
Reflections on Trusting Trust
Ken Thompson

Reprinted from Communication of the ACM, Vol. 27, No. 8, August 1984, pp.
761-763. Copyright © 1984, Association for Computing Machinery, Inc. Also
appears in ACM Turing Award Lectures: The First Twenty Years 1965-1985
Copyright © 1987 by the ACM press and Computers Under Attack: Intruders,
Worms, and Viruses Copyright © 1990 by the ACM press.

I copied this page from the ACM, in fear that it would someday turn stale.

Introduction

I thank the ACM for this award. I can't help but feel that I am receiving this
honor for timing and serendipity as much as technical merit. UNIX swept into
popularity with an industry-wide change from central main frames to
autonomous minis. I suspect that Daniel Bobrow (1) would be here instead of
me if he could not afford a PDP-10 and and had to "settle" for a PDP-11.
Moreover, the current state of UNIX is the result of the labors of a large number
of people.

There is an old adage, "Dance with the one that brought you," which means that
I should talk about UNIX. I have not worked on mainstream UNIX in many
years, yet I continue to get undeserved credit for the work of others. Therefore,
I am not going to talk about UNIX, but I want to thank everyone who has
contributed.

That brings me to Dennis Ritchie. Our collaboration has been a thing of beauty.
In the ten years that we have worked together, I can recall only one case of
miscoordination of work. On that occasion, I discovered that we both had
written the same 20-line assembly language program. I compared the sources
and was astounded to find that they matched character-for-character. The result
of our work together has been far greater than the work that we each
contributed.

I am a programmer. On my 1040 form, that is what I put down as my
occupation. As a programmer, I write programs. I would like to present to you
the cutest program I ever wrote. I will do this in three stages and try to bring it
together at the end.

Stage I

In college, before video games, we would amuse ourselves by posing
programming exercises. One of the favorites was to write the shortest

ACM Classic: Reflections on Trusting Trust http://cm.bell-labs.com/who/ken/trust.html

1 of 7 12/10/2013 01:22 AM



self-reproducing program. Since this is an exercise divorced from reality, the
usual vehicle was FORTRAN. Actually, FORTRAN was the language of choice for
the same reason that three-legged races are popular.

More precisely stated, the problem is to write a source program that, when
compiled and executed, will produce as output an exact copy of its source. If
you have never done this, I urge you to try it on your own. The discovery of how
to do it is a revelation that far surpasses any benefit obtained by being told how
to do it. The part about "shortest" was just an incentive to demonstrate skill and
determine a winner.

ACM Classic: Reflections on Trusting Trust http://cm.bell-labs.com/who/ken/trust.html

2 of 7 12/10/2013 01:22 AM



FIGURE 1

Figure I shows a self-reproducing program in the C programming language.
(The purist will note that the program is not precisely a self-reproducing
program, but will produce a self-reproducing program.) This entry is much too
large to win a prize, but it demonstrates the technique and has two important
properties that I need to complete my story: (1) This program can be easily
written by another program. (2) This program can contain an arbitrary amount
of excess baggage that will be reproduced along with the main algorithm. In the
example, even the comment is reproduced.

ACM Classic: Reflections on Trusting Trust http://cm.bell-labs.com/who/ken/trust.html

3 of 7 12/10/2013 01:22 AM



Stage II

The C compiler is written in C. What I am about to describe is one of many
"chicken and egg" problems that arise when compilers are written in their own
language. In this ease, I will use a specific example from the C compiler.

C allows a string construct to specify an initialized character array. The
individual characters in the string can be escaped to represent unprintable
characters. For example,

"Hello world\n"

represents a string with the character "\n," representing the new line character.

FIGURE 2

Figure 2 is an idealization of the code in the C compiler that interprets the
character escape sequence. This is an amazing piece of code. It "knows" in a
completely portable way what character code is compiled for a new line in any
character set. The act of knowing then allows it to recompile itself, thus
perpetuating the knowledge.

FIGURE 3

Suppose we wish to alter the C compiler to include the sequence "\v" to
represent the vertical tab character. The extension to Figure 2 is obvious and is
presented in Figure 3. We then recompile the C compiler, but we get a

ACM Classic: Reflections on Trusting Trust http://cm.bell-labs.com/who/ken/trust.html

4 of 7 12/10/2013 01:22 AM



diagnostic. Obviously, since the binary version of the compiler does not know
about "\v," the source is not legal C. We must "train" the compiler. After it
"knows" what "\v" means, then our new change will become legal C. We look up
on an ASCII chart that a vertical tab is decimal 11. We alter our source to look
like Figure 4. Now the old compiler accepts the new source. We install the
resulting binary as the new official C compiler and now we can write the
portable version the way we had it in Figure 3.

FIGURE 4

This is a deep concept. It is as close to a "learning" program as I have seen. You
simply tell it once, then you can use this self-referencing definition.

Stage III

FIGURE 5

Again, in the C compiler, Figure 5 represents the high-level control of the C
compiler where the routine "compile" is called to compile the next line of
source. Figure 6 shows a simple modification to the compiler that will
deliberately miscompile source whenever a particular pattern is matched. If this
were not deliberate, it would be called a compiler "bug." Since it is deliberate, it
should be called a "Trojan horse."

ACM Classic: Reflections on Trusting Trust http://cm.bell-labs.com/who/ken/trust.html

5 of 7 12/10/2013 01:22 AM



FIGURE 6

The actual bug I planted in the compiler would match code in the UNIX "login"
command. The replacement code would miscompile the login command so that
it would accept either the intended encrypted password or a particular known
password. Thus if this code were installed in binary and the binary were used to
compile the login command, I could log into that system as any user.

Such blatant code would not go undetected for long. Even the most casual
perusal of the source of the C compiler would raise suspicions.

FIGURE 7

The final step is represented in Figure 7. This simply adds a second Trojan
horse to the one that already exists. The second pattern is aimed at the C
compiler. The replacement code is a Stage I self-reproducing program that
inserts both Trojan horses into the compiler. This requires a learning phase as
in the Stage II example. First we compile the modified source with the normal C
compiler to produce a bugged binary. We install this binary as the official C. We
can now remove the bugs from the source of the compiler and the new binary
will reinsert the bugs whenever it is compiled. Of course, the login command
will remain bugged with no trace in source anywhere.

Moral

The moral is obvious. You can't trust code that you did not totally create
yourself. (Especially code from companies that employ people like me.) No

ACM Classic: Reflections on Trusting Trust http://cm.bell-labs.com/who/ken/trust.html

6 of 7 12/10/2013 01:22 AM



amount of source-level verification or scrutiny will protect you from using
untrusted code. In demonstrating the possibility of this kind of attack, I picked
on the C compiler. I could have picked on any program-handling program such
as an assembler, a loader, or even hardware microcode. As the level of program
gets lower, these bugs will be harder and harder to detect. A well installed
microcode bug will be almost impossible to detect.

After trying to convince you that I cannot be trusted, I wish to moralize. I would
like to criticize the press in its handling of the "hackers," the 414 gang, the
Dalton gang, etc. The acts performed by these kids are vandalism at best and
probably trespass and theft at worst. It is only the inadequacy of the criminal
code that saves the hackers from very serious prosecution. The companies that
are vulnerable to this activity (and most large companies are very vulnerable)
are pressing hard to update the criminal code. Unauthorized access to
computer systems is already a serious crime in a few states and is currently
being addressed in many more state legislatures as well as Congress.

There is an explosive situation brewing. On the one hand, the press, television,
and movies make heroes of vandals by calling them whiz kids. On the other
hand, the acts performed by these kids will soon be punishable by years in
prison.

I have watched kids testifying before Congress. It is clear that they are
completely unaware of the seriousness of their acts. There is obviously a
cultural gap. The act of breaking into a computer system has to have the same
social stigma as breaking into a neighbor's house. It should not matter that the
neighbor's door is unlocked. The press must learn that misguided use of a
computer is no more amazing than drunk driving of an automobile.

Acknowledgment

I first read of the possibility of such a Trojan horse in an Air Force critique (4) of
the security of an early implementation of Multics.

References

Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson, R.S. TENEX, a
paged time-sharing system for the PDP-10. Commun. ACM 15, 3 (Mar.
1972), 135-143.

1.

Kernighan, B.W., and Ritchie, D.M. The C Programming Language.
Prentice-Hall, Englewood Cliffs, N.J., 1978.

2.

Ritchie, D.M., and Thompson, K. The UNIX time-sharing system. Commun.
ACM 17, 7(July 1974), 365-375.

3.

Karger, P.A., and Schell, R.R. Multics Security Evaluation: Vulnerability
Analysis. ESD-TR-74-193, Vol II, June 1974, p 52.

4.

ACM Classic: Reflections on Trusting Trust http://cm.bell-labs.com/who/ken/trust.html

7 of 7 12/10/2013 01:22 AM


