zf ′(z)

f(z)
= 2πi

∑
k

Resak
f ′(z)

f(z)
= 2πi

∑
k

mkak. (35.2)

Equating (35.1) and (35.2) give∑
k

mkak = −ω1c1 − ω2c2 ≡ 0 (mod Λ).

Definition 2.3: The order of an elliptic function is the number of poles in a fundamental
parallelogram.

It turns out that elliptic functions can be expressed as quotients of theta functions.

Theorem 2.4:

f(z) = K
θ(z − a1) · · · θ(z − ak)
θ(z − b1) · · · θ(z − bk)

,
k∑
i=1

ai =
k∑
i=1

bi.

§3 Weierstrass ℘-function

Our basic example of an elliptic function is the following.

Definition 3.1: Define the Weierstrass ℘-function for the lattice Λ by

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

[
1

(z − λ)2
− 1

λ2

]
.

Proposition 3.2: The series defining ℘ converges absolutely and locally uniformly on C−
{Λ}. ℘ is an even elliptic function with period Λ, analytic except for a double pole at each
point of Λ,

In fact, we will see that it is the building block for all elliptic functions.

Proof.
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Theorem 3.3: Every even elliptic function can be written as a polynomial in ℘. Every
elliptic function can be written as a polynomial in ℘ and ℘′.

Theorem 3.4:

℘(z)− ℘(a) =
θ(z + a)θ(z − a)

θ(z)2
· θ′(0)2

θ(a)θ(−a)
.

Theorem 3.5 (Weierstrass differential equation):

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) = 4℘(z)3 − 60G4︸ ︷︷ ︸
g2

℘(z)− 140G6︸ ︷︷ ︸
g3

(z)

This says that for every z, the point (℘(z), ℘′(z)) lies on the elliptic curve y2 = 4x3 −
60G4 − 140G6. Together with surjectivity and the Uniformization Theorem 3.6 this implies
that all elliptic curves can be parameterized in this way. (NONZERO DISC.)

Theorem 3.6 (Unifomization theorem): Let A,B ∈ C satisfy A3 − 27B2 6= 0. Then there
exists a unique lattice Λ ⊂ C such that g2(Λ) = A and g3(Λ) = B.

3.1 ℘ and lattices

Theorem 3.7: Let L be the lattice corresponding to ℘(z). For α ∈ C\Z, the following are
equivalent.

1. ℘(αz) is rational function in ℘(z).

2. αL ⊆ L.

3. There is an order O in an imaginary quadratic field K such that α ∈ O and L is
homothetic to a proper O-ideal.

Then

℘(αz) =
A(℘(z))

B(℘(z))

for relatively prime polynomials A and B such that

deg(A) = deg(B + 1) = [L : αL] = Nα.

Proof. (1) =⇒ (2): Suppose that ℘(αz) = A(℘(z))
B(℘(z))

with A and B relatively prime. Then

B(℘(z))℘(αz) = A(℘(z)). (35.3)

For any ω ∈ L, ℘(ω) has a pole of order 2, and each linear factor ℘(z) + r of A(℘(z)) and
B(℘(z)) has a pole of order 2. In particular, for ω = 0, we get that the order is

2 deg(B) + 2 = 2 deg(A)

showing that deg(A) = deg(B) + 1. Now take any ω ∈ L. Counting the order of ω on both
sides, we find that ℘(αz) has a pole of order 2 at ω. Thus αω ∈ L. This shows αL ⊆ L.
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(2) =⇒ (1): For any w ∈ L, since αL ⊆ Lwe have

℘(α(z + w)) = ℘(αz + αw︸︷︷︸
∈L

) = ℘(αz).

Hence ℘(z) is elliptic with L as a lattice of periods. Since it is even, by (?) it is a rational
function in ℘.

(2) =⇒ (3): By a homothety we may suppose L = 〈1, τ〉. Since L has rank 2 as a
Z-module, τ must be of degree 2 over Q. Now take

O = {β ∈ Q(τ) : βL ⊆ L} ,

i.e. the “codifferent.”
(3) =⇒ (2): Easy.

Now, supposing (1) is true, rearrange ℘(αz) = A(℘(z))
B(℘(z))

to get

A(x) = ℘(αz)B(x) = 0. (35.4)

Fix z so that 2z 6∈ 1
α
L and such that A(x) − ℘(αz)B(x) has distinct zeros. (Claim: Given

polynomials A, B, there are only a finite nmber of values of c so that A − cB has multiple
roots.) Let {wi} be a set of coset representatives for L in 1

α
L. We claim that the roots

of (35.4) are exactly z + wi.
We have

A(℘(z + wi))− ℘(αz)B(℘(z + wi)) = A(℘(z + wi))− ℘(α(z + wi))B(℘(z + wi)) = 0

by blah, so ℘(z + wi) are roots of (35.4).
Now if ℘(z+wi) = ℘(z+wj) then by BLAH, (z+wi) = ±(z+wj) (mod L), giving either

2z ≡ wi − wj ∈ 1
α
L and 2z ∈ 1

α
, or wi ≡ wj (mod L). The first is impossible by assumption

on z, so i = j. This shows the roots are distinct.
Finally, given any root of (35.4), by surjectivity of ℘ we can write it in the form ℘(y).

We have

℘(αy) =
A(℘(y))

B(℘(y))
= ℘(αz),

where the first equality is by definition of A and B and the second is because ℘(y) is a root
of (35.4). Then by BLAH, αy ± αz ≡ 0 (mod L). Since ℘ is even, we may replace y by −y
as necessary, to get α(y − z) ≡ 0 (mod 1

α
L). Thus y ∈ z + 1

α
L and ℘(y) = ℘(z + wi) for

some i, as needed.
Since (35.4) has [L : 1

α
L] = [αL : L] roots, (35.4) and hence A has degree [αL : L].

Note the equivalence (2) ⇐⇒ (3) (which incidentally has nothing to do with elliptic
functions) gives that a lattice is a proper fractional ideal ofO iff it hasO as its ring of complex
multiplication. Nonzero fractional ideals are homothetic iff they determine the same element
in the ideal class group. Hence there is a correspondence between IDEAL CLASS GRP and
homothety classes of lattices with O as full ring of complex multiplication.
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Chapter 36

Modular forms on SL2(Z)

§1 SL2(Z) and congruence subgroups

Definition 1.1: SL2(Z) is the group of 2× 2 integer matrices with determinant 1.

SL2(Z) :=

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

Define PSL2(Z) = SL2(Z)/{±1}. Define the following subgroups:

Γ(N) =

{
M ∈ SL2(Z) : M ≡

(
1 0
0 1

)
(mod N)

}
Γ1(N) =

{
M ∈ SL2(Z) : M ≡

(
1 ∗
0 1

)
(mod N)

}
Γ0(N) =

{
M ∈ SL2(Z) : M ≡

(
∗ ∗
0 ∗

)
(mod N)

}
.

Any subgroup of SL2(Z) containing Γ(N) for some N is called a congruence subgroup.

Definition 1.2: SL2(Z) acts on the upper half plane H by(
a b
c d

)
z =

az + b

cz + d
.

We now collect some facts about SL2(Z) and its congruence subgroups.

Proposition 1.3: The matrices S = ( 0 1
−1 0 ) and T = ( 1 1

0 1 ) generate SL2(Z).

1.1 Cosets

Proposition 1.4: We have the following:

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)

[Γ0(N) : Γ1(N)] = N
∏
p|N

(
1− 1

p

)
[Γ1(N) : Γ(N)] = N.
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Moreover,

1. Set of coset reps for Γ0(N) in SL2(Z)?

2. Let S = {(a, b) ∈ (Z/NZ)2 : gcd(a, b) = 1}. For each

(z, t) ∈ P :=
S − {(0, 0)}
(Z/NZ)×

take an integer matrix of the form ( x yz t ). These matrices form a set of right coset
representatives for Γ0(N) in SL2(Z).

Proof. 1. Let G be the group

{(a, y)|a ∈ (Z/NZ)×, y ∈ Z/NZ}/{±(1, 0)}

with the operation
(a, y)(a′, y′) = (aa′, ay′ + a′−1y).

The fact that G is a group can be shown directly, or by noting that the group structure
on G is the “pushforward” of the group structure on Γ0(N) by π below. We claim that

1→ Γ(N)→ Γ0(N)
π−→ G→ 1

is a short exact sequence, where

π

((
a b
Nc d

))
= (a, b) mod N.

We verify:

(a) π is surjective: Given (a, b) ∈ G, we can choose b so that a ≡ a (mod N), b ≡ b
(mod N) so that gcd(a, b) = 1. Let d be an integer such that ad ≡ 1 (mod N). By
Bézout’s Theorem we can find k, l so that ak−lb = 1−ad

N
. Then a(d+kN)−Nlb =

1, and the following matrix is in SL2(Z).

π

((
a b
Nl d+ kN

))
= (a, b).

(b) ker(π) = Γ(N): The inclusion Γ(N) ⊆ ker(π) is clear. Conversely, if A =(
a b
Nc d

)
∈ Γ0(N), π(A) = (1, 0), then a ≡ 1 (mod N) and b ≡ 0 (mod N);

moreover ad− (Nc)d = 1 and a ≡ 1 (mod N) imply b ≡ 1 (mod N).

First suppose N 6= 2. Then |G| = 1
2
ϕ(N)N , so

[PSL2(Z) : Γ0(N)] =
[PSL2(Z) : Γ(N)]

|G|
=

N3

2

∏
p|N

(
1− 1

p2

)
N
∏

p|N

(
1− 1

p

) = N
∏
p|N

(
1 +

1

p

)
.

For N = 2, [PSL2(Z),Γ(N)] = 6 and |G| = 2, so [PSL2(Z) : Γ0(N)] = 3 (and the above
formula works as well).
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1.2 Useful decompositions

Bruhat

1.3 Fundamental domains

Definition 1.5: Let H be a subgroup of SL2(Z). A fundamental domain for H is a
subset of H such that the following hold.

1.

§2 Modular forms

Definition 2.1: A modular function on SL2(Z) is a function f : H → C such that

1. f is meromorphic on H.

2. f satisfies the following transformation property.

f

((
a b
c d

)
z

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ SL2 .

If moreover f is holomorphic on H we say f is a weakly holomorphic modular form, and
if f is holomorphic on H∗ = H∪{∞}, we say that f is a modular form. (f is “holomorphic
at ∞” if f has a Fourier expansion with nonnegative exponents

f(z) =
∑
n≥0

anq
n, q = e2πiz.)

We say f is a cusp form is a0 = 0 above. We denote

M !
k = weakly holomorphic modular forms of weight k

Mk = modular forms of weight k

Sk = cusp forms of weight k.

Note we will generalize this definition several times (add references when I put them in)

Theorem 2.2 (Weight formula): Let f be a modular form of weight k. Then

k = 6 ordi(f) + 4 ordω(f) + 12 ordi∞(f) + 12
∑
z∈R◦Γ

ordz(f).

Proof. Don’t feel like writing... will be vastly generalized using Riemann-Roch anyway.
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§3 Eisenstein series

The following will be our most important source of modular forms.

Definition 3.1: Let k ≥ 4 be even. Define the Eisenstein series of weight k as a function
on lattices to be

Gk(Λ) =
∑

ω∈Λ\{0}

1

ω2k
.

Define the Eisenstein series as a function on H to be

Gk(z) = Gk((1, z)) =
∑

(a,b)∈Z2\{0}

1

(a+ bz)2k
.

Define the normalized Eisenstein series as Ek =?Gk.

Note that if k is odd, Gk as defined above will be 0.

Proposition 3.2: Gk is absolutely convergent, and is a modular form of weight k.

Theorem 3.3: The Fourier expansion of Ek is

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

where Bk is the kth Bernoulli number: t
et−1

= 1 +
∑

n≥1
Bn
n!
tn.

Definition 3.4: Define

∆ =
E3

4 − E2
6

1728

as a function either on lattices or on H.

∆ is a cusp form of weight 12, normalized so its first term is z. As we will see, it spans
the space of cusp forms of weight 12.

The functions G4, G6 parameterize elliptic curves over C. (See...) The following will be
important in establishing a connection between elliptic curves and lattices.

Theorem 3.5 (Uniformization theorem): The map Γ→ C2\{∆ = 0} defined by

Γ 7→ (G4, G6)

is surjective (bijection?).
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§4 The spaces Mk

Theorem 4.1: The set {
Ek−12r∆

r : 0 ≤ r ≤
⌊
k

12

⌋
, k − 12r 6= 2

}
is a basis for Mk. Thus

dim(Mk) =

{⌊
k
12

⌋
, k ≡ 2 (mod 12),⌊

k
12

⌋
+ 1, k 6≡ 2 (mod 12),

dim(Sk) =

{⌊
k
12

⌋
− 1, k ≡ 2 (mod 12),⌊

k
12

⌋
, k 6≡ 2 (mod 12).

§5 Dedekind eta function

Theorem 5.1 (Transformation properties of η): The function η(τ) = q
1
24

∏∞
n=1(1 − qn)

satisfies

η(τ + 1) = e
2πi
24 η(τ)

η

(
−1

τ

)
=

√
τ

i
η(τ).

There are two main ingredients to the proof.

1. Derive transformation properties for twisted theta functions θχ using the Poisson sum-
mation formula.

2. Write η in terms of theta functions using the Pentagonal Number Theorem ??.

Proof. For the first part, note

η(τ + 1) = e
2πi(τ+1)

24

∞∏
n=1

(1− e2πi(τ+1)) = e
πi
12

∞∏
n=1

(1− e2πiτ ) = η(τ).

For the second part, recall the transformation formula for the theta function (Proposi-
tion 33.2.4)

θχ(τ) =
G(χ, e

2πi•
r )

q
√
τ

θχ

(
1

q2u

)
(36.1)

where χ is a primitive multiplicative character modulo r.
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By the Pentagonal Number Theorem,

η(τ) = q
1
24

∞∏
n=1

(1− qn)

= q
1
24

∑
n∈Z

(−1)nq
3n2+n

2

=
∑
n∈Z

(−1)nq
36n2+12n+1

24

=
∑
n∈Z

(−1)ne−π(6n+1)2(−τ24 )

=
1

2

(∑
n∈Z

(−1)ne−π(6n+1)2(−τ24 ) +
∑
n∈Z

(−1)ne−π(−6n−1)2(−τ24 )

)

= θχ

(
−τ
24

)
(36.2)

where χ(n) is the character modulo 12 taking values 1,−1,−1, 1 at 1, 5, 7, 11, respectively.

First note G(χ, e
2πi•
r ) = e

πi
6 − e 5πi

6 − e 7πi
6 + e

11πi
6 = 2

√
3. Hence

η

(
−1

τ

)
= θχ

(
i

12τ

)
by (36.2)

=
G(χ, e

2πi•
r )

12
√
i/(12τ)

θχ

(
12τ

144i

)
by (36.1)

=

√
−iτ
��12
��
�

2
√

3θχ

(
12τ

144i

)
=
√
−iτη(τ). by (36.2)

§6 Derivatives of modular forms

Let f be a modular form of weight k. Is f ′ (derivative with respect to τ) a modular form?
Differentiating the transformation law gives

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

f ′
(
aτ + b

cτ + d

)
(cτ + d)−2 = k(cτ + d)k−1cf(τ) + (cτ + d)kf ′(τ)

f ′
(
aτ + b

cτ + d

)
= k(cτ + d)k+1cf(τ)︸ ︷︷ ︸

Uh-oh.

+(cτ + d)k+2f ′(τ). (36.3)

Unfortunately, f ′ isn’t quite modular. So we need to construct a modified notion of derivative
(which we’ll call θ) that takes Mk to Mk+2. To do this, we will use the derivative and the P
function, defined below in terms of the η function.
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Definition 6.1: Define

P (τ) =
24

2πi

η′(τ)

η(τ)
.

Theorem 6.2:

1. P = E2, i.e.

P = 1− 4

B2︸︷︷︸
24

∞∑
n=1

σ1(n)qn.

2. P satisfies the transformation law

P (γτ) = (cτ + d)2P (τ) +
12c

2πi
(cτ + d)︸ ︷︷ ︸

“nonmodular” part

. (36.4)

Proof. For item 1, note that d
dτ

= 2πiq d
dq

by the chain rule so

d

dτ
ln η(τ) = 2πiq

(
∞∑
n=0

d

dq
ln(1− qn) +

d

dq
ln q

1
24

)
η′(τ)

η(τ)
= 2πi

(
∞∑
n=0

nqn

1− qn
+

1

24

)

= 2πi

 ∞∑
n=0

∑
m>0,n|m

qm +
1

24


= 2πi

(∑
m≥1

σ1(m)qm +
1

24

)
.

For item 2, note 〈S, T 〉 = GL2(Z), so γ can be written as a product of S =

(
0 −1
1 0

)
, T =(

1 1
0 1

)
, T−1 =

(
1 1
0 1

)
. The base case is trivial. For the induction step, first differentiate

the transformation laws for η to get

1

τ 2
η′(Sτ) =

τ−
1
2

2
√
i
η(τ) +

τ
1
2

√
i
η′(τ)

η′(Tτ) = e
2πi
24 η(τ).

Using this we can calculate how 24
2πi

η′

η
transforms under η. The induction step comes from

checking that if γ =

(
a b
c d

)
then

P (Sγτ) = (aτ + b)2P (τ) +
12a

2πi
(aτ + b)

P (T±1γτ) = P (γτ).
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Now we are ready to define our differential operator.

Definition 6.3: For f a weight k modular form, define

∂k(f) = (12θ − kP )f

where

θ = q
d

dq
=

1

2πi

d

dτ
.

Theorem 6.4:

1. ∂k is a map from Mk to Mk+2.

2. ∂ is a derivation, i.e. for f ∈Mm, g ∈Mn, we have

∂m+n(fg) = (∂mf)g + f(∂ng).

3. The following hold (P = E2, Q = E4, R = E6):

∂2P = −Q θP =
1

12
(P 2 −Q)

∂4Q = −4R θQ =
1

3
(PQ−R)

∂6R = −6Q2 θR =
1

2
(PR−Q2).

Proof. For part 1, calculate (∂f)(Aτ) using (36.3) and (36.4).
For part 2,

∂m+n(fg) =
1

2πi
(fg)′−(m+n)Pfg =

1

2πi
f ′g−m(Pf)g+

1

2πi
fg′−nf(Pg) = (∂mf)g+f(∂ng).

For part 3, more calculations show that ∂2P + P 2 is a modular form. The equalities
follow from using dim(M4) = dim(M6) = dim(M8) = 1 and matching constant terms of the
q-series.

Remark 6.5: Since Q,R generate the space of modular forms, this completely describes the
action of ∂ on modular forms. The fact that it is a derivation means that we can calculate
its action on a polynomial in P,Q,R as if it were actually a derivative, taking note what
∂2P, ∂4Q, ∂6R are. This is since for polynomials, stuff like the chain rule can be derived from
the product rule, which we have.

§7 The j-function

Definition 7.1: Define the j-function (on lattices or H) by

j =
E3

4

∆
.
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Since E3
4 and ∆ are modular forms of weight 12, j is a modular function of weight 0.

The function j has some very nice properties.

Theorem 7.2: j takes on every value in C exactly once in its fundamental domain.

Theorem 7.3: A function on H is a modular function of weight 0 if and only if it is a
rational function of j.

7.1 The modular polynomial Φm

Definition 7.4: Define Φm(X, Y ) so that Φm(j, Y ) is the minimal polynomial of j(Nz) over
C(j).

Note this is well-defined because C(j) ∼= C(X).
This will be important when we define the moduli space of an elliptic curve, because

(j(z), j(Nz)) will map the moduli space to an algebraic curve whose associated function
field is C(j(z), j(Nz)).

Proposition 7.5: The following are true.

1. Φm(X, Y ) ∈ Z.

2. Φm(X, Y ) is symmetric for m > 1.

3. (Kronecker’s congruence) If p is prime, then

Φp(X, Y ) = (Xp −X)(Y p − Y ) (mod p).

4. If m is squarefree then Φm(X,X) has leading coefficient ±1.

Proof. 1.

2. F (X, Y ) = F (Y,X): Replacing z with − 1
Nz

in

F (j(z), j(Nz)) = 0

gives

F

(
j

(
− 1

Nz

)
, j

(
−1

z

))
= 0.

Note that j is invariant under γ = ( 0 1
−1 0 ) ∈ SL2(Z) which sends z to −1

z
. Hence

j
(
− 1
Nz

)
= j(Nz), j

(
−1
z

)
= j(z), and we get

F (j(Nz), j(z)) = 0.

Since F (X, Y ) is irreducible in C[X, Y ], so is F (Y,X). Then F (Y, j) is also the irre-
ducible polynomial of Y over C(j), so replacing j withX, this says that F (Y,X)|F (X, Y ).
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The only way for this to happen is if F (X, Y ) = cF (Y,X). We have F (X, Y ) =
cF (Y,X) = c2F (X, Y ), so c = ±1. If c = −1, then F (X, Y ) = −F (Y,X), and putting
X = Y gives F (X,X) = 0. This shows X − Y |F (X, Y ), which is impossible since
F (X, Y ) is irreducible with degree [Γ(1) : Γ0(N)] > 1. Thus F (X, Y ) = F (Y,X).

3.

Lemma 7.6: Let γ1, . . . , γp+1 be coset representatives for [Γ(1) : Γ0(p)]. Then

{j(pγ1z), . . . , j(pγp+1z)} = {j(pz)} ∪
{
j

(
z + k

p

)
: 0 ≤ k < p

}
.

Proof. There are indeed p+1 coset representatives because µ = N
∏

prime q|N

(
1 + 1

q

)
=

p+1 in this case. Given γ = ( a bc d ), we have pγz =
(
pa pb
c d

)
z. For any γ′ ∈ Γ(1), we have

j(γ′pγz) = j(pγz) since j is invariant under Γ(1). By Lemma 6.3.1 we can multiply(
pa pb
c d

)
on the left by some matrix in Γ(1) to get some

(
a′ b′

0 d′

)
with a′d′ = det

(
pa pb
c d

)
= p

and 0 ≤ b′ < d′. The p + 1 possible matrices are
(
p 0
0 1

)
and

(
1 k
0 p

)
for 0 ≤ k < p. We

claim that all these are in fact attained. Let M be one of these matrices. Then by the
Elementary Divisors Theorem there exist A,B ∈ Γ(1) such that AMB =

(
p 0
0 1

)
. But

then M = A−1NB, so j(Mz) = j(A−1NBz), and we could have picked B as a coset
representative (the choice doesn’t matter anyways). The lemma follows upon noting
that

(
p 0
0 1

)
z = pz and

(
1 k
0 p

)
z = z+k

p
.

Let ζp be a pth root of unity. We have that 1− ζp|p: indeed

p = xp−1 + · · ·+ 1|x=1 = (1− ζp) · · · (1− ζp−1).

When we expand j
(
z+k
p

)
, its coefficients are roots of unity times the coefficients of

j(z). However, roots are unity are congruent to 1 modulo p, since ζkp − 1 = (ζp −
1)(ζk−1

p + · · ·+ 1). Then

F (j(z), Y ) =

p+1∏
i=1

(Y − j(γipz))

= (Y − j(pz))

p∏
k=1

(
Y − j

(
z + k

p

))
≡ (Y − j(pz))

(
Y − j

(
z

p

))p
(mod 1− ζp)

≡ (Y − j(z)p) (Y p − j(z)) (mod 1− ζp),

the last equation following because raising the j function to the pth power is the
same, modulo p, as raising each term to the pth power, and the coefficients (which are
integers) are not affected modulo p, while the exponents are multiplied by p. Replacing
j(z) by X we get

F (X, Y ) ≡ (Y −Xp)(Y p −X) ≡ Xp+1 + Y p+1 −XpY p −XY (mod 1− ζp).
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However, 〈1− ζp〉 ∩ Z = 〈p〉 (it contains 〈p〉, and 〈p〉 is maximal in Z), and we know
F (X, Y ) has integer coefficients, so congruence holds modulo p.

§8 j and Hilbert class fields

Our main theorem in this section (Theorem ??) is that values of the j-function at quadratic
integers (or equivalently quadratic ideals) generate Hilbert class fields of quadratic exten-
sions. To prove this we first need a result on j in terms of lattices.

Definition 8.1: A cyclic sublattice L′ ⊆ L is a lattice such that L/L′ is a cyclic group.

Theorem 8.2 (Correspondence between roots of Φ and cyclic sublattices): Let m ∈ N. The
following are equivalent.

1. Φm(u, v) = 0.

2. There is a lattice L with cyclic sublattice L′ ⊆ L of index m such that u = j(L′) and
v = j(L).

We first characterize cyclic sublattices.

Lemma 8.3: The cyclic lattices of 〈1, τ〉 are exactly those given by

L′ = 〈d, a+ bτ〉,
(
a b
0 d

)
∈ C(m), (36.5)

where

C(m) =

{(
a b
0 d

)
: ad = m, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1

}
.

Moreover, these give rise to distinct lattices.

Proof. Suppose L′ = 〈d, aτ + b〉. Then the presentation of the Z-module L/L′ is given by

( a b0 d ). By the structure theorem for modules, we have ( a b0 d ) ∈ SL2(Z)

(
d1 0
0 d2

)
SL2(Z) for

some d1 | d2 and that L/L′ ∼= Z/d1Z×Z/d2Z. Note that multiplying by a matrix in SL2(Z)
preserves the gcd of the entries. Hence we find that d1 = gcd(a, b, d). Hence

L′ is cyclic ⇐⇒ gcd(a, b, d) = 1. (36.6)

This shows that all lattices in the form (36.5) are cyclic.
Now given a cyclic sublattice L′, let d ∈ N be the smallest integer in L′, and a + bτ be

such that L′ = 〈d, aτ + b〉. We may change b by a multiple of d so that 0 ≤ b < d. Since
m = [L : L′] = | a b0 d | = ad and gcd(a, b, d) = 1 by (36.6), ( a b0 d ) ∈ C(m).

Uniqueness follows since d is the least positive integer in L′ = 〈d, aτ + b〉, and once d is
determined, a = m

d
and b are determined.
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Proof of Theorem 8.2. By Lemma 8.3, when L′ = [d, a+ bτ ], letting σ = ( a b0 d ), we have

j(L′) = j(d[1, στ ]) = j([1, στ ]).

Then
Φm(X, j(τ)) =

∏
σ∈C(m)

(X − j(στ)) =
∏

L′ cyclic in L, [L:L′]=m

(X − j(L′)).

Hence any pair (j(L), j(L′)) is a solution; conversely, given a solution (X, Y ), we have
Y = j(L) for some L, and the above gives X = j(L′).

Theorem 8.4: Let O be an order in an imaginary quadratic field and a a O-ideal. Then
j(a) is an algebraic integer and K(j(a)) is the ring class field of O.

Proof. Let M = K(j(a)) and L be the ring class field of O.
Step 1: Suppose αa is a cyclic sublattice of a; let m = N(α). We have

Φm(j(a), j(a)) = Φm(j(αa), j(a)) = 0, (36.7)

where the first equality is by Theorem 8.2 and the second is because a and αa are similar
lattices. Hence j(a) is a root of Φm(X,X).

Pick α so that Nα is squarefree. To do this we note that by Theorem ??.??

Spl(L/Q) ≈ {p prime : p = N(α) for some α ∈ O} . (36.8)

Choosing such α, we have [a : αa] = N(α) = p, so αa must be cyclic. Then the leading
coefficient of Φm(X,X) is ±1 by Proposition (7.5), so j(a) is an algebraic integer.

Step 2: We show M = L by examining how primes split in L and M , i.e. we show

Spl(M/K) ≈ Spl(L/K) and use Theorem ??.3.9. First we show Spl(M/K)
⊃∼ Spl(L/K).

Take p ⊆ Spl(L/Q). The idea is to use Kronecker’s congruence: We know that we have

ap ≡ a (mod p) for every a ∈ F ⇐⇒ F = Fp. (36.9)

When we have X, Y equal to values of j in a field extension M/K and Φp(X, Y ) = 0, then
this congruence gives us information about the residue field of M . We will find that it equals
Fp, so M/K is unramified, giving that p splits completely in L.

By (36.8), for all but finitely many p ∈ Spl(L/Q), p = N(α) for some α ∈ O. As in (36.7),
we get 0 = Φp(j(a), j(a)). By Kronecker’s congruence, 0 = −(j(a)p − j(a))2 (mod p), so

j(a)p ≡ j(a) (mod p); (36.10)

a fortiori this holds modulo P.
Next note OK [j(a)] has finite index in OM , because the fact that M = K(j(a)) gives it

is a full lattice in OM (considering them as Z-modules).
Now assume p - [OM : OK [j(a)]]; we will show that (36.10) implies the congruence

αp ≡ α (mod P) (36.11)
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for α ∈ OM . First, take p = P ∩K, and note that p ∈ Spl(M/Q) implies that the residue
degree of P is p, and hence αp ≡ α (mod p) and a fortiori modulo P for α ∈ OK . So (36.11)
holds for α ∈ O[j(a)]. Now for arbitrary α ∈ OM , letting N = [OM : OK [j(a)]] we know

(Nα)p ≡ Nα (mod P);

in particular, Np ≡ N (mod P);

But p - N means N is invertible in m := OM/P, so dividing these two equations gives the
desired answer.

Now by (36.9), (36.11) gives that |m| = p, i.e. f(P/p) = 1 and p ∈ Spl(M/Q).
From this step we obtain M ⊆ L.

Step 3: Next we show S̃pl(M/Q)
⊂∼ Spl(L/Q). Take p ∈ S̃pl(M/Q); assume p unramified in

M and relatively prime to

∆ =
∏

{a,b}∈CK

(j(a)− j(b)).

(Note this is in OL by step 2.) Using the description of Spl(L/Q) given in step 1, it suffices
to show p = N(α) for some α.

We have f(P/p) = 1 for some P in M above p. Let P′ lie above P in L. Let p = P∩OK ;
we see f(p/p) = 1 so (p) splits as pp in K and Np = p. Hence pa is cyclic in a. Theorem (8.2)
and Kronecker’s congruence give

0 ≡ Φp(j(pa), j(a)) ≡ (j(a)− j(pa)p)(j(pa)p − j(a)) (mod p);

this holds modulo P′ as well. Hence we have

j(a) ≡ j(pa)p (mod P′) or j(pa)p ≡ j(a) (mod P′).

By assumption, f(P/p) = 1, so OL/P ∼= Fp and j(a)p ≡ j(a) (mod P′). Together with the
above we find that1

j(pa) ≡ j(a) (mod P′).

If a, pa are in distinct ideal classes, then P′ | j(pa)− j(a) | ∆, contradicting the fact that p
and ∆ are relatively prime. Thus they are in the same ideal class, and p = (α) is a principal
ideal. This means p = Nα is in 36.8, as needed.

Combining steps 2 and 3 gives L = M .

§9 Hecke operators

Hecke operators give a map on modular forms. We first define their action on lattices.

Definition 9.1: Let L denote the set of full lattices in C, and K = Z⊕L denote the free
abelian group generated by the elements of L. Define the Hecke operator on K by setting

T (n)[Λ] =
∑

Λ′∈L, [Λ:Λ′]=n

[Λ′]

and extending linearly.

1In the first case we can take pth roots because p ⊥ |OL/P′|.
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The sum is finite because any Λ′ in the sum must contain nΛ, and Λ/nΛ is finite. We
may think of modular forms as functions on lattices f(z) = F ((1, τ)), hence T (n) induces a
map on the space of modular forms of dimension k, Mk:

T (n) · f(τ) = nk−1F (T (n)Γ(1, τ)).

Note the constant nk−1 is just to make formulas nicer.

Proposition 9.2: T (n) is a map Mk →Mk, and restricts to a map on cusp forms Sk → Sk.

Proof. Let A =

(
a b
c d

)
∈ SL2(Z). We have

T (n) · f(Aτ) = nk−1F (T (n)Γ(Aτ, 1))

= nk−1F [T (n)(cτ + d)−1Γ(aτ + b, cτ + d)]

= nk−1(cτ + d)−kF [T (n)Γ(aτ + b, cτ + d)] F homogeneous,

= (cτ + d)−knk−1F [T (n)Γ(τ, 1)] (τ, 1) = (aτ + b, cτ + d)

= (cτ + d)−kT (n) · f(τ).

In the following subsections, we prove several key properties of the Hecke operator, and
the Hecke algebra (the algebra generated by the T (n)).

• The operators T (n) are multiplicative.

• The Hecke algebra is commutative.

• The Hecke operators (on modular forms) are self-adjoint with respect to the Petersson
inner product.

We will prove the last two items more generally, for a generalization of the Hecke operators,
Tα where α is a matrix. We will then compute the explicit action of T (n) on the Fourier
coefficients of modular forms. The main application of Hecke operators is that we can
diagonalize Mk with respect to the Hecke algebra; thus we can speak of eigenfunctions in
Mk. Using the multiplicativity of T (n), we how that the coefficients of these eigenfunctions
are multiplicative.

9.1 Hecke operators on lattices

Definition 9.3: Define R(n) : K → K by

R(n)[Λ] = [nΛ].

Theorem 9.4 (Multiplicativity of Hecke operators, I): For any m,n,

T (m)T (n) =
∑

d|gcd(m,n), d>0

dR(d)T
(mn
d2

)
.

In particular, the following hold.
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1. If m ⊥ n, then
T (m)T (n) = T (mn)

2. If p is prime and r ≥ 1 then

T (pr)T (p) = T (pr+1) + pR(p)T (pr−1).

Translating these properties to modular forms we get the following.

Theorem 9.5 (Multiplicativity of Hecke operators, II): For any m,n,

T (m)T (n)f =
∑

d|gcd(m,n), d>0

dk−1T
(mn
d2

)
f.

In particular, the following hold.

1. If m ⊥ n then
T (m)T (n)f = T (mn)f.

2. If p is prime and r ≥ 1,

T (p)T (pr) = T (pr+1)f + pk−1T (pr−1)f.

§10 Simultaneous Eigenforms

Definition 10.1: A simultaneous eigenform is a modular form f that is an eigenfunction
for every Hecke operator Tn.

Write
f(τ) =

∑
m≥0

c(m)qm.

We know that
(Tnf)(τ) =

∑
m≥0

γn(m)qm

where
γn(m) =

∑
d|gcd(m,n)

dk−1c
(mn
d2

)
.

To find properties/criteria for eigenfunctions f , we compare:

f(τ) = c(0) + c(1)q + · · · (36.12)

(Tnf)(τ) = σk−1(n)c(0) + c(n)q + · · · . (36.13)

First, we consider the nonvanishing of c(1). Keep the above notation.

Theorem 10.2 (Apostol, 6.14): Suppose k ≥ 4 is even, and f ∈ Mk is a simultaneous
eigenform. Then

c(1) 6= 0.
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Proof. Let λ(n) denote the eigenvalue corresponding to f for Tn. From (36.12) and (36.13)
we get

c(n) = λ(n)c(1).

If c(1) = 0 then c(n) = 0 for all n, so f is a constant, contradiction.

The previous theorem allows us to normalize a simultaneous eigenform so c(1) = 1.

Theorem 10.3 (Simultaneous eigenforms have multiplicative coefficients): Suppose

f(τ) =
∑
n≥1

c(n)qn ∈ Sk

with k ≥ 12 even. Then the following are equivalent.

1. f is a simultaneous normalized eigenform.

2. For all m ≥ n,

c(m)c(n) =
∑

d|gcd(m,n)

dk−1c
(mn
d

)
.

Moreover,
λ(n) = c(n).

Proof. Again from (36.12) and (36.13), if f is a simultaneous eigenform we have

λ(n) = c(n).

Now λ(n)f(τ) = (Tnf)(τ) is equivalent to

c(n)c(m) = λ(n)c(m) = γn(m) =
∑

d|gcd(m,n)

dk−1c
(mn
d

)
.

for all m,n ≥ 1.

10.1 Examples

We can use Theorem 10.3 to conclude the multiplicativity of the coefficients τ(n) of ∆.

Corollary 10.4: Write ∆(τ) =
∑∞

n=0 τ(n)qn. Then

τ(m)τ(n) =
∑

d|gcd(m,n)

d11τ
(mn
d2

)
.

In particular,

τ(mn) = τ(m)τ(n) when m ⊥ n

τ(pn+1) = τ(pn)τ(p)− p11τ(pn−1).
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Theorem 10.5 (Noncuspidal eigenforms): The only normalized simultaneous eigenform in
M2k − S2k is −B2k

4k
E2k.

Proof. The fact that −B2k

4k
E2k is a normalized simultaneous eigenform follows from Theo-

rem (10.3). (The conditions there hold by simple calculation.)
Suppose f(τ) =

∑
m≥0 c(m)qm is a normalized simultaneous eigenform. Use (36.12)

and (36.13) to match coefficients in λ(n)f(τ) = (Tnf)(τ). We get

λ(n)��
�c(0) = σk−1(n)��

�c(0)

λ(n)c(1) = c(n)

So the only possibility is λ(n) = σk−1(n), and this completely determines all the c(n) by the
second equation above. (Then only one value of c(0) will work.)

§11 Existence

Theorem 11.1: There exists a basis of simultaneous eigenforms for M2k.

Proof. Since we already have a simultaneous eigenform in M2k − S2k and dim(M2k) −
dim(S2k) = 1, it suffices to show that there is a basis of simulatenous eigenforms for S2k.

We proceed in three steps.

1. Define the Petersson inner product on S2k by

〈f, g〉 =

∫
RΓ

f(τ)g(τ)yk
dxdy

y2
.

(Here τ = x+ yi.) It’s clear that this is positive definite. Note the following:

(a) dxdy
y2 is the Haar measure with respect to SL2(Z) (it is invariant under the action

of SL2(Z)).

(b) f(τ)g(τ)yk is invariant under transformation by SL2(Z): Using

=(Aτ) =
=(τ)

|cτ + d|2

we get

f(Aτ)g(Aτ)(=Aτ)k = f(τ)(cτ + d)−kg(τ)(cτ + d)−k
yk

|cτ + d|2k
= f(τ)g(τ)yk.

(c) The integral converges. Since f is cuspidal, f(τ) = O(e−|τ |) = O(e−y). Thus the
integral is dominated by ∫ 1

2

− 1
2

∫ ∞
c

Ce−yyk−2 dx dy <∞.
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2. The Hecke operators Tn are self-adjoint under this inner product, i.e.

〈Tnf, g〉 = 〈f, Tng〉.

(See pg. 82-86 of Brubaker’s notes http://math.mit.edu/~brubaker/785notes.

pdf.)

3. We use the following linear algebra theorems.

Theorem 11.2 (Spectral theorem): A self-adjoint linear operator on a finite-dimensional
C-vector space has an orthogonal basis of eigenvectors (so is diagonalizable).

Theorem 11.3: Let F be a commuting family of diagonalizable linear operators on
a finite-dimensional vector space. Then F is simultaneously diagonalizable.

Since the Hecke operators commute, the two theorems, combined with item 2, give the
desired result.
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Chapter 37

Height functions

[16], [31], [12], [33]

§1 Heights on projective space

Let K be a number field. We aim to define a function h on Pn(K) with the following
properties.

1. There is a bounded number of points with small height.

2. The height encases nice arithmetical and geometrical information about the point, and
behaves well under rational maps.

It is natural to define the height in terms of the absolute values, or places, on K. The finite
places will capture how divisible the coordinates of a point P are by various primes, while
the infinite places captures the more geometrical notion of distance. We will thus define the
height as a product over all places on K.

Definition 1.1: Let K be a number field, and P = (x0, . . . , xn) ∈ Pn(K). Define the
multiplicative height and logarithmic height of P to be

HK(P ) =
∏
v∈MK

max{‖x0‖v , . . . , ‖xn‖v}
nv

hK(P ) = logHK(P ) =
∑
v∈MK

−nv min{v(x0), . . . , v(xn)}

where nv = [Kv : Qv]. (Recall that the normalized absolute value has ‖x‖v = |x|nvv .)

Note that the value of HK(P ) is independent of the choice of homogeneous coordinates
for P , because by the Product Formula ??.30.1, for any c ∈ K× we have∏

v∈MK

max{‖cx0‖v , . . . , ‖cxn‖v} =
∏
v∈MK

‖c‖v
∏
v∈MK

max{‖x0‖v , . . . , ‖xn‖v}

=
∏
v∈MK

max{‖x0‖v , . . . , ‖xn‖v}.

Note that for the case n = 1, we will often write HK(x) to mean HK(1 : x), and likewise
for hK and the other height functions to be defined.
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Example 1.2: Suppose that P ∈ Pn(Q), and write P = (x0 : . . . : xn) where gcd(x0, . . . , xn) =
1. Then

H(P ) = max{|x0|, . . . , |xn|}.
Indeed, for each prime p, one of x0, . . . , xn is not divisible by p, so max{|x0|p, . . . , |xn|p} = 1.
The only factor that contributes is from the real place.

For the special case n = 1, if a
b

is such that gcd(a, b) = 1, then we simply have

H
(a
b

)
= H(a : b) = max{|a|, |b|}.

Proposition 1.3 (Elementary properties of height):

1. HK(P ) ≥ 1 for all P ∈ Pn(K).

2. If L/K is a finite extension, then

HL(P ) = HK(P )[L:K].

3. The action of the Galois group on Pn(Q) leaves height invariant, i.e. for any σ ∈
G(Q/Q) and P ∈ Pn(Q),

H(σ(P )) = H(P ).

Proof.

1. Scale the coordinates of P so that one of them equals 1. Then by definition, HK(P ) ≥ 1.

2. Use formula (??) by Lemma ??.

3. The Galois group permutes the places.

In light of item 2, we can define an absolute height on Pn.

Definition 1.4: Let P ∈ P(Q). Let K be any finite extension of Q containing the coordi-
nates of P . Define the absolute multiplicative/logarithmic height of P to be

H(P ) = HK(P )
1

[K:Q]

h(P ) = logH(P ) =
1

[K : Q]
hK(P ).

Define the field of definition of P = (x0 : · · · : xn) to be the smallest field K such that
P ∈ P(K). We have that

Q(P ) = Q
(
x0

xj
, . . . ,

xn
xj

)
where j is any index such that xj 6= 0.

Theorem 1.5: For any B and D, the set{
P ∈ Pn(Q) : H(P ) ≤ B and [Q(P ) : Q] ≤ D

}
is finite. In particular, the number of points with height bounded by B in any fixed number
field K is finite.
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Proof. Step 1: First note the theorem holds if we only consider points in Q, i.e. the set

{P ∈ Pn(Q) : H(P ) ≤ B}

is finite. Indeed, this follows from the characterization of the height on Q in Example 1.2
and the fact that there are finitely many points in (Z ∩ [−B,B])n.

Step 2: Next, we reduce to the case n = 1, as follows. Choose coordinates of P so that xj = 1
for some j. Then for any i, we have

H(P ) =
∏

v∈MQ(P )

max
1≤j≤n

{‖xj‖v} ≥
∏

v∈MQ(P )

max{‖xj‖v , 1} ≥ H(xj).

Hence it suffices to show that{
x ∈ Q : H(x) ≤ B and [Q[x] : Q] ≤ D

}
(37.1)

is finite. It will follow from this that there are finitely many choices for each xj, and hence
a finite number of possibilities for P .

Step 3: We would like to work with Q. To do so, we consider the minimal polynomial f of x.
The lemma below shows that the height of the point formed from the coefficients is bounded
in terms of the roots of the polynomial. A finite number of possibilities for f will mean a
finite number of possibilities for x.

Lemma 1.6: Let

f(X) = adX
d + ad−1X

d−1 + · · ·+ a0 = (X − r1) · · · (X − rd) ∈ Q[X]

be a monic polynomial of degree d. Then1

H(a0 : · · · : ad) ≤ 2d−1

d∏
j=1

H(rj).

Proof. We prove this by induction on d. The base case d = 1 holds by definition of H(α).
Suppose the lemma proved for polynomials of degree d− 1. Let

g(X) = bd−1X
d−1 + · · ·+ b0 = (X − r1) · · · (X − rd−1).

Then
ak = rdbk + bk−1,

where for convenience b−1 = 0.
Let K be the field of definition for (a0 : . . . : an) and define

εv(m) :=

{
1, v ∈M0

K (i.e. v nonarchimedean)

m, v ∈M∞
K (i.e. v archimedean).

(37.2)

1A closely related quantity to the RHS is the Mahler measure of a polynomial, defined as M(f) =
|ad|

∏n
i=1 max(1, |xi|).
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By the triangle inequality,

|ak|v ≤ εv(2) max{|rdbk|v, |bk−1|v}
≤ εv(2) max{|rd|v, 1}max{|bk|v, |bk−1|v}.

Hence
max
0≤k≤d

(|ak|v) ≤ εv(2) max{|rd|v, 1} max
0≤k≤d−1

|bk|v.

Take the product over all v ∈ MK and noting that there are at most [K : Q] archimedean
places (since each corresponds to a real embedding or a pair of complex conjugate embed-
dings), we get ∏

v∈MK

max
0≤k≤d

(|ak|v) ≤ 2[K:Q]
∏
v∈MK

max
0≤k≤d−1

{|bk|v, 1}.

Raising each side to the power 1
[K:Q]

gives

HK(a0 : . . . : an) ≤ 2H(rk)H(bk) ≤ 2d−1

d∏
j=1

H(αj)

where the last step follows from the induction hypothesis.

Suppose x is in the set (37.1). Let f(X) = adX
d + · · · + a0 be the minimal polynomial

of x, and x1, . . . , xd be the conjugates of x. Note d ≤ D. Further noting that all conjugates
of x have the same height (Proposition 1.3(3)), we have by the lemma that

H(ad : . . . : a0) ≤ 2d−1

e∏
j=1

H(xj) = 2d−1H(x)d ≤ 2D−1BD.

This means all the coefficients ak have absolute value at most 2D−1BD. This shows there
are a finite number of possibilities for f and hence a finite number of possibilities for x.

As a first application, we prove the following famous theorem of Kronecker.

Theorem 1.7 (Kronecker): Suppose α ∈ Q has all conjugates lying on the unit circle. Then
α is a root of unity.

Proof. First we show that H(α) = 1. To this end, let K = Q(α). If v is a finite place of K,
then |α|v = 1 since α is a unit. If v is an infinite place of K, then it is determined by a real
or complex embedding, and |α|v = 1 by assumption. This proves our claim.

It is easy to see from the definition of H that H(αn) = 1 for all n. Furthermore αn ∈ Q(α)
for each α. However, by Theorem (37.1) there are a finite number of x ∈ Q such that
x ∈ Q(α) and H(x) = 1. Hence αj = αk for some j 6= k, and α is a (k − j)th root of
unity.

Remark 1.8: It is informative to unravel the arguments leading to the theorem above.
For each αj, we have that the minimal polynomial of fj has bounded degree; moreover it
has bounded coefficients, simply because all conjugates of αj have absolute value 1. (This
is essentially the argument in Theorem 1.5.) Hence there are a finite number of fj, and
αj = αk for some j 6= k.
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§2 Height functions and rational maps

Next we consider how height transforms under rational functions.

Theorem 2.1: Let φ : Pn → Pm be a rational map over Q. Write φ = (f0, . . . , fm), where
the fj are homogeneous of degree d. Let Z = Z(f0, . . . , fm), the subset of common zeros of
the fj and D = Pn(Q)\Z. Then

h(φ(P )) ≤ dh(P ) +O(1) for all P ∈ Pn(Q).

Moreover, if X is a closed variety contained in D (so φ defines a morphism X → Pm), then

h(φ(P )) = dh(P ) +O(1) for all P ∈ X(Q). (37.3)

In particular, if ϕ is a morphism then h(φ(P )) = dh(P ) +O(1) for all P ∈ P(Q).

Proof. Let K/Q be a finite extension contain the field of definition for φ and P . To obtain
the upper bound on h(φ(P )) we calculate the valuations of the fj(P ) and use the triangle
inequality. Each fj can be written in the form

fj(x) =
∑
|e|=d

aex
e.

Note there are
(
n+d
d

)
terms in the above sum. Defining εv(t) as in (37.2), we get that by the

triangle inequality that

|fj(x)|v ≤ εv

(
n+ d

d

)
max
e

(|ae|v) max
1≤j≤n

(|xj|v)d

and hence

max
1≤j≤m

|fj(x)|v ≤ εv

(
n+ d

d

)
max
e

(|ae|v) max
1≤j≤n

(|xj|v)d.

Multiplying over all v ∈ MK , taking the [K : Q]th root, and noting that there are at most
[K : Q] archimedean valuations, we get

H(φ(P )) = H(f0(P ) : . . . : fn(P )) ≤
(
n+ d

d

)
H((ae))H(P )d

where (ae) is the point with coordinates equal to the ae; note H((ae)) is a constant depending
on φ. Taking the logarithm gives the first part.

For the second part, we will relate the height of P with the height of φ(P ) by writing
powers of xi in terms of the fi by the Nullstellensatz. Let X = Z(g1, . . . , gn′). Since
Z(f1, . . . , fm, g1, . . . , gm′) = X ∩ Z = φ, by the Nullstellensatz,√

(f1, . . . , fm, g1, . . . , gm′) = I(Z(f1, . . . , fm, g1, . . . , gm′)) = (x1, . . . , xm).

Hence there are polynomials pk,1, . . . , pk,m, qk,1, . . . , qk,m′ and e ∈ N such that such that

pk,1f1 + · · ·+ pk,mfm + qk,1g1 + · · ·+ qk,mgm = xek.
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By taking the terms of highest degree we may assume the pj and qj are homogeneous. For
any point P ∈ X, we have gj(P ) = 0 so the above becomes

pk,1(P )f1(P ) + · · ·+ pk,m(P )fm(P ) = xek.

Let G be the point with coordinates equal to b where b is the coefficient of some pk,j or qk,j.
Since the pk,j have degree d, we see that |pk,j(P )|v ≤ |G|v max1≤j≤n(|xj|v)e−d. Taking the
valuation and using the triangle inequality,

|xk|mv ≤ εv(m)|G|v max
1≤j≤n

(|xj|v)m−d max
1≤j≤n

(|fj(P )|v).

=⇒ max
1≤j≤n

(|xj|v)d ≤ εv(n)|G|v max
1≤j≤n

(|fj(P )|v).

Taking the product over all v ∈MK and taking the [K : Q]th root gives

H(P )d ≤ mH(G)H(φ(P )).

Taking logarithms gives the desired result.

This theorem has an immediate application to the dynamics of rational maps on number
fields. Define a preperiodic point of a function f to be a point P such that there exist
m 6= n with fm(P ) = fn(P ).

Theorem 2.2 (Northcott): Let φ : PN(K) → PN(K) be a morphism of degree d ≥ 2 over
a number field K. Then the set PrePer(φ) ⊂ PN(K) is of bounded height.

In particular, the set of preperiodic points of φ in K is finite.

Corollary 2.3: Let φ be a rational function on P1(K). There are a finite number of points
P such that φm(P ) = φn(P ) for some m 6= n.

Proof. Theorem 2.1 gives us the lower bound

h(φ(Q)) ≥ dh(Q)− C for all Q ∈ PN(K). (37.4)

Suppose φm(P ) = φm+k(P ). Then repeated application of the above gives

h(φm(P )) = h(φm+k(P )) ≥ dh(φm+k−1(P ))−C ≥ · · · ≥ dkh(φm(P ))−C(1 + d+ · · ·+ dk−1).

Hence we get

h(φm(P )) ≤ C

d− 1
.

On the other hand, (37.4) also gives

h(φm(P )) ≥ dmh(P )− C(1 + d+ · · ·+ dm−1).

Putting these two bounds together gives

h(P ) ≤ C

(d− 1)dm
+

C

d− 1
≤ 2C.

The second part now follows from Theorem 1.5.
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Diophantine approximation

§1 Approximation theorems

Any real number can be approximated to an arbitrary degree by rational numbers. However,
we would like these approximations to be “efficient,” that is, have good approximations
without having denominators that are too large. Dirichlet’s theorem gives a measure of how
well we can be guaranteed to do this.

Theorem 1.1 (Dirichlet): Given α ∈ R, there are infinitely many rational numbers p
q
∈ Q

such that ∣∣∣∣pq − α
∣∣∣∣ ≤ 1

q2
.

In the other direction, it turns out that algebraic numbers cannot be approximated too
closely by rationals.

Theorem 1.2 (Liouville): (†) Let α ∈ Q. There is a constant C := C(α) such that for
every p

q
∈ Q, ∣∣∣∣pq − α

∣∣∣∣ ≥ C

qd
.

(Equivalently, for every ε > 0, there are only finitely many p
q
∈ Q such that

∣∣∣pq − α∣∣∣ ≤ C
qd

.)

Proof. Assume α 6∈ Q. Let f be the minimal polynomial of α.

Note that qnf
(
p
q

)
is a nonzero integer, so∣∣∣∣qnf (pq

)∣∣∣∣ ≥ 1 =⇒
∣∣∣∣f (pq

)∣∣∣∣ ≥ 1

qn
.

On the other hand, by the Intermediate Value Theorem there exists x between p
q

and α such
that ∣∣∣∣f (pq

)∣∣∣∣ =

∣∣∣∣f (pq
)
− f(α)

∣∣∣∣ = f ′(x)

∣∣∣∣pq − α
∣∣∣∣ .

Assuming
∣∣∣pq − α∣∣∣ < 1, there is a constant C such that this is at most C

∣∣∣pq − α∣∣∣. Combining
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the above two inequalities gives ∣∣∣∣pq − α
∣∣∣∣ ≥ 1

Cqn

for all p
q

with 1
p
q
−α < 1, as needed.

In fact, Liouville’s Theorem can be made much stronger: d can be replaced by 2 + ε for
any ε > 0. This is the Thue-Siegel-Roth Theorem. We will state it for arbitrary number
fields, keeping in mind that the case for Q is that described above. Recall that the natural
measure of arithmetic complexity on K is the height function HK (which in the case of Q is
related to the numerator and denominator of the fraction).

Theorem 1.3 (Thue-Siegel-Roth): Let K be a number field, and α ∈ K. For every C, there
are only finitely many p

q
∈ Q such that∣∣∣∣pq − α

∣∣∣∣ ≤ C

q2+ε
.

Remark on effectivity.

§2 Thue-Siegel-Roth Theorem

Lemma 2.1 (Siegel’s lemma): For a m× n matrix M let |M | = max 1 ≤ i ≤ m
1 ≤ j ≤ n

|mij|

Suppose A ∈ Matm×n(Z), with n > m. Let the row sums be

Ai =
n∑
j=1

|aij|.

Then there exists a nonzero solution T = (t1, . . . , tn)T of AT = 0 such that

|T | ≤ (C1 · · ·Cm)
1

n−m ≤ (N |A|)
m

n−m .

Proof. The key idea is to use the pigeonhole principle: Consider a set S of T with |T | small,
say

S = {T : 0 ≤ ti ≤M} .
When

|S| > | {AT : T ∈ S} |, (38.1)

then there must be T1 and T2 so that AT1 = AT2, or A(T1 − T2) = 0. We can choose M
large enough so that (38.1) holds: because there are more unknowns than equations, the
LHS grows faster in M . This value of M will give our bound.

Let Ri be the ith row of A. Note that fixing i, ∑
j|aij<0

aij

 |T | ≤ RiT ≤

 ∑
j|aij>0

aij

 |T |,
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so there are at most Ai = dMe
∑n

j=1 |aij| possibilities for RiT . Thus we have

|S| = (M + 1)n

| {AT : T ∈ S} | = (1 + bMcA1) · · · (1 + bMcAm) ≤ A1 · · ·Am(1 + bBc)n.

Taking M = (A1 · · ·Am)
1

n−m gives (38.1). As noted, using the Pigeonhole Principle gives the
existence of T1 and T2 with AT1 = AT2; take the vector T1 − T2.

§3 S-unit equation

Theorem 3.1 (S-unit equation): Let S ⊆MK be a finite set of places, and a, b ∈ K×. Then
the equation

ax+ by = 1

has a finite number of solutions in S-units x, y ∈ U(S)×.

Proof. Let m be a large integer, to be chosen. Every solution is in the form x = αXm and
y = βY m for α, β coset representatives in U(S)×/U(S)×m. There are a finite number of
cosets since by Dirichlet’s S-unit theorem ??.3.2 U(S) is finitely generated. Thus it suffices
to show that each equation aαXm + bβY m = 1 has finitely many solutions. Let A = aα and
B = bβ. Then

AXm +BY m = 1.

Write this as ∏
ζm=1

(
X

Y
− ζγ

)
=

1

AY m
.

where γ is a mth root of −B
A

.
Assume by way of contradiction that there are infinitely many solutions. We have∏

ζm=1

∣∣∣∣XY − ζγ
∣∣∣∣
v

=

∣∣∣∣ 1

AY m

∣∣∣∣
v

;

we show that for some solution, this forces X
Y

to be too close to ζγ. Since HK(Y ) =∏
v∈S max{1, |Y |nvv }, we get |Y |v ≥ HK(Y )

1
|S[K:Q] for some v. (Why?)
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Chapter 39

Complex multiplication

In this chapter, we combine class field theory with the theory of elliptic curves, first to
characterize the maximal abelian extension of K, then to illustrate the relationships in
Section 28.7 for CM elliptic curves. We will assume basic facts about elliptic curves (for an
introduction see Silverman [31, Chapter III]).

We know that every elliptic curve over C has endomorphism ring either equal to Z or
a quadratic order. In the second case, the elliptic curve is said to have complex multi-
plication. This gives the elliptic curve a lot more structure. On one hand, it is useful
algebraically—as we will see, torsion points of a CM elliptic curve give abelian extensions of
imaginary quadratic fields. In general, because of the added structure, much more is known
about CM elliptic curves than other elliptic curves, and they can act as a kind of “testing
ground” or “first case” of general conjectures.

On the other hand, CM elliptic curves have practical uses—for instance, if we take an CM
elliptic curve corresponding to a specific endomorphism ring, we can easily compute its order.
Hence we can generate an elliptic curve with near-prime order, useful in cryptography. This
is much more efficient than generating random elliptic curves and using Schoof’s algorithm
to find their orders.

There are several big theorems about complex multiplication. In Section 2, we specialize
our knowledge about the relationship between elliptic curves over C and complex tori to CM
elliptic curves and build a toolbox of basic facts. However, since we are interested in number
theory, we want to take curves defined over C and define them over Q instead—which we do
in Section 3. Once we have these basics, we can then prove the big theorems.

We suppose E has CM by a quadratic order O ⊂ K (i.e. End(E) ∼= O), where K is a
quadratic extension of Q. Then the following hold.

1. The j-invariant j(E) generates the ring class field of O over K. In particular, if
O = OK , then j(E) generates the Hilbert class field of K, the maximal unramified
abelian extension (Theorem 4.4):

K(j(E)) = HK .

2. If E is defined over HK , and we adjoin certain functions of torsion points of E, then
we get the maximal abelian extension of K (Theorem 5.4):

K(j(E), h(Etors)) = Kab.
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Compare this with the Kronecker-Weber Theorem, which says the maximal abelian

extension of Q is generated by roots of unity (torsion points of Q×).

3. j(E) is moreover an algebraic integer (We omit this; see Silverman AT, [32, II.6].)

4. The action of the idele class group sending K/a to K/x−1a corresponds to the Galois
action on the corresponding elliptic curves, where the Galois action is given by the
Frobenius element of σ. This is the Main Theorem of Complex Multiplication 6.2,
and plays an important part in taking moduli spaces initially defined only over C and
defining them over algebraic number fields.

5. The L-series of a CM elliptic curve is particularly easy to understand, because it is a
product of 2 Hecke L-series (Theorem 7.5).

Two “big ideas” we’ll consistently see are the following.

1. We expect abelian extensions because for CM elliptic curves (with endomorphism ring
OK , say), the image of the map G(L/HK) ↪→ Aut(E[m]) commutes with OK , not just
Z and hence must be abelian, with appropriate L.

2. We can use torsion points E[m] to “keep book” on the action of Frobenius, in the same
way that we used the roots of unity µm to keep book on the action of Frobenius on
G(Q(µm)/Q).

§1 Elliptic curves over C
The following theorem helps us understand elliptic curves over C.

Theorem 1.1: Let g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ), where Gn is the Eisenstein
series. Let Λ be a lattice in C and ℘ be the associated Weierstrass ℘-function.

There is a complex analytic isomorphism between the complex torus C/Λ and the elliptic
curve over C,

y2 = 4x3 − g2(Λ)x− g3(Λ)

given by
Φ(z) = (℘(z), ℘′(z)).

The map Φ gives an equivalence of categories between the following.

1. Objects: Complex tori C/Λ, where Λ is a lattice in C.
Maps: Multiplication-by-α C/Λ1 → C/Λ2 where αΛ1 ⊆ Λ2.

2. Objects: Elliptic curves over C.
Maps: Isogenies.

Proof. Silverman [31, VI.5.1.1, 5.3]

The endomorphism ring of a lattice Λ ⊂ C is either Z or an imaginary quadratic order,
so the same is true of an elliptic curve E over C. If the endomorphism ring is a quadratic
order O, we say E has complex multiplication by O.
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§2 Complex multiplication over C

2.1 Embedding the endomorphism ring

We know the endomorphism ring End(E) of a CM elliptic curve corresponds to a quadratic
order O but since any quadratic order has conjugation as an isomorphism, we need to specify
a way to embed End(E) into C.

Example 2.1: Consider the curve E : y2 = x3 + x. We note that the endomorphisms

φ1(x, y) = (−x, iy)

φ2(x, y) = (−x,−iy)

both square to −1. Which one should we call [i], multiplication by i?

Fortunately, we have a way of embedding End(Λ) into C, where Λ is the lattice corre-
sponding to E, because Λ itself is in C. This to give a canonical way of embedding End(E)
into C.

Proposition 2.2: Let E/C be a CM elliptic curve with complex multiplication by O. There

is a unique isomorphism [·] : O
∼=−→ End(E) satisfying either of the following equivalent

conditions.

1. [α] is the unique morphism making the following diagram commute, where the top
map is multiplication by α.

C/Λ mα //

Φ
��

C/Λ

Φ
��

EΛ
[α]

// EΛ

2. For any invariant differential ω ∈ ΩE, [α]∗ω = αω.

Moreover, we have the following.

3. Define [·]1 and [·]2 for elliptic curves E1 and E2. For any morphism φ : E1 → E2,

φ ◦ [α]1 = [α]2 ◦ φ.

In other words, multiplication by α commutes with all morphisms.

4. For any σ ∈ Aut(C),

[α]σE = [σ(α)]σ(E),

i.e. it commutes with Galois action.

The pair (E, [·]) is called a normalized elliptic curve. After we prove this proposition,
we will assume all CM elliptic curves are normalized.
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Proof. The uniqueness and existence of [α] satisfying item 1 follows directly from the equiv-
alence of categories (Theorem 1.1).

Define [α] as in item 1. For any invariant differential ω on EΛ, since Φ is an analytic
isomorphism, we can consider its pullback to C/Λ; it will be c dz for some c (The space
of invariant differentials on C/Λ is 1-dimensional.) Clearly, m∗α(c dz) = c d(αz) = αc dz.
Transferring this to the bottom row of the commutative diagram gives [α]∗ω = αω. For
uniqueness, note the map

Hom(E1, E2) ↪→ Hom(ΩE2 ,ΩE1) (39.1)

φ→ φ∗

is injective when all isogenies E1 → E2 are separable (in particular, in characteristic 0), i.e.
the action of an isogeny of elliptic curves on an invariant differential completely determines
the morphism. Taking E1 = E2 and considering the preimage of multiplication-by-α gives
uniqueness in item 2.

A simple diagram chase shows that (φ◦[α]1)∗ and ([α]2◦φ)∗ act the same way on ω ∈ ΩE2 .
Then (39.1) gives item 3.

The proof of item 4 is similar.

Example 2.3: The definition using differentials is useful for calculations. Revisiting the
above Example 2.1, we see that we should let

[i](x, y) = (−x, iy).

Indeed, defining [i] in this way, we check that

[i]∗
dx

y
=
d(−x)

iy
= i

dx

y
.

2.2 The class group parameterizes elliptic curves

Let K be an imaginary quadratic field and O an order inside K.

Definition 2.4: Let L be a field. Define

EllL(O) = {elliptic curves E/L with End(E) ∼= O}

E llL(O) =
{elliptic curves E/L with End(E) ∼= O}

isomorphism over L
,

i.e. E llL(O) is the set of elliptic curves over L whose endomorphism ring is O. If we omit L,
we assume L = C.

If E ∈ Ell(O), then its corresponding lattice Λ must be homothetic to a fractional ideal of
O: indeed, we can scale the lattice so that 1 ∈ Λ; then O ⊆ Λ so Λ ⊆ K; since it is a lattice
it must be a fractional O-ideal. Now note an O-ideal a has endomorphism ring O iff a is a
proper ideal (see Definition 16.4.5).1 Hence we get a correspondence between isomorphism

1When R = OK , all ideals are proper, so this distinction is not important. The reader unfamiliar with
non-maximal orders can take R = OK throughout.
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classes of elliptic curves [E] ∈ E ll(O) and proper O-ideals up to homothety. However, two
fractional ideals a and b are homothetic iff λa = b for some λ, i.e. iff they are equivalent in
the class group. Thus the class group of O parameterizes all isomorphism classes of elliptic
curves with endomorphism ring O. This is summarized in the following.

E ll(O) =
{elliptic curves E/C with End(E) ∼= O}

isomorphism over C
=
{proper fractional O-ideal}

principal O-ideals
= C(O).

We state this as a theorem.

Theorem 2.5: We have a bijection

E ll(O) ∼= C(O)

where [E] ∈ E ll(O) is sent to a [a], where a is a fractional ideal homothetic to the lattice
corresponding to E.

We get much more than this, however. E ll(O) is a priori just a set; however, C(O) is a
group. We can define the action of I(O) on Ell(O) since I(O) acts on lattices. This action
will descend to an action of C(O) on E ll(O), since isomorphic elliptic curves correspond to
equivalent ideals.

Theorem 2.6: There is a group action of Id(O) on Ell(O) given by

aEΛ = Ea−1Λ

where EΛ denotes the elliptic curve corresponding to the lattice Λ.
This descends to a simply transitive group action of C(O) on E ll(O).

Proof. Just check that if Λ has endomorphism ring O, then so does the lattice a−1Λ. (Note
that bL is defined by {sα : s ∈ b, α ∈ L}.)

For the second part, note that EΛ
∼= aE = Ea−1Λ iff Λ and a−1Λ are homothetic, i.e. a is

principal.

Remark 2.7: Another way of saying that C(O) acts simply transitively on E ll(O) is that
E ll(O) is a torsor or principal homogeneous space for C(O).

This action will be fundamental to our understanding of CM elliptic curves. Later on we
will relate this to the Galois action. The interplay between these two actions is the source
for much of the richness of CM theory.

2.3 Ideals define maps

For any n ∈ Z and any elliptic curve E, n defines the multiplication by n map [n] : E → E.
When E has CM, we saw in Theorem 2.2 that α ∈ O defines (canonically) the multiplication
by α map [α] : E → E. We now extend this to ideals: if a is a proper O-ideal, a determines
a “multiplication by a” map. The only difference is that [a] is now a map E → aE.
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Definition 2.8: Let E ∈ Ell(O) correspond to the lattice Λ. Let a be a proper integral
ideal of O. We have aR ⊆ R, so a determines a map C/Λ→ C/a−1Λ, sending z 7→ z. Define
the multiplication by a-map as the corresponding map on elliptic curves

[a] : E → Ea−1Λ = aE.

Proposition 2.9: Let E ∈ Ell(OK). We have the following.

1. The kernel of [a] (the “a-torsion points”) is

E[a] := {P ∈ E : [α]P = 0 for all α ∈ a} ∼= OK/a.

2. The degree of [a] is
deg([a]) = |E[a]| = N(a),

and in particular, deg([α]) = |E[α]| = NmK/Q(α).

Proof. Silverman AT [32, pg. 102-3].

§3 Defining CM elliptic curves over Q

We show that we do not lose anything if we just consider elliptic curves over Q instead of
over C. To do this, we look at the j-invariants.

Proposition 3.1: Suppose E is an elliptic curve with CM by a quadratic order O. Then
j(E) ∈ Q, i.e. j(E) is algebraic.

Proof. Let σ be any automorphism of C over Q. We look at how σ acts on j(E).
Note that Eσ is defined by taking any equation for E and operating on all the coefficients

of E by σ, so σ(j(E)) = j(Eσ).
First note that End(E) ∼= End(Eσ) by the map φ 7→ φσ. Hence End(σ(E)) = O as well.

But C(O) is finite, and as |C(O)| = |E ll(O)| (Theorem 2.5) we see that the Eσ lie in finitely
many isomorphism classes. Because isomorphic elliptic curves have the same j-invariant,
there are a finite number of possibilities for j(Eσ).

As {σ(j(E)) : σ ∈ Aut(C)} is finite, j(E) must be algebraic.

This allows us to prove the following.

Theorem 3.2: We have
E llC(O) ∼= E llQ(O).

Proof. We use the following properties of the j-invariant. ([31, III.1.4])

1. For every j ∈ K, there exists an elliptic curve E/K with j(E) = j.

2. Let K be an algebraically closed field and E1, E2 be elliptic curves defined over K.
Then E1

∼= E2 over K iff j(E1) = j(E2). (The backwards direction does not necessarily
hold if K is not algebraically closed.)
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We show that the map

E llQ(O)→ E llC(O) (39.2)

is an isomorphism (of sets, in fact, of C(O)-modules). The map is well-defined, because any
automorphism over Q is an automorphism over C.

By Lemma 3.1, if [E] ∈ E llC(O) then j(E) ∈ Q. By item 1, there exists an elliptic
curve E ′ defined over Q with j(E ′) = j(E). Then E ′ is isomorphic to E over C. Thus
the map (39.2) above is surjective. It is injective because if E,E ′ are defined over Q and
isomorphic over C, then item 2 says j(E) = j(E ′); and the other direction of item 2 says
that E ∼= E ′ over Q.

It is also important to know what fields we can define elliptic curves and isogenies over.

Proposition 3.3: Suppose E is an elliptic curve with CM by O ⊂ K, where K is an
imaginary quadratic field.

1. If E is defined over L then endomorphisms of E can be defined over LK.

2. If E1, E2 are defined over L then there exists a finite extension M/L, so that every
isogeny E1 → E2 is defined over M .

Proof. For item 1, note that all endomorphisms are in the form [α] and use Proposition 2.2(4).

For item 2, first we claim that any isogeny φ is defined over a finite extension of L. For
any σ ∈ Aut(C) fixing L, φσ is a map E1 → E2 having the same degree as φ. Any isogeny is
determined by its kernel, up to automorphism of E1 and E2. As E1 has a finite number of
subgroups of given index and deg(φ) = ker(φ), there are finitely many isogenies of a given
degree. Hence {φσ : σ ∈ G(C/L)} is finite, showing φ is defined over a finite extension of L.

Now Hom(E1, E2) is a finitely generated group, so we can take the field of definition for
a finite set of generators.

§4 Hilbert class field

4.1 Motivation: Class field theory for Q(ζn) and Kronecker-Weber

The case of Q

First we give some motivation for the next two sections by making an analogy with class
field theory for Q(ζn). We can think of µn, the nth roots of unity, as the analogue of E[n]:

µn are the n-torsion points of the group variety Q× under multiplication, and E[n] are the
n-torsion points of an elliptic curve. To emphasize this analogy, we write K×[n] to denote
the nth roots of unity in K.

Recall how we established class field theory for Q(ζn): given a prime p, we want to find
(p,Q(ζn)/Q). To do this we looked at the action of (p,Q(ζn)/Q) on Q×[n] = µn, by taking
everything modulo p. We know by definition of (p,Q(ζn)/Q) how it must act on the residue
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field extension l/Fp and hence on F×p [n]. Suppose p - n. Because the maps

Q×[n] ↪→ F×p [n]

End(Q×[n]) ↪→ End(F×p [n]) (39.3)

are injective (the first is because p - n and the second is a direct consequence of the first),
once we know how (p,Q(ζn)/Q) acts on F×p [n], we know it acts on Q×p [n], so we know exactly
what automorphism it is:

(p,Q(ζn)/Q)(ζn) = ζpn.

In particular, since ζn is a n-torsion point (i.e. ζnn = 1) this only depends on p (mod n).
Hence we get the Artin map ψQ(ζn)/Q factoring through the modulus ∞n:2

ψQ(ζn)/Q : IQ/IQ(1, n∞)
∼=−→ G(Q(ζn)/Q).

Finally, since every modulus divides ∞n for some n, we get the Kronecker-Weber Theorem

Qab = Q(ζ∞) = Q(Q×[∞]).

In summary, we found the ray class groups and thus the maximal abelian extension by
looking at how (p,Q(ζn)/Q) acted on Q×[n]:

Q×[n] •̃
reduction

//

�

F×p [n]

�

IQ/PQ(1, n∞)
ψQ(ζn)/Q

// G(Q(ζn)/Q) •̃ // G(Fp(ζn)/Fp).

(39.4)

The case of K

One big difference when we’re working over an imaginary quadratic field K is that while
we had CQ = 1, we have CK is nontrivial in general. This corresponds to the fact that
there is only 1 nonisomorphic “version” of Gm(Q) = Q×, but multiple elliptic curves with
endomorphism ring by the same order O. Hence G(Kab/K) no longer operates on the same
elliptic curve. Instead we have to analyze it in two steps.

1. Consider the action of G(HK/K) on E llQ(O), i.e. equivalence classes of elliptic curves
with CM by O.

2. Consider the action of G(Kab/HK) on the torsion points Etors of a single elliptic curve.

In both cases, we will understand the action by looking at how the Frobenius elements of
the Galois groups act.

2The ∞ is a technical detail coming from the fact that Q is totally real.
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The case of K: Part 1

We have two natural actions on the set of elliptic curve E llQ(OK), namely the action of

G(K/K) and C(OK). Our first task is to relate these, i.e. find a dotted map that preserves
the action on E llQ(OK):

E llQ(OK)

� �

G(K/K) // C(OK).

(39.5)

We’ll see that this map factors through G(L/K) where L = K(j(E)). We have a map
ψL/K : I fK/PK(1, f)→ G(L/K); we show that f = 1 and the composition of the two maps is
an isomorphism, and that in fact we have

E llQ(OK)

� �

IK/PK
ΨL/K

//

a7→[a]

22G(L/K) // C(OK).

(39.6)

We establish (39.6) by looking at the reduction of the elliptic curves modulo some P.

Since G(HK/K) ∼= C(OK) this will show that L = HK , the Hilbert class field of K.

The case of K: Part 2

We can now do the same thing we did with Q, use the torsion points of elliptic curves to
find the ray class fields and the maximal abelian extensions. We can’t work directly over K
because CK is nonzero, but if we imitate the argument (with some modifications) over Q for
HK we will get the ray class fields of K. We let Ln = K(j(E), h(E[n])) where h is a Weber
function (to be defined).

Let ln, l be the residue fields of Ln and HK modulo some prime. We show Ln is the ray
class field for (n) by constructing the diagram

E[n] •̃
reduction

//

�

Ẽ[n]

�

NmHK/K(InHK )/PK(1, n)
ψLn/K

∼=
// G(Ln/HK) •̃ // G(ln/l).

(39.7)

We now carry out these two parts.

4.2 The Galois group and class group act compatibly

We establish the map in (39.5).
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Theorem 4.1: There exists a map F : G(K/K)→ C(OK) such that for any elliptic curve
E,

[Eσ] = F (σ)E.

This map factors through G(Kab/K).

As a reminder, the action of C(OK) on E llQ(OK) is such that if E = EΛ, then F (σ)E =
EF (σ)−1Λ. Theorem 4.1 expresses a deep relationship because the left-hand side expresses an
algebraic action, while the right-hand side expresses an analytic action, as it is defined on
lattices and the map between E and C/Λ is inherently analytic.

Proving this theorem essentially boils down to showing the Galois action commutes with
the action on C(OK).

Proposition 4.2: For all E,

σ([a][E]) = [σ(a)][σ(E)].

Proof. Suppose E corresponds to Λ, i.e. E ∼= C/ΛC. Then we have the exact sequence

0→ Λ→ C→ E → 0.

Then aE corresponds to a−1Λ. Take a resolution for a:

Rm A−→ Rn → a→ 0.

Take a “Hom product” and use the Snake Lemma. See [32, II.2.5].

Proof of Theorem 4.1. See [32, II.2.4].

4.3 Hilbert class field

Before we proceed with finding the Hilbert class field, we need to show injectivity of the
reduction map like in (39.3).

Theorem 4.3: Suppose E1 and E2 are elliptic curves defined over L with good reduction
at P. Then the reduction map

Hom(E1, E2)→ Hom(Ẽ1, Ẽ2)

is injective and preserves degrees.

Proof. See Silverman AT [32, pg. 124] (Also see Silverman’s errata).

The main theorem of this section is the following.

Theorem 4.4 (j(E) generates the Hilbert class field): Let E be an elliptic curve with CM
by OK . Then

1. K(j(E)) = HK , the Hilbert class field of K.
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2. G(K/K) acts transitively on the isomorphism classes of curves in E ll(OK).

3. For any ideal a ∈ IK ,
[EψHK/K(a)] = [a][E].

In particular, the action of Frobenius on the j-invariant is given by operating by [p] on
the elliptic curve:

[E(p,HK/K)] = [p][E].

Proof. Step 1: First we show the following: There exists a finite set of primes S of Z such
that for any p 6∈ S that splits completely in K, p = pp, we have

F ((p, L/K)) = [p] ∈ C(OK).

This will show the dotted map in (39.6) is the identity for a large number of primes p.
We have the map [p] : E → pE. We show that this is “like” the pth power Frobenius

map. To do this, we show that it is inseparable of degree p (this is why we needed p to be
split)3, and then look at the j-invariants of the reduced maps modulo p.

As E llQ(OK) = E llC(OK) is finite, we can find a finite extension L/K and representatives
E1, . . . , Eh of classes in E llC(OK), that are defined over L. Let S be a set of primes containing
the primes that satisfy one of the following conditions.

1. p ramifies in L. (Primes that ramify always cause trouble.)

2. E or some Ei has bad reduction at some prime of L lying over p.

3. vp(NmL/Q(j(Ei)−j(Ek))) 6= 0 for some i 6= k. (This allows us to know what equivalence
class an elliptic curve lies in, just by looking at its reduction modulo p.)

Let Λ be the lattice such that E(C) ∼= C/Λ, and let a be an integral ideal relatively prime
to p such that ap = (α) is principal (This exists by Corollary 14.2.5). By the equivalence of
categories 1.1, the following maps on complex tori correspond to isogenies of elliptic curves:

C/Λ i //

Φ∼=
��

C/p−1Λ i //

Φ∼=
��

C/p−1a−1Λ
[α]

∼=
//

Φ∼=
��

C/Λ

Φ∼=
��

E
φ1

// pE
φ2

// apE
φ3

∼=
// E

Let the composition of the top maps be f and the composition of the bottom maps be g.
Let ω be an invariant differential on E. Then ω′ = Φ∗ω is an invariant differential on

C/Λ. It is in the form c dz. The composition of the top maps is just multiplication by α, so
f ∗ω′ = αω′. By commutativity, we get g∗ω = αω as well.

Let p 6∈ S and P | p | p in L, K, Q, respectively. Since E has good reduction at P, we
can reduce the elliptic curves and maps modulo P to get

g̃∗ω̃ = α̃ω̃ = 0

3If p is not split, one can still show the map is inseparable of degree p2, with some more work.
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since P | α. By a criterion for separability (g is separable iff g∗ does not act as 0 on ΩE), g̃
is inseparable. Now

deg(φ1) = Np = p,

deg(φ2) = Na ⊥ p,

deg(φ3) = 1.

An inseparable map must have degree divisible by p, and the composition of separable maps
is separable, so φ̃1 must be inseparable.

Any inseparable map factors through the Frobenius map:

Ẽ //

φ̃1   

φp
// Ẽ(p)

∼= ε
��

p̃E.

(39.8)

We have p deg(ε) = deg(φp) deg(ε) = deg(φ̃1) = p so deg(ε) = 1. This shows ε is an
isomorphism.

Thus we have
p̃E ∼= Ẽ(p).

Now by definition of the Frobenius element (it is the pth power map modulo P), we have

j(Ẽ(p)) = j(Ẽ)p = j(E)(p,L/K) modulo P. Putting everything together,

j(pE) ≡ j(Ẽ(p)) ≡ j(E(p,L/K)) (mod P).

But we chose p so that nonisomorphic curves have j-invariants that are not congruent mod-
ulo p (item 3). Therefore, pE ∼= E(p,L/K). This shows that the action of p is the same as the
action of (p, L/K), i.e. F ((p, L/K)) = [p].

Step 2: We show that F : G(K/K) → C(OK) has kernel equal to G(K/K(j(E))), and so
factors through G(K(j(E))/K) ↪→ C(OK). Indeed,

ker(F ) = {σ : F (σ)E = E}
= {σ : Eσ = E} definition of σ

= {σ : j(E)σ = j(E)} j parameterizes isomorphism classes

= G(K/K(j(E))).

We let L = K(j(E)).

Step 3: Let f be the conductor of L/K. We extend Step 1 to all ideals a: for all a we have

F ((a, L/K)) = [a] ∈ C(OK);

in other words f = 1 and the following composition is the identity map.

IK/PK
ψL/K

//

Id

∼=
88

G(L/K) �
� F // C(OK). (39.9)
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Given a ∈ I fK , there are infinitely many p ∈ I fK in the same class as a with degree 1 by
Corollary 28.3.6. Choose such a prime p, that does not divide a prime in S. Note a, p differ
by an ideal in PK(1, f) so they have the same image by the Artin symbol. Step 1 shows that

F ((a, L/K)) = F ((p, L/K))
Step 1

= [p] = [a].

In particular, for any principal ideal (α) ∈ I fK , we have F (((α), L/K)) = 1. However, by
definition the conductor is the smallest p such that α ≡ 1 (mod f) implies ((α), L/K) = 1,
so we must have f = (1).4 Thus the map F : I fK/PK(1, f) → G(L/K) we had originally is
actually just F : IK/PK → G(L/K), and we get (39.9).

Step 4: Since the conductor is divisible by exactly the ramifying primes, L/K is unramified,
and L ⊆ HK . On the other hand, the map F ◦ ψL/K : IK/PK → C(OK) is an isomorphism
because F ◦ψL/K is just the identity map. This gives [L : K] = |C(OK)| = [HK : K]. Hence
L = HK . This shows item 1.

Step 5: Item 3 now follows immediately, since we already showed EψL/K(a) = [a]E and we now
know L = HK . Item 2 follows since the fact that the composition in (39.9) is an isomorphism
means the map F : G(L/K)→ C(OK) is surjective. Since F transfers the action of G(L/K)
on E llQ(OK) to C(OK), and C(OK) acts simply transitively on E llQ(OK), we get that the
same is true for G(L/K).

§5 Maximal abelian extension

We next carry out part 2 of our outline in Section 4.1. We construct the ray class fields for
K, then take their compositum to get the maximal abelian extension.

Definition 5.1: Suppose E has CM by an order in K, and E is defined over HK . A Weber
function is an isomorphism h : E/Aut(1) → P1 defined over HK . (So if f : E → E ′ is an
automorphism, then h(P ) = h(f(P )).)

We can always fix a concrete Weber function.

Example 5.2: The simplest Weber function is the following. If E has the form

y2 = x3 + Ax+B, A,B ∈ HK ,

then take

h(P ) =


x, AB 6= 0

x2, B = 0

x3, C = 0.

4 Technically, we only have ((α), L/K) = 1 for (α) ⊥ f, and a priori ((α), L/K) is not defined for (α) ⊥ f.
(We don’t know f = 1 yet.) The proper way to conclude f = (1) is transfer the problem over to ideles: We

know ψL/K(P f
K) = 1, so φL/K(K×Uf

K) = 1. By IfK/K(1, f)UK(1, f) ∼= IK/K×UK(1, f) we conclude that
φL/K(K×UK) = 1. Hence f = 1.
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In the 3 cases, respectively, Aut(E) is 1, Z/2 or Z/4, and Z/3 or Z/6.
We can define a Weber function that is “model independent,” i.e. doesn’t change under

if we change to an isomorphic elliptic curve, by

h(f(z)) =


g2(Λ)g3(Λ)

∆(Λ)
℘(z,Λ), j(E) 6= 0, 1728

g2(Λ)2

∆(Λ)
℘(z,Λ)2, j(E) = 1728

g3(Λ)
∆(Λ)

℘(z,Λ)3, j(E) = 0.

This is because the expressions have “weight 0.”

The importance of the Weber function is given below. It would not be true if h(P ) were
just defined as h(x, y) = x.

Lemma 5.3: Let E be an elliptic curve with CM by O.

1. The extension K(j(E), Etors)/K(j(E)) is abelian.

2. The extension K(j(E), h(Etors))/K is abelian.

The first statement is important because it tells us G(K/K(j(E))) acts in an abelian
way on Etors. Thus the “Galois representation” of the Galois group on Etors is abelian. Thus,
as we will see, it will decompose into two Grössencharacters.

Proof. We have an injective map G(K(j(E), E[m])/K(j(E))) ↪→ Aut(E[m]).5 Now, the
image of G in Aut(E[m]) commutes with OK , so is contained in

AutOK/mOK (E[m]) ∼= AutOK/mOK (OK/mOK) ∼= (OK/mOK)×

which is abelian.
For the second, suppose σ, τ ∈ G(K(j(E), h(Etors))/K). We show that στ = τσ. Since

K(j(E))/K is abelian, στσ−1τ−1 fixes j(E). Now στσ−1τ−1 gives an automorphism of
E ′ = τσ(E) because

(στσ−1τ−1)τσ(E) = στ(E) ∼= τσ(E),

as the Galois action factors through G(Kab/K) and hence is abelian (Theorem 4.1) (alter-
natively, because στσ−1τ−1 fixes j(E)). As E is defined over HK , we actually have equality.

Since h is invariant under automorphism, for any P ∈ Etors,

h(P ) = h(στσ−1τ−1P ) = στσ−1τ−1h(P ).

(We know h is defined over HK and στσ−1τ−1 fixes HK = K(j(E)).) Hence στσ−1τ−1 fixes
h(Etors) as well, and στσ−1τ−1 = 1.

Theorem 5.4: Suppose K is a quadratic imaginary field and E has CM by OK .

5Since E[m] = Z/m× Z/m, if we choose a basis for E[m], we have Aut(E[m]) ∼= GL2(Z/m), so we have
a Galois representation.
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1. For an integral ideal a of OK , La := HK(h(E[a])) = K(j(E), h(E[a])) is the ray class
field of K modulo a.

2. The maximal abelian extension of K is

K(j(E), h(Etors)).

Proof. Step 1: We need the following lemma.

Lemma 5.5: Suppose E is an elliptic curve defined over L with CM by OK , and has good
reduction at P. Let Ẽ be the reduction modulo P. Let θ : End(E) → End(Ẽ) be the

reduction map on endomorphisms. Then for any γ ∈ End(Ẽ),

γ ∈ im(θ) ⇐⇒ γ commutes with every element in im(θ).

Proof. Since E has good reduction, the map End(E) ↪→ End(Ẽ) in injective. Consider 2
cases.

1. End(Ẽ) is a quadratic order. Then End(E) = End(Ẽ) (as End(E) is a maximal order)
so this case is clear.

2. End(Ẽ) is an order in a quaternion algebra. Then End(E) ⊗ Q is its own centralizer

in the quaternion algebra End(Ẽ)⊗Q, by the Double Centralizer Theorem 25.4.11.

Step 2: We show that in general, we can lift the Frobenius map.

Proposition 5.6: Suppose E has CM by OK and is defined over HK . Let P | p | p in HK ,
K, Q, respectively, with p having degree 1 and p 6∈ S, S being defined as in the proof of
Theorem 4.4. Then the pth power Frobenius map can be lifted to a map on E, i.e. there is
λ making the following commute:

E
λ //

��

E(p,HK/K)

��

Ẽ
λ̃=φp

// Ẽ(p).

Moreover, if E corresponds to the complex torus C/Λ, then up to isomorphism, λ corresponds
to the map C/Λ→ C/p−1Λ. (Recall that E(p,HK/K) ∼= pE by Theorem 4.4.)

Proof. We need to show φp is the reduction of some map; we do this by first reducing the
problem to showing a certain endomorphism is in the image of θ and then showing the
conditions of the previous lemma hold.

Again we use (39.8): φ̃1 : Ẽ → p̃E is “like” the Frobenius map. We know φ̃1 is the

reduction of a map, namely the map φ1 : E → pE. Now note p̃E ∼= Ẽ(p,L/K) = Ẽ(p), the first
from Thm 4.4 and the second from definition of the Frobenius element.
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Let σ = (p, L/K). It remains to show that ε : Ẽσ → p̃E ∼= Ẽσ is the reduction of a map

ε′, because then ε′−1 ◦ φ1 will be the desired map. Let [̃α] ∈ Aut(Ẽσ) be the reduction of

a map [α]. To show ε commutes with [α], we consider φ̃1 = ε ◦ φp, and consider how [α]

“commutes” with φ̃1 and φp.

1. φ̃1: By normalization (Proposition 2.2(3)), we know

φ1 ◦ [α]E = [α]Eσ ◦ φ1.

2. φp: Note that for any morphism of varieties f : V → W over a field of characteristic
p, the following commutes, where φV , φW are the pth power Frobenius maps on V and
W :

V
f
//

φV
��

W

��
φW
��

V (p) fσ
//W (p)

φW ◦ f = fσ ◦ φV .

Applying this to [α]E,

φp ◦ [̃α]E = [̃α]σE ◦ φp = [̃α]Eσ ◦ φp,

where in the last step we used Theorem 2.2(4), noting σ(α) = α since α ∈ K and
σ ∈ G(HK/K).

Hence

[̃α]Eσ ◦ ε ◦ φp︸ ︷︷ ︸
φ1

1
= ε ◦ φp ◦ [̃α]E

2
= ε ◦ [̃α]Eσ ◦ φp.

Cancelling φp gives [̃α]Eσ ◦ ε = ε ◦ [̃α]Eσ , so Lemma 5.5 shows ε is the reduction of some ε′,
as needed.

To finish, note that φ1 does indeed correspond to C/Λ→ C/p−1Λ. Hence λ corresponds
to C/Λ→ C/p−1Λ, up to some automorphism.

Step 3: When (p, HK/K) = 1, λ is just an endomorphism of E, hence equals [α] for some α.
In fact, the following proposition shows it is [π] for some π generating p, so that multiplication
by π corresponds to the pth power Frobenius in the reduction.

Proposition 5.7: Suppose E has CM by OK and is defined over HK . For all but finitely
many degree 1 prime ideals p with (p, HK/K) = 1 (equivalently, such that p is principal),
there exists a unique π such that p = (π) and the following commutes.

E
[π]
//

��

E

��

Ẽ
φp
// Ẽ.

520



Number Theory, §39.5.

Proof. Since (p, HK/K) = 1, Proposition 5.6 gives a diagram

E
λ //

��

E

��

Ẽ
φp
// Ẽ.

for some λ. We know λ is in the form [π], and show π satisfies the desired conditions. We
have by Proposition 2.9 that

NmK/Q(π) = deg([π]) = deg(φ) = p = Np

so either (π) = p or (π) = p. As always, when we’re deciding between conjugates, normaliza-
tion comes to the rescue. Take ω ∈ ΩE whose reduction modulo P is nonzero. Normalization
says that [π]∗ω = πω so

π̃ω̃ = [̃π]
∗
ω̃ = φ∗pω̃ = 0,

the last step since the Frobenius map is inseparable. We get P | π, forcing (π) = p.
For uniqueness, note the map

OK
[·]
∼=
// End(E) Ẽ // End(Ẽ)

is injective for E having good reduction at P (Theorem 4.3).

Step 4: Consider (39.7). We need to show that PK(1, a) is exactly the kernel of the Artin
map ψLa/K . Note that PK(1, a) and ker(ψLa/K) are both subgroups of P a

K = ker(ψHK/K) =
ker(ψLa/K(•)|HK ). It suffices to show that for all but finitely many primes p of degree 1 such
that (p, HK/K) = 1, we have p ∈ PK(1, a) iff p ∈ ker(ψLa/K).

Let p satisfy the conditions of Proposition 5.7. Since the reduction of ψL/K(p) is the
Frobenius map, we get that ψL/K(p) = [π], for some π such that (π) = p.6 Since (p, HK/K) =
1, we have the commutative diagram

E
ψL/K(p)=[π]

//

��

E

��

Ẽ
φp
// Ẽ.

(39.10)

We have the following string of equivalences, for all but finitely many degree 1 primes p
with (p, HK/K) = 1,

1. p ∈ PK(1, a).

2. p = (π) where π = uα where u is a unit and α ≡ 1 (mod a).

3. For all a-torsion points P ∈ E[a], h([π]P ) = h(P ).

6Note the analogy with the cyclotomic case. ψL/K(p) acts on torsion points as [π], just as in the cyclotomic
case it acted as the pth power map, that corresponds to [p] if we consider the natural map Z→ End(Q(ζn)).
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3′. For all a-torsion points P ∈ Ẽ[a], h̃([̃π]P̃ ) = h̃(P̃ ).

4. (p, La/K) fixes h(E[a]).

5. p ∈ ker(ψLa/K).

(1)⇐⇒ (2) is clear.
For (2) =⇒ (3), note that for all a torsion points P ∈ E[a],

h([π]P ) = h([u][α]P )

= h([α]P ) h is Aut(E)-invariant

= h(P ) α ≡ 1 (mod a) and P ∈ E[a].

Note it is important that h be Aut(E)-invariant.

For (3′) =⇒ (2), let P ∈ E[a] be a torsion point. By [31, VII.3.1b], E[a] ↪→ Ẽ[a] is
injective for p - a and E with good reduction at p. Since h is an isomorphism (in particular,
an injection) E/Aut(E) → P1, we get that [π]P = [u]P for some [u] ∈ Aut(E). But
E[a] ∼= OK/a, so we can choose u such that π ≡ u (mod a). Then there exists α such that
π = uα, with α ≡ 1 (mod a).

For (3) =⇒ (4), we calculate the action of (p, L/K) on a torsion point P ∈ E[a], in the
reduced curve:

P̃ (p,L/K) = φp(P̃ ) = [̃π]P ,

the second equality from Proposition 5.7. This allows us to understand the action on the
nonreduced curve, since E[a] ↪→ Ẽ[a] is injective for p - a and p of good reduction. We get

P (p,L/K) = [π]P.

Thus (3) implies

h(P )(p,L/K) = h(P (p,L/K)) (p, L/K) fixes HK and E defined over HK

= h([π]T )

= h(T ) by (3).

Now we prove (4) =⇒ (3′). Let σ ∈ G(K/K) be an automorphism such that σ|Kab =
(p, Kab/K). Then for any P ∈ E[a],

h̃([̃π]P̃ )
(39.10)

= h̃(φ(P̃ )) = h̃(P σ) = h̃(P )
σ

= h̃(P̃ ),

the last two equalities since σ|H = 1, h is defined over H, and σ|La fixes h(E[a]) by assump-
tion. Thus (3′) holds.

Now (4)⇐⇒ (5) comes from the fact that (p, La, K) already fixes K(j(E)), so to fix La

it only needs to fix h(E[a]).

Step 7: The maximal abelian extension is the union of the all ray class fields. Note every c
divides n for some n so we can just restrict to ray class fields corresponding to (n) for some
n ∈ N:

Kab =
⋃
n

K(j(E), h(E[n])) = K(j(E), h(Etors)).
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§6 The Main Theorem of Complex Multiplication

Given σ ∈ Aut(C/K), consider the map σ : E(C)→ Eσ(C). We would like to know how this
map acts on torsion points. This is since to get Galois representations of elliptic curves, we
look at how σ acts on torsion points—often specializing to torsion points that are a power
of a prime.

Because we are considering CM elliptic curves, we can identify the torsion points with

K/a, for some ideal a. Namely, given an analytic isomorphism f : C/a
∼=−→ E(C), we can

restrict it to K/a to get

f |K/a : K/a
∼=−→ Etors ↪→ E(C).

The main theorem of complex multiplication tells us we can transfer the map σ : E(C)→
Eσ(C) via an analytic isomorphism to a multiplication-by-an-idele map [x−1] : K/a →
K/x−1a, where x and σ are related in terms of the Artin map (to be made precise).

Definition 6.1: Let x =
∏

p∈V 0
K
pm(p)

∏
v∈V∞K

vm(v) ∈ IK be an idele. Let a be an ideal, and

define xa by

xa = p(x)a =

(∏
p∈VK

pm(p)

)
a.

Define the map

[x] : K/a→ K/xa (39.11)

as follows. Note K/a ∼=
∏

pKp/aKp by the Chinese Remainder Theorem, where x is just
identified with its images in the Kp/aKp: (xp)p∈V 0

K
. Then (39.11) sends

(ap) 7→ (xpap) where x = (xp). (39.12)

Theorem 6.2 (Main Theorem of Complex Multiplication): Suppose E is an elliptic curve
with CM by OK . Let σ ∈ Aut(C/K) and x ∈ IK be such that

σ|Kab = φK(x).

Fix an analytic isomorphism f : C/a
∼=−→ E(C). Then there exists a unique analytic isomor-

phism f ′ : K/x−1a→ Eσ(C) such that the following commutes:

K/a
x−1
//

f

��

K/x−1a

f ′

��

E(C) σ // Eσ(C).

Remark 6.3: The map (39.12) can be a bit weird to think about: For instance, consider
the simpler case K = Q, a = Z. Take the idele x with 1’s everywhere except x5 = 2. Then
[x] sends 1

2
7→ 1

2
, 1

3
→ 1

3
, 1

7
→ 1

7
and so forth but sends 1

5
→ 2

5
. So it is surprising that

x−1 : K/a→ K/x−1a can be related analytically to E(C)→ Eσ(C).
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Compare this theorem to Proposition 5.7. Rather tan just dealing with the Frobenius
element of a prime, we deal with the Artin map of an idele.

Proof. Note uniqueness follows from the fact that topologically, the closure of K/x−1a is
C/x−1a, and any continuous function is determined by its values on a dense set.

First we prove this for E defined over Q(j(E)) and a integral. We do this in 2 steps.
Step 1: Approximate σ by a field automorphism λ that is the Frobenius element of a prime
p. (The Frobenius element is something much more concrete to work with than the abstract
Artin map of an idele.) We will take better and better approximations, which determine the
action on E[m] for larger and larger m, and take an inverse limit.

So let L′m be the Galois closure of K(j(E), E[m])/K. By Corollary ??.??, there are
infinitely many primes with P | p in K and L such that

(P, L/K) = σ|L′m , N(p) = 1.

We can furthermore choose p satisfying the following, because each condition excludes only
finitely many primes.

1. p is unramified in L′m.

2. p 6∈ S, where S is defined as in the proof of Theorem 4.4.

3. p - m.

By Proposition 5.6, there exists a map λ : E → Eσ that reduces to φp modulo P. On

Ẽ[m], both λ and σ act as φp. Because P - m by item 3, the reduction map modulo P,

E[m]→ Ẽ[m], is injective. Hence λ and σ act the same on E[m]:

λ|E[m] = σ|E[m] : E[m]→ Eσ[m]. (39.13)

But we know how the map λ acts: Proposition 5.6 tells us that the map λ : E → Eσ

corresponds to the map on complex tori i : C/a→ C/p−1a.7 Hence we have the commutative
diagram

C/a i //

f

��

C/p−1a

f ′′

��

E(C) λ // Eσ(C)

(39.14)

for some analytic isomorphism f ′′.
Step 2: By Theorem 5.4, the ray class group modulo m is Km = K(j(E), h(E[m])). Note
Km ⊆ L′m. Now by assumption, p was chosen so that the images of p and x under the Artin
map both project to σ|Km :

φKm/K(x) = σ|Km = ψKm/K(p) = φKm/K(ip(π))

7The map σ and x−1 appearing in the theorem statement are bijections, while λ and i are not. This is
okay, though, because we only use λ, i to approximate σ on m-torsion, and λ, i are injective on m-torsion,
since P - m.

524



Number Theory, §39.6.

where ψ, φ denote the Artin map on ideals and on ideles, respectively, and π is the uniformizer
of p in Kp. We have

kerψKm/K = K×UK(1,m).

(See Definition 23.5.8 for notation.) This follows from the definition of the ray class field
and from the correspondence between ray class groups in Definition 23.4.5 and idele class
groups in Example 23.5.10. We have x ∈ ip(π) kerφKm/K , giving

x = α · ip(π) · u, α ∈ K×, u ∈ UK(1,m).

We now compose (39.14) with the homothety α−1, and note (x) = (α)p, to get the desired
map C/x−1a→ Eσ(C):

C/a i //

f

��

C/p−1a
α−1
//

f ′′

��

C/x−1a

f ′myy

E(C) λ // Eσ(C)

(39.15)

Here, f ′m(z) := f ′′(αz).
This isn’t quite what we want yet, though, because the top row is the map α−1 rather

than the map x−1. We need to show that for m-torsion points, α−1 acts the same as x−1.
Then we would have

σ(f(t)) = λ(f(t)) = f ′m(α−1t) = f ′m(x−1t), t ∈ m−1a/a.

The first equality is since σ, λ were by construction the same on E[m] (39.13), so σ ◦ f and
λ ◦ f are the same on m−1a/a. The second is by commutativity of (39.15).

To show the third equality, we note that

f ′m(α−1t) = f ′m(x−1t) for all t ∈ m−1a/a

(f ′m bijective) ⇐⇒ α−1t− x−1t ∈ a for all t ∈ m−1a

⇐⇒ α−1tq − x−1
q tq ∈ aq for all t ∈ m−1a, q

(multiplying by xq = α[ip(π)]quq) ⇐⇒ [ip(π)]quqt− t ∈ aq for all t ∈ m−1aq

⇐⇒ ([ip(π)]quq − 1)aq ⊆ maq

uq ∈ UK(1,m) ⇐⇒ ([ip(π)]q − 1)aq ⊆ maq.

Consider 2 cases.

1. q 6= p. In this case, [ip(π)]q = 1, so this is trivial.

2. q = p: [ip(π)]p = π, and π−1 is a unit. By assumption p - m. hence (π−1)a = a = ma.

Step 3: We now show that the maps f ′m are all actually the same for m ≥ 3. Indeed,
f ′m|E[m] = f ′mn|E[m] by construction, so f ′m, f

′
mn differ by an automorphism that fixes E[m].

This automorphism must be [ζ] for some element of norm 1 in K, and f ′m = [ζ] ◦ f ′mn. Since
f ′m, f

′
mn are isomorphisms, this says

E[m] ⊆ ker[1− ζ]
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The only possibilities are ζ a 4th or 6th root of unity, and if ζ 6= 1, then [1− ζ] has norm at
most 4. So for m ≥ 3, ζ = 1, and f ′m = f ′mn.

Step 4: Finally, we show the theorem holds for general E/L. Any elliptic curve E has a
model E ′ defined over M ′ = Q(j(E)), corresponding to a complex torus C/a′ with a′ an
integral ideal (see the left face below). Let E → E ′ be an isomorphism and K/a→ K/a′ be
the corresponding map on torsion. Then the existence of f ′E′ for E ′/L gives the existence of
f ′E for E/L, by choosing f ′E to make the below diagram commute.

K/a
x−1

//

∼=

##

fE

��

K/x−1a

f ′E

��

∼=

&&

K/a′ x−1
//

fE′

��

K/x−1a′

f ′
E′

��

E(C) σ //

$$

Eσ(C)
∼=

&&

E ′(C) // E ′σ(C).

6.1 The associated Grössencharacter

The Main Theorem involved 2 different elliptic curves, and 2 different analytic isomorphisms.
In the special case that σ fixes E, the curves will be the same, and by nudging the map
upstairs by a constant depending on x, we can restate the theorem using a consistent choice
of f . (Compare to how we specialized from Proposition 5.6 to 5.7.) The action of φL(x) on
the elliptic curve will “essentially” correspond to multiplication by χE/L on K/a.

Theorem 6.4 (Grössencharacter of an elliptic curve): Let E/L be an elliptic curve with
complex multiplication by OK , and suppose K ⊆ L. Let x ∈ IL and y = NmL/K(x) ∈ IK .
Then there exists a unique α = αE/L(x) ∈ K× with the following properties.

1. αOK = (y).

2. For any fractional ideal a ⊆ K and any analytic isomorphism f : C/a → E(C), the
following commutes.

K/a
αy−1

//

f
��

K/a

f
��

E(Lab)
φL(x)

// E(Lab).

Moreover, defining χE/L : IL → C× by

χE/L(x) := αE/L(x)[NmL/K(x−1)]∞,
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χE/L is a Grössencharacter of K, and χE/L is ramified at P (i.e. χE/L(UP) is not identically
1) iff E has bad reduction at P.

Proof. Part 1: Since f is an isomorphism, uniqueness is clear. To construct α, choose any
σ ∈ Aut(C/L) such that σ|Lab = φL(x). We use Theorem 6.2 with σ and y ∈ IK , noting the
following points.

1. Eσ = E since E is defined over L and σ fixes L.

2. The image of f is contained in E(Lab) as Etors ∈ E(Lab) by Lemma 5.3.

3. By compatibility of the Artin map, φL(x)|Kab = φK(NmL/K x) = φK(y).

We obtain an analytic map f ′ making the following commute.

K/a
y−1
//

f
��

K/y−1a

f ′

��

E(Lab)
φL(x)

// E(Lab).

Because
C/y−1a ∼= Eσ(C) ∼= E(C) ∼= C/a,

we have that y−1a is homothetic to a, i.e. there exists β so that β takes K/y−1a back to
K/a. Defining f ′′(x) = f ′(β−1x), we have that it differs from f by some automorphism [ζ]:
f ◦ [ζ] = f ′′. Let α = βζ. Then we can extend the above diagram as follows.

K/a
y−1
//

f
��

K/y−1a

f ′

��

α // K/a

fzz

E(Lab)
φL(x)

// E(Lab)

As αy−1a = a, we get (α) = (y).
To see that α is independent of f and the ideal a, let f ′ be another analytic isomorphism

K/a′ → E(Lab). Let the map K/a′ → K/a be multiplication-by-γ. Then f(γx) is also an
analytic isomorphism K/a′ → E(Lab). Hence γ−1f−1 ◦ f ′ is an automorphism [ζ] of K/a′,
i.e. f ′(x) = f([ζ]γx). Thus φL(x)[f ′(x)] = f ′(αy−1x) as well.

Part 2: αE/L and hence χE/L is a homomorphism since it’s clear that φL(xx′) ◦ f = f ◦
αα′yy′−1, and φL(x−1) ◦ f = f ◦ α−1y.

We need to check that χE/L(L×) = 1 and that χE/L factors through a modulus.
For the first point, note φL(L×) = 1, the identity element of G(Lab/L). Let i : K× → IK ,

L× → IL be the diagonal maps, and suppose x = i(x). We have y = NmL/K(i(x)) =
i(NmL/K(x)). Then α is just the element such that αNmL/K(x)−1 induces the identity map,
i.e. α = NmL/K(x) = [NmL/K x]∞, so χE/L(x) = 1.

For the second point, fix m ≥ 3 (m = 3 works fine). We’ll show that for any idele x in a
small enough open subset of finite index, φL(x) acts just like multiplication by αE/L(x) and
fixes E[m], without the extra NmL/K(x)∞ factor, so that α will actually be 1.
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Let Bm be the kernel of the Artin map IL → G(L(E[m])/L) (abelian by Lemma 5.3), so
that it induces an isomorphism

φL(E[m])/L : IL/Bm

∼=−→ G(L(E[m])/L). (39.16)

We show that

Um := Bm ∩ L×
(

Nm−1
L/K UK(1,m)

)
⊆ kerχE/L.

This is of finite index in IL since Bm is open of finite index in IL and K×UK(1,m) is open
of finite index in IK .

Fixing an analytic isomorphism f : C/a
∼=−→ E(C), we get that for any t ∈ m−1a/a and

any x ∈ Um, f(t) ∈ E[m] so

f(t) = f(t)φL(x) by (39.16) and x ∈ Bm

= f(αNmL/K(x)−1t) by the Main Theorem 6.2

= f(αt) t ∈ m−1a/a and NmL/K(x)p ≡ 1 (mod mOKp) for all p.

Thus multiplication by α fixes m−1a/a, i.e. α ≡ 1 (mod mOK). Note NmL/K(x)−1 ∈
UK(1,m), so

(α) = (y) = (NmL/K(x)) = OK

and α is a unit. Together with α ≡ 1 (mod mOK), we get α = 1.8

Part 3: The relationship between ramification and bad reduction hinges on the Néron-Ogg-
Shafarevich Criterion. See [32, pg. 169-170].

Note that if χE/L is unramified at P, then χE/L(iP(UP)) = 1, so it makes sense to talk
about χE/L(P) (defined as χE/L(iP(π)) for any uniformizer π).

Proposition 6.5: Let E/L be an elliptic curve with CM by OK , with K ⊆ L. Let P be

a prime of L of good reduction, let Ẽ be the reduction of E modulo P. Let φP be the

Frobenius on Ẽ. Then the following commutes.

E
[χE/L(P)]

//

����

E

��

Ẽ
φP

// Ẽ

Proof. Let π be a uniformizer of LP, and let $ = iP(π). Note that $∞ = 1. Hence
NmL/K($)∞ = 1, giving

χE/L(P) = χE/L($) = αE/L($).

8Any number in the form mτ + 1, τ ∈ OK with norm 1 has norm at least (NmK/Q(m)− 1)2 − 1, by the
triangle inequality. In order for it to have norm 1, τ = 0.
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If m is an integer such that P - m, then NmL/K($) fixes m−1a/a (since it is 1 at all Q with
Q | m). Then

f(t)φL($) = f([αE/L($)] NmL/K($)−1t) definition of αE/L

= f([χE/L(P)] NmL/K($)−1t)

= [χE/L(P)]f(NmL/K($)−1t) f preserves the action of OK
= [χE/L(P)]f(t) NmL/K($) fixes m−1a/a.

Modulo P, φL($) is just the qth power Frobenius map, so we get

φP|Ẽ[m] = ˜[χE/L(P)]|E[m].

Since an isogeny is determined by its action on E[m] for m → ∞ (the kernel of a nonzero
isogeny is finite), we get that this is true for E, not just E[m], as needed.

To study the Galois representation G(K/HK) → AutEtors of E, we reduce modulo a
prime P of L, and show that on this reduced curve, the qth power Frobenius acts exactly as
multiplication by the Grössencharacter. In particular, the qth power Frobenius is represented
by multiplication by χE/L(P) when we think of Etors as K/a. Thinking of Etors as a 2-
dimensional space Q2, this says exactly that the eigenvalues of the Frobenius acting on Etors

is exactly χE/L(P) and χE/L(P). Typically we just restrict our attention to `-power torsion
points for some `.

§7 L-series of CM elliptic curve

7.1 Defining the L-function

We define the L-series of an elliptic curve as the L-series of the corresponding Galois repre-
sentation.

Definition 7.1: Let E be an elliptic curve defined over K, and ρ` the associated Galois
representation G(K/K)→ AutV`E ∼= GL2(Q`).

Define the local L-factor of E at a prime p of K as follows. Choose ` such that p - `,
and let

Lp(E, s) := Lp(ρ`, s) = det(1− q−s Frob(p)|(V`E)Ip)−1,

where q = Np and Ip is the inertia subgroup of G(K/K). (Choose an embedding Q` ↪→ C.)
The L-series of E is the product of local factors

Lp(E/K, s) :=
∏
p

Lp(E, s).

Remark 7.2: This is (almost) the same as saying: fix a prime ` and let L(E/K, s) :=
L(ρ`, s). The only difference is that we run into trouble with the local factor Lp(ρ`, s) on
the right hand side, so we have to choose a different `′ and let this local factor be Lp(ρ`′ , s)
instead.
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The following is an equivalent definition (that is more concrete).

Definition 7.3: Let N be the conductor9 of the elliptic curve E. Define the local L-factor
by

LP(E, s) = 1− aqq−s + χ(q)qq−2s, aq = q + 1− |E(Fq)|, χ(q) =

{
1, m ⊥ N

0, else

where q = Np. Thus

Lv(E, s) =


1− aqq−s + qq−2s, good reduction

1− q−s, split multiplicative reduction

1 + q−s, non-split multiplicative reduction

1, additive reduction.

Note that aq, the “trace of Frobenius,” is related to the number of points of E over Fq.
Hence the L-function contains information about the number of points of E over each Fq.

Showing that these two definitions are equivalent requires us to show that (V`E)Ip is 2,
1, or 0-dimensional when E has good, multiplicative, and additive reduction, respectively.
The general idea is that the action of Ip on V`E contains exactly the information lost by
looking at the reduced elliptic curve, since Ip is exactly the kernel of Dp(K/K) → G(k/k),
so nontrivial action of Ip corresponds to bad reduction.

In the CM case, we cannot have multiplicative reduction, so the L-series is particularly
simple. We will show that the two definitions are equivalent in this case.

Theorem 7.4: Let E/K be a CM elliptic curve. Then E cannot have multiplicative reduc-
tion at any prime.

Proof. An elliptic curve E has potential good reduction iff its j-invariant is integral [31,
VII.5.5]. CM have integral j-invariants, so have potential good reduction, i.e. have good or
multiplicative reduction.

Proof that Definitions 7.1 and 7.3 are equivalent in the CM case. Suppose E has CM by an
order O in K, and E is defined over L. By Néron-Ogg-Shafarevich, Ip acts trivially on V`E
iff E has good reduction at p. Let q = Np.

In the case of good reduction we need to show det(1−q−s Frob(p)|V`E) = 1−aqa−s+qq−2s.
Every endomorphism φ on E satisfies φ2−Tr(φ)φ+ deg(φ) = 0, where Tr(φ) = 1 + deg(φ)−
deg(1− φ). Since Frob(p) acts as the Frobenius morphism φp, its characteristic polynomial
is

det(λ− Frob(p)) = λ2 − Tr(φp)λ+ deg(φp).

9N is divisible by exactly the primes of bad reduction
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But

deg(φp) = q

Tr(φp) = 1 + deg(φp)− deg(1− φp)

= q + 1− ker(1− φp)

= q + 1− |E(Fq)|.

(This part of the proof doesn’t use the fact that E has CM.)
Since E has no multiplicative reduction by Theorem 7.4, it remains to prove that W :=

(V`E)Ip = 0 when E has multiplicative reduction. We know by Néron-Ogg-Shafarevich that
dim(W ) ≤ 1. But because E is CM, V`E ∼= (lim←−n `

−na/a)⊗Q has the structure of a OK⊗Q`-
vector space. If a ∈ W , then for any α ∈ K, αa ∈ W because [α] commutes with the Galois
action. Hence W is not just a Q`-subspace of V , but also a OK ⊗ Q`-subspace. Hence its
dimension over Q` is even, and must be 0.

7.2 Analytic continuation

Theorem 7.5 (Deuring): Let E/L be an elliptic curve with CM by OK with K ⊆ L.Then

L(E/L, s) = L(s, ψE/L)L(s, ψE/L).

Corollary 7.6 (Analytic continuation of L-function for CM elliptic curves): Let E/L be an
elliptic curve with CM by OK . Then L admits an analytic continuation to C and satisfies a
functional equation relating its values at s and 2− s.

This theorem for general elliptic curves is very deep (it follows from the Modularity
Theorem and the analytic properties of L-functions associated to modular forms).

Proof of Theorem 7.5. By Theorem 7.4, E has no multiplicative reduction. Let P be a
prime, and consider 2 cases.

1. E has good reduction at P. Choose any ` not dividing P. The characteristic poly-
nomial of the action of φP on V`E is det(λ − φP|V`E). However, if we make the
identification Etors

∼= K/a, we have

V`E = lim←− `
−na/a,

and we know that φP acts on Etors
∼= K/a as multiplication by χE/L(P). Therefore,

the eigenvalues of the action of φP on V`E are just χE/L(P) and χE/L(P), and

det(λ− φP|V`E) = (λ− χE/L(P))(λ− χE/L(P)).

Taking λ = ps and dividing by p2s gives

LP(E/L, s) = det(1− p−sφP|V`E) = LP(s, χE/L)L(s, χE/L).

2. E has bad reduction at P. Then χE/L(P) = 0 by definition, and LP(E/L, s) = 1 =
(1− χE/L(P))(1− χE/L(P)) = LP(s, χE/L)L(s, χE/L).
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Multiplying together all the local factors gives the result.

Proof of Corollary 7.6. The L-functions of Grössencharacters have analytic continuation
(Theorem 28.7.8, which works for Grössencharacters as well). Thus the result follows di-
rectly from Theorem 7.5.

Thus we have carried out the program in Section 28.7 for CM elliptic curves, to get the
correspondences.

(CM Elliptic curves)→ (Galois representation)→ (2 Grössencharacters)

Remember Grössencharacters are 1-dimensional automorphic representations. If we wanted
a modular form, we can use the technique of automorphic induction to construct a modular
form from 2 Grössencharacters.
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Arithmetic Dynamics
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Chapter 40

Local dynamics: Good reduction

In order to study the dynamics of rational maps on Q or a global number field, we reduce
it modulo various primes to rational maps on local fields, and then piece the information
together to get information about our original system.

§1 Nonarchimedean chordal metric

Inspired by the chordal metric on the projective line P1(C)

ρ([x1 : y1], [x2 : y2]) =
|x1y2 − x2y1|√

|x1|2 + |y1|2
√
|x2|2 + |y2|2

giving P1(C) the topology of the Riemann sphere, we define for a nonarchimedean valuation
v the following:

ρv([x1 : y1], [x2 : y2]) =
|x1y2 − x2y1|v

max(|x1|v, |y1|v) max(|x2|v, |y2|v)
.

It is clear that scaling the coordinates for the two points does not change this value. For con-
venience, we will often “normalize” coordinates so that x1, y1, x2, y2 ∈ R and max(|x1|v, |y1|v) =
max(|x2|v, |y2|v) = 1 (i.e. at least one of x1, y1 and at least one of x2, y2 is a unit). Then the
formula becomes

ρv([x1 : y1], [x2 : y2]) = |x1y2 − x2y1|v = |( x1 x2
y1 y2 )|v .

In particular,
ρv([x1 : y1], [0 : 1]) = |x1|v.

Proposition 1.1: ρv is a nonarchimedean metric satisfying ρv(P1, P2) ≤ 1 for any P1, P2.

Proposition 1.2: The metric ρv is invariant under fractional linear transformations. That
is, letting

f(x, y) =
ax+ by

cx+ dy
,

(
a b
c d

)
∈ PGL2(R),

we have that
ρv(f(P1), f(P2)) = ρv(P1, P2).
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Note: for convenience, we will sometimes write f ∈ PGL2(R).

Proof. Normalize coordinates. Note that [axi + byi : cxi + dyi] are normalized coordinates
for f(Pi) because multiplying the coordinates by the inverse matrix of ( a bc d ) gives(

d −b
−c a

)(
axi + byi
cxi + dyi

)
=

(
xi
yi

)
;

since max(|xi|v, |yi|v) = 1 and xi, yi are R-linear combinations of axi + byi and cxi + dyi, we
must have max(|axi + byi|v) = max(|cxi + dyi|v).

Hence

ρv(f(P1), f(P2)) =

∣∣∣∣det

[(
a b
c d

)(
x1 x2

y1 y2

)]∣∣∣∣
v

=

∣∣∣∣det

(
x1 x2

y1 y2

)∣∣∣∣
v

= ρv(P1, P2).

Proof of 1.1(2). We may operate by linear fractional transformations on the points P1, P2, P3

without changing the values on either side. Hence we make the following reductions.

1. Applying f = Y
X

as necessary, we can assume |x2|v ≤ |y2|v = 1.

2. Apply f = y2X−x2Y
Y

so that |P2| = [0 : 1]. (Note ( y2 −x2
0 1 ) ∈ PGL2(R) since |y2|v = 1.)

The inequality now follows from

ρv(P1, P3) = |x1y3 − x3y1|v
≤ max{|x1y3|v, |x3y1|v}
= max{|x1|v, |x3|v}
= max{ρv(P1, P2), ρv(P2, P3)} since P2 = [0 : 1].

Definition 1.3: Let (K, | · |) be a field with valuation, and φ(z) ∈ K(z) be a nonconstant
rational map. The multiplier of φ at a fixed point α ∈ K is

λα(φ) = φ′(α).

If α has exact period n for φ, then we define

λα(φ) = (φn)′(α) = φ′(α)φ′(φ(α)) · · ·φ′(φn−1(α)).

(The latter follows by the chain rule.) We say that

α is


superattracting, if λα(φ) = 0

attracting, if λα(φ) < 1

neutral, if λα(φ) = 1

repelling, if λα(φ) > 1.

If λα(φ) = 1, we say that φ is rationally or irrationally neutral according to whether or not
λα(φ) is a root of unity. [Analogy with C case?]
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§2 Reduction of maps

Let K be a field with normalized discrete valuation v, let R be the ring of integers, p the
maximal ideal, and k = R/p the residue field. Given a point P ∈ PN(K), choose coordinates
[x0 : . . . : xn] so that xj ∈ R for all j and at least one xi has valuation 0, and define

P̃ = [x̃0, . . . , x̃n].
We similarly define the reduction of a rational map φ as follows: First write φ(X, Y ) =

[F (X, Y ) : G(X, Y )] in normalized form, i.e. F,G ∈ R[X, Y ] and at least one coefficient of

F or G is in R×. Then we let φ̃ = [F̃ : G̃].

Proposition 2.1 (Basic properties of reduction):

1. P̃1 = P̃2 if and only if ρv(P1, P2) < 1.

2. For P,Q ∈ P1(K) and f ∈ PGL2(R), P̃ = Q̃ if and only if f̃(P ) = f̃(Q).

3. Let P1, P2, P3 be points with distinct reductions. There exists a fractional linear trans-
formation f ∈ PGL2(R) such that

f(P1) = 0, f(P2) = 1, and f(P3) =∞.

(Note that we can always find f ∈ PGL2(K).)

Proof. Normalize coordinates.

1. Suppose x1y2 ≡ x2y1 (mod p). If x1x2 6≡ 0 (mod p), then

P̃2 = [x̃1x̃2 : x̃1ỹ2] = [x̃1x̃2 : ỹ1x̃2] = P̃1.

If x1x2 ≡ 0 (mod p), then P1 = P2 = [0 : 1].

2. Combine part 1 with Proposition 1.2.

3. We build f as a composition of the following.

(a) Applying f1 = Y
X

= ( 0 1
1 0 ) as necessary, we may assume v(x1) ≥ v(y1). Normalize

again so v(y1) = 0.

(b) Apply f2 = y1X−x1Y
Y

= ( y1 −x1
0 1 ) so P1 = [0 : 1] = 0.

(c) Apply f3 = X
y3X−x3Y

=
(

1 0
y3 −x3

)
, which fixes P1 and send P3 to [1 : 0] =∞.

(d) Apply f4 = y2X
x2Y

=
(
y2 0
0 x2

)
to scale P2. (Map in PGL(R)?)

Define the resultant of φ = [F : G] to be Res(F,G) (see Section 8.5). Note φ is defined
up to (R×)2d where d = deg φ.

Theorem 2.2 (Upper bound on expansion in chordal metric): Let φ : P1(K) → P1(K).
Then

ρv(φ(P1), φ(P2)) ≤ |Res(φ)|−2
v ρv(P1, P2).
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Proof. Let [x : y] be normalized. By Proposition 5.2(2) (suitably homogenized), there exist
F1, G1, F2, G2 such that

F1F +G1G = Res(φ)X2d−1

F2F +G2G = Res(φ)Y 2d−1.

By the triangle inequality,

|Res(φ)X2d−1|v ≤ max(|F (x, y)|v, |G(x, y)|v)
|Res(φ)Y 2d−1|v ≤ max(|F (x, y)|v, |G(x, y)|v)

Since max{|x|v, |y|v} = 1, we get

|Res(φ)|v ≤ max(|F (x, y)|v, |G(x, y)|v) (40.1)

which bounds the extent to which F (x, y), G(x, y) can both be divisible by high powers of p.
Take P1, P2 to be normalized. We have the factorization

F (X1, Y1)G(X2, Y2)− F (X2, Y2)G(X1, Y1) = (X1Y2 −X2Y1)H(X1, Y1, X2, Y2)︸ ︷︷ ︸
∈R[X1,Y1,X2,Y2]

. (40.2)

Hence

ρv(φ(P1), φ(P2)) =
|F (X1, Y1)G(X2, Y2)− F (X2, Y2)G(X1, Y1)|v

max{|F (X1, Y1)|v, |G(X1, Y1)|v}max{|F (X2, Y2)|v, |G(X2, Y2)|v}
(40.1)

≤ |F (X1, Y1)G(X2, Y2)− F (X2, Y2)G(X1, Y1)|v
|Res(φ)|2v

(40.2)
=
|(X1Y2 −X2Y1)H(X1, X2, Y1, Y2|v

|Res(φ)|2v

≤ ρv(P1, P2)

|Res(φ)|2v
.

Proposition 2.3: Let φ : P1 → P1 be defined over K, and write φ = [F : G] in normalized
form. The following are equivalent.

1. deg φ = deg φ̃.

2. F̃ (X, Y ) = G̃(X, Y ) = 0 has no solutions [α : β] ∈ P1(k).

3. Res(φ) ∈ R×.

4. Res(F̃ , G̃) 6= 0.

We say that φ has good reduction if the above are satisfied.
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Proof. Note that deg φ − deg φ̃ equals the number of common roots of F̃ = G̃. This shows
(1) ⇐⇒ (2). Now (2), (3), and (4) are equivalent by applying Proposition 8.5.2 to F̃ and

G̃.

Proposition 2.4 (Basic facts about reduction): Let φ, ψ : P1 → P1 be rational maps with
good reduction.

1. φ̃(P̃ ) = φ̃(P ) for all P ∈ P1(K).

2. φ ◦ ψ has good reduction and ˜φ ◦ ψ = φ̃ ◦ ψ̃.

3. Reduction sends Per(φ)→ Per(φ̃) and PrePer(φ)→ PrePer(φ̃). Moreover it preserves
exact periods.

Proof. Use the characterization of good reduction given by Proposition 2.3(2).

Definition 2.5: The Fatou set of φ is the maximal open set on which {φn : n ∈ N} is
equicontinuous. The Julia set is the complement of the Fatou set.

Theorem 2.6: Let φ : P1 → P1 be a rational map with good reduction. Then

1. φ is everywhere nonexpanding:

ρv(φ(P1), φ(P2)) ≤ ρv(P1, P2).

2. φ has empty Julia set.

Proof. 1. Use Theorem 2.2 and the fact that ρv(P1, P2) < 1 when P̃1 = P̃2 (Proposi-
tion ??(1)).

2. A nonexpanding map is equicontinuous with constant 1.

§3 Periodic points

We now characterize periodic points of φ.

Theorem 3.1: Let (K, | · |v) be a nonarchimedean local field, k be its residue field, and
φ : P1(K) → P1(K) be a rational function of degree d ≥ 2 with good reduction. Let
P ∈ P1(K) be a periodic point of φ. Let

n = period of P for φ

m = period of P̃ for φ̃

r = order of λφ̃(P̃ ) = (φ̃m)′(P ) in k×

p = |k|.

Then n = m, or mrpe for some e ∈ N0.
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Proof. Replacing φ by φm and m by 1, we may assume m = 1, i.e. P̃ is a fixed point of φ̃. If
φ(P ) = P we are in the first case, so assume this does not happen. We may further assume
P = [0 : 1], by taking f sending [0, 1] to P and replacing φ with f−1 ◦ φ ◦ f .

Our main technique is to write the iterates φi(0) in terms of φ′(0) by considering the
Taylor expansion. Write

φ(z) =
adX

d + · · ·+ a0

bdzd + · · ·+ b0

= µ+ λz + · · ·

where µ = a0

b0
∈ p (because oφ(0) = 0) and λ = φ′(0). By induction, we find that

φi(z) = µ(1 + λ+ · · ·+ λi−1)︸ ︷︷ ︸
φi(0)

+ λi︸︷︷︸
(φi)′(0)

z + · · ·

Since φn(0) = 0, this gives

1 + λ+ · · ·+ λn−1 ≡ 0 (mod p). (40.3)

Consider two cases.

1. λ 6≡ 1 (mod p). Then r ≥ 2. Multiplying (40.3) by λ− 1 gives λn ≡ 1 (mod p). This
shows r | n. If n 6= r, then replace φ with φr. Then λ is replaced with λr, so we are in
the second case.

2. λ ≡ 1 (mod p). Then (40.3) gives us n ≡ 0 (mod p); hence p | n and we can replace
φ with φp and n by n

p
. Then we are in this case again, and we repeat until n = 1.

Corollary 3.2: Let φ : P1 → P1 be a rational map with good reduction.

1. Every periodic point of φ is nonrepelling.

2. If φ̃ is separable, then φ has finitely many attracting periodic points.

Theorem 3.3: Let K be number field, and φ : P1 → P1 be a rational map over K. Suppose
φ has good reduction at p and q, with different residue characteristics. Let P be a periodic
point with period n. Then

n ≤ (Np2 − 1)(Nq2 − 1).

In particular, Per(φ,K) is finite for any φ.

Proof. We have that

mp ≤ |P1(Fp)| = Np + 1

rp ≤ |F×p | = Np− 1

and similarly for q. By Theorem 3.1, we get

n = mpr
e
pp
e′ = mqr

f
q q

f ′

for some e, f ∈ {0, 1} and e′, f ′ ∈ N0. Since p, q are relatively prime, n ≤ mprpmqrq, giving
the desired bound.

The second part now follows from the fact that the coefficients of φ can have nonzero
valuation only for a finite number of primes, and the fact that φn(P ) = P can only have
finitely many solutions for a fixed n.

540



Bibliography

[1] T. Andreescu and G. Dospinescu. Problems from the Book. XYZ Press, 2008.

[2] G. Andrews. Number Theory. Dover, 1971.

[3] T. Apostol. Modular forms and Dirichlet series. Number 110 in GTM. Springer, 2nd
edition, 1994.

[4] T. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Mathe-
matics. Springer, 1995.

[5] M. Artin. Algebra. 2009.

[6] M. Bhargava. Higher composition laws i: A new view on gauss composition, and
quadratic generalizations. Annals Math., 159(1):217–250, Jan. 2004.

[7] B. Brubaker. Automorphic forms, 2011.

[8] J. Cassels and A. Frohlich, editors. Algebraic Number Theory. Academic Press, 1969.

[9] D. Cox. Primes of the form x2 + ny2. John Wiley & Sons, Inc., 1989.

[10] H. Davenport. Multiplicative Number Theory. Number 74 in GTM. Springer, 1980.

[11] G. Hardy and E. Wright. An Introduction to the Theory of Numbers. 2009.

[12] M. Hindry and J. Silverman. Diophantine Geometry: An Introduction. Number 201 in
GTM. Springer, 2000.

[13] K. Ireland and M. Rosen. A Classical Introduction to Number Theory. Number 84 in
GTM. Springer, 1990.

[14] Iwaniec and Kowalski. Analytic Number Theory, volume 53 of Colloqium Publications.
AMS, 2004.

[15] K. Kedlaya. Math 254b (number theory), 2002.

[16] N. Koblitz. Elliptic Curves and Modular Forms. Number 97 in GTM. Springer, 1984.

[17] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. Number 58 in GTM.
Springer, 1984.

541



Number Theory, §40.3.

[18] S. Lang. Algebraic Number Theory. Number 110 in GTM. Springer, 1994.

[19] S. MacLane. Categories for the Working Mathematician. Springer, 1971.

[20] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1996.

[21] J. Milne. Class Field Theory. 4.00 edition, 2008.

[22] J. Milne. Field and Galois Theory. 2008.

[23] J. Milne. Algebraic Number Theory. www.jmilne.org/math/, 3.02 edition, 2009.

[24] M. Nathanson. Additive Number Theory: The Classical Bases. Number 164 in GTM.
Springer, 1996.

[25] J. Neukirch. Algebraic Number Theory. Springer, 1999.

[26] D. Ramakrishnan and R. Valenza. Fourier Analysis on Number Fields. Number 186 in
GTM. Springer, 1999.

[27] J. Rotman. An Introduction to Homological Algebra. Springer, 2009.

[28] J.-P. Serre. A Course in Arithmetic. Number 7 in GTM. Springer, 1973.

[29] J.-P. Serre. Local Fields. Number 67 in GTM. Springer, 1979.

[30] Alexandra Shlapentokh. Hilbert’s Tenth Problem: Diophantine Classes and Extensions
to Global Fields. Number 7 in New mathematical monographs. Cambridge University
Press, 2006.

[31] J. Silverman. The Arithmetic of Elliptic Curves. Number 106 in GTM. Springer, 1986.

[32] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Number 151 in
GTM. Springer, 1994.

[33] J. Silverman. The Arithmetic of Dynamical Systems. Number 241 in GTM. Springer,
2007.

[34] T. Tao. Higher Order Fourier Analysis. in preparation, 2011.

[35] T. Tao and V. Vu. Additive Combinatorics. Cambridge University Press, 2009.

[36] L. Washington. Introduction to Cyclotomic Fields. Number 83 in GTM. Springer, 1982.

542



Index

abstract Galois group, 320
adeles, 247
Artin’s conjecture, 391
automorphic form, 390

bar resolution, 270
biquadratic reciprocity, 369
Brauer group, 303
Brauer-Hasse-Noether theorem, 350

central simple algebra, 304
centralizer, 304
chain map, 261
change of group, 282
Chebotarev density theorem, 380
Chevalley-Warning Theorem, 70
Chinese remainder theorem, 10
chordal metric, 535
class formation, 320
class group, 127
cohomological functor, 267
cohomology, 262
cohomology of lattices, 343
cohomology of units, 312
coinduced module, 273
Comparison theorem, 262
complete resolution, 276
complex, 261
complex multiplication, 505
conductor, 246
congruence subgroup, 244
corestriction, 282
cubic reciprocity, 372
cup product, 279
cusp form, 394
Cyclotomic polynomials, 165

decomposition group, 120

Dedekind domain, 112
degree equation, 116
density, 380
derivation, 271
derived functors, 263
descent, 300
dimension shifting, 278
Dirichlet’s S-unit theorem, 163
Dirichlet’s theorem for number fields, 381
Dirichlet’s unit theorem, 159
discrete valuations, 111
double centralizer theorem, 304
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