Usability of Security: A Case Study

AlmaWhitten and J. D. Tygar
Decenber 18, 1998
CMU-CS-98-155

Alma Whitten J.D. Tygar
Schoal of Computer Science EECS and SIMS
Carnegie Mellon University University of California

Pittsburgh, PA 15213 Berkeley, CA 94720
ama@cs.cmu.edu tygar @cs.berkeley.edu
Abstract

Human fadors are perhaps the gredest current barrier to effedive computer seaurity. Most security
medanisms are simply too dfficult and confusing for the average computer user to manage arredly.
Designing security software that is usable enough to be dfedive isaspedalized problem, and user
interfacedesign strategies that are gpropriate for other types of software will not be sufficient to solveit.

In order to gain insight and better define this problem, we studied the usability of PGP 5.0, whichisa
public key encryption program mainly intended for email privacy and authentication. We chose PGP 5.0
becaise it has agooduser interfaceby conventional standards, and we wanted to discover whether that was
sufficient to enable non-programmers who know little éout security to adually useit effedively. After
performing both user testing and a agnitive walkthrough anaysis, we conclude that PGP 5.0 is not
sufficiently usable to provide dfedive security for most users.

In the course of our study, we developed general principles for eval uating the usability of computer security
utili ties and systems. This gudy is of interest not only becaise of the conclusions that we read, but also
becaise it can serve & an example of how to evaluate the usabili ty of computer security software.

This publicaion was sippated by Contrad No. 102590-98-C-3513 from the United States Postal Service The
contents of this publicaion are solely the resporsibility of the aithors and do na necessarily represent the official
views of the United States Postal Service.

Keywords: seaurity, human-computer interaction, usability, public key cryptography, eledronic mail, PGP.

1. Introduction

Seaurity mechanisms are only eff ective when used corredly. Strong cryptography, provably corred
protocols, and bug-free @de will not provide security if the people who use the software forget to click on
the encrypt button when they need privacy, give up on a mmunicaion protocol becaise they are too
confused about which cryptographic keys they need to use, or acddentally configure their access control
medhanisms to make their private data world-readable. Problems such asthese ae drealy quite serious:

at least one reseacher [1] has claimed that configuration errors are the probable caise of more than 90% of
all computer security failures. Since average dtizens are now increasingly encouraged to make use of
networked computers for private transadions, the neal to make seaurity manageeble for even urtrained
users has become aiticd [6].

As one remedy, we might attempt to educae the user population in the use of computer seaurity. Thisisa
worthy goal, but how isit to be acomplished? Employers may institute security training programs for
their employees, but it is unlikely that more than a small fradion of home cmmputer users will seek out
classes on security management. News articles on the need for computer security probably make their
readers more likely to ot for software that claims to be seaure, but it seems doubtful that they have much
educaional effect beyond that.

We can try to minimizethe need for security management by users, automating security mechanisms as
much as possible, and invoking legal penalties for the trespassing that does occur. Again, these ae
worthwhile strategies, but insufficient as a solution. Automating the encryption of a ommunication
channel can sometimes work well, sincein the cae of encryption it may be dea what the seaurity
medhanism is meant to accomplish. Automating the granting of accessprivilegesto a Java gplet is much
lessplausible, sinceonly the user knows which locd resources he or she mnsidersimportant to kegp
private, and from whom. Asfor the legal penalties, how isthe user to know when someone has trespassed,
so that he or she can take legal adion? The theft of private data does not necessarily leave any evidence
behind. Even when thereisevidence alawsuit is far more redistic asa course of adion for a wrporation
than for an individual home cmmputer user.

Finally, we can work on improving user interfaces for computer security, in the hope that we can find ways
to make security sufficiently clea and intuitive that most people can use it effedively. It istempting to
think that thisis atask that can be given to user interfacedesigners after the security mechanisms have
already been developed, but we beli eve that will not lead to effedive seaurity, for the foll owing reasons:

1. Designtechniquesthat creae gooduser interfaces for other types of software aeill -fitted to
creding wser interfaces that enable dfedive security. In Sedion 2 we will discussthisclaimin
detail, and describe some spedfic properties that make the design of usable seaurity software a
difficult and spedalized problem.

2. Thereisasyet no bods of seaurity-spedfic user interfacedesign techniques. There aeno
recognized exemplars of good user interfacedesign for seaurity, and human-computer interadion
(HCI) reseach to date has not focused much on security appli caions.

3. Thedevelopment of security-spedfic user interfacedesign techniques requires expertise in
seaurity aswell asin HCI. Because security concepts are often subtle to understand, and because
they must be used perfedly (seeSedion 2.1 below), an HCI expert who is unskill ed in security is
likely to produce asystem where the security mechanisms are not used in exadly the @rred
fashion. Inthe cae of other types of applications, getting the underlying concepts slightly wrong
may still yield a system that could be fixed in the next release, but it is unaccetable in the
unforgiving world of security. Moreover, aswe ague below, good seaurity software should teach
auser about underlying seaurity concepts — which certainly requires that its designer have a
fundamental understanding of those mncepts.

4. Itislikely that many security mechanisms have been developed which simply cannot be made
usable for the general population, as they are too complicaed or too arcane. No user interface @n
make these cmplex mechanisms accessible. To avoid this, HCI considerations need to be
addressed ealy in the processof designing the security mechanisms, not left until the finished
designis handed off to a user interfaceteam.

Asafirst step toward understanding what user interfacedesign for eff ective seaurity requires, we studied
an existing seaurity program, PGP 5.0 [2]. In Sedion 3 we give abrief description of PGP and discussour
reasons for choosing it asa cae study. We found during the curse of our study that the problem of how to
evaluate the usabili ty of seaurity isaso adifficult and spedalized one; in Sedion 4 we describe the
methods we ansidered and the requirements that we believe had to be taken into acount in order to yield
valid results. In Sedions 5 and 6 we describe our dired usability analysis and our user testing, and in
Sedion 7 we compare the results of both. We conclude with a brief discusson of related work. (We dso
include several appendices describing the experiment in greder detail .)

The problem of studying PGP 5.0 is of interest in its own right, but our fundamental motivation for this
reseach was to give an example of how security and HCI profesgonals can attempt to analyze the usabili ty
of seaurity. Security isa particularly tricky field and onethat is unforgiving of mistakes, including the
mistake of negled. Errorsarelikely to be discovered only after seaurity has been compromised, and
possbly not even then. A goodtest of a seaurity system needs to check not only that users can deploy
seaurity properly, but that they will deploy seaurity properly. For example, one dhalenge is how to make
sure that users deploy seaurity mechanisms during the test, without coaching or prompting (which are
unlikely to occur in red field situations).

We believe that it is passible to meaningfully chedk the usability of computer security, and our analysisis
intended as amodel for praditioners and reseachersto use in future examinations of the usability of
seaurity software.

2. Defining usability for seaurity

Why is usability for seaurity aspedal problem? Why can't we just use established user interface
techniques? We discussfive spedal charaderistics of the usabili ty problem for security and propose a
working definiti on of usabili ty that takes into ac@unt these properties.

2.1. Propertiesof the usability problem for seaurity

e Thebarn door property

The proverb about the futili ty of locking the barn doar after the horse is gone is descriptive of an
important property of computer security: once aseaet has been left acddentally unproteaed,
even for a short time, there isno way to be sure that it has not already been read by an attadker.
Because of this, user interfacedesign for seaurity needsto place avery high priority on making
sure users understand their seaurity well enough to kegp from making potentially high-cost
mistakes.

e Theweakest link property

It iswell known that the security of a networked computer isonly as grong as its weakest
component. |f a aader can exploit asingle aror, the gameisup. This meansthat users need to

! We chose to study the Apple Madntosh version of PGP 5.0, and the discussion in the rest of this paper
refers pedficdly to that version. The Windows version is very similar, and the UNIX versions do not
currently have agraphicd user interface

be guided to attend to al aspeds of their seaurity, not left to proceed through random exploration
as they might with aword procesor or a spreadshed.

e Theunmotivated user property

Seaurity isusually a seaondary goal. People do not generally sit down at their computers wanting
to manage their seaurity; rather, they want to send email, browse web pages, or download
software, and they want security in placeto proted them while they dothose things. It iseasy for
people to put off leaning about security, or to ogimisticaly assume that their security isworking,
whil e they focus on their primary goals. Designers of user interfaces for seaurity should not
assume that users will be motivated to read manuals or to go looking for seaurity controls that are
designed to be unobtrusive.

e Theabstraction property

Computer seaurity management often involves scurity policies, which are systems of abstrad
rules for dedding whether to grant accesses to resources. The aedion and management of such
rulesis an adivity that programmers take for granted, but which may be dien and unintuitive to
many members of the wider user population. User interfacedesign for seaurity will neel to take
thisinto acount.

e Thelack of feedback property

The nedl to prevent dangerous errors makes it imperative to provide goodfealbad to the user,
but providing goodfeadbadk for seaurity management is a difficult problem. The state of a
seaurity configuration is usually complex, and attempts to summarizeit are not adequate.
Furthermore, the corred seaurity configuration is the one which does what the user “redly wants’,
and since only the user knows what that is, it is hard for security software to perform much useful
error chedking.

2.2. A working definition of usability for seaurity

Taking those five properties into acaunt, we propcse that seaurity software is usable if the people who are
expeded to use it

arereliably made aware of the security tasks they need to perform,;
are aleto figure out how to successfully perform those tasks,
don’'t make dangerous errors; and

are sufficiently comfortable with the interfaceto continue using it.

AR

In our case study, we evaluate the usabili ty of the encryption program PGP 5.0 [3, 8, 9] against this
definition.

3. Casestudy: PGP

3.1. What PGP does

PGP, short for Pretty Good Privacy, is a program designed to provide the average person with accessto
“strong’ cryptography, meaning cryptography that will be difficult or impossible to bre&k even by the
resources of agovernment [11]. It iswidely available in both shareware and commercial versions, and is
popular within the computer security community. Figure 1 shows the cntents of the PGP 5.0 folder after
install ation.

PGP provides two main cryptographic operations for the user: encryption/deayption of files for privacy,
and credion/verificaion of digital signatures of files for authentication. It is primarily intended for use
with email, and the aurrent Madntosh version includes a plug-in that al ows it to be accesd dredly from
Eudora, a popular email program. It isalso used for encrypting files for seaure storage, and for digitally
signing code binaries to provide evidencethat they have not been modified during distribution.

PGP supparts asymmetric (popularly known as “public key”) cryptography?, in which ea user has a pair
of keys: apublic key, which must be made avail able to all the people the user wants to communicate
seaurely with, and a corresponding private key, which is known only by the user and must be kept seaet.
Fil es encrypted with some person’s public key can be deaypted only by that person’s private key, so the
user can send private email by aaquiring the intended redpient’s public key and using it to encrypt the
message. Files sgned with some person’s private key can be verified as such by using that person’s public
key to check the signature; unlessthe signature was creaed using the corresponding private key, the
signature check will fail.

[——————oriPh i"ormtum I
9items, 458.1 MB available

PGP Guide PGP Keurings Quick Star PGP 5.0 Manual

| []z

Figure 1

A grea ded of key management is required in order to use PGP. At a minimum, the user must generate a
key pair, give the public key to al the people with whom he or she wants to communicae securely, and get
the public keys of all those peoplein return. These tasks are complicated by that fact that a qucial
component of PGP's faurity isthe acurate aciation of public keys with the red people who possessthe
matching private keys. When people who are personally known to ead other mee to exchange public
keysin person, thisis not an issue, but often public keys are obtained through less reli able means, such as
the key servers, which are generally acessble diredories in which anyone may publish akey.

To help establi sh the association between public key and owner under those drcumstances, people can
digitally sign ead other’s keys, and publish their keys with signatures attached. Signing someone dse’s

2 PGP aso includes suppart for symmetric (popularly known as “private key”) cryptography for file
encryption, although we did not investigate this asped of the program. Infad, we speculate that this
feaure, cdled “conventional encryption” by PGP, is confusing to users, sinceit uses aradicdly different
key management structure and has different properties. Aswe seebelow grasping the concepts of
asymmetric ayptography is difficult for people who are not security spedalists—it islikely that needing to
master not just one but two cryptographic structures will only exacerbate the anfusion.

key is suppaosed to certify that the signer personally knows that key belongsto that person. A user who
aqquires omeone’s public key in an unreliable way may choaose to trust that the key belongs to the right
person if it has been sighed by someone dse whaose key the user arealy has and trusts. The graph of keys
conneded by signatures that is creaed by this processis referred to as the “web of trust.”

3.2.Why we chose PGP for our case study

Aswe mentioned in our introduction, it often tempting to think that seaurity’ s usabili ty problems can be
solved just by adding nice graphicd user interfaces where previoudly there were none. We believe that this
ishot the cae, and we wanted to study a security applicaion that did have anicegraphical user interfacein
order to gain an urderstanding of the kinds of usabili ty problems that remained. PGP 5.0 isarecent
program?, with documentation [10] that claims: “The significantly improved graphica user interface
makes complex mathematica cryptography acessble for novice @mputer users.” We greethat PGP 5.0
has anice user interfaceby the standards appropriate for a more traditional appli cation such as aword
processor or compresson uility, so we mnsidered it to be an ided subjed for our case study.

Another fador in our choice of PGP 5.0 was the fad that public key management is an important
component of many seaurity systems being proposed and developed today, and thus the problem of how to
make such key management usable is one which is very generally applicable. PGP 5.0isalso arelatively
small and spedfic security utility, so it is more amenable to a usability analysis than large, complex
seaurity systems.

3.3.0ur usability standard for PGP

People who use email to communicae over the Internet have anee for seaurity software that allows them
to doso with privacy and authentication. The documentation and marketing literature for PGP presents it
asatoal intended for that use by thislarge, diverse group of people, the mgjority of whom are not computer
profesdonals. Referring badk to our propaosed definiti on of usabili ty for security, we focused our case
study on the foll owing question.

If an average user of email fedsthe ned for privacy and authentication, and acquires PGP
with that purpose in mind, will PGP’s current design dlow that person to realize what needs to
be done, figure out how to doit, and avoid dangerous err ors, withou becoming so frustrated
that he or she decidesto give up on using PGP after all?

Restating the question in more detail, we want to know whether that person will , at minimum:

e understand that privacy is achieved by encryption, and figure out how to encrypt email and how to
deaypt email receved from other people;

o understand that authentication is achieved through digital signatures, and figure out how to sign
email and how to verify signatures on email from other people;

e understand that in order to sign email and all ow other people to send them encrypted email a key
pair must be generated, and figure out how to doso;

e understand that in order to allow other people to verify their signature and to send them encrypted
email, they must publish their public key, and figure out some way to doso;

e understand that in order to verify signatures on email from other people and send encrypted email
to ather people, they must aaquire those people’ s public keys, and figure out some way to doso;

e manage to avoid such dangerous errors as acddentally failing to encrypt, trusting the wrong public
keys, failing to badk up their private keys, and forgetting their passphrases; and

3 At the time of this publi cation, PGP 6.0 has recently been released. The paintsraised in our case study
may not apply to this newer version; however, this does not significantly diminish the value of PGP 5.0 as
asubjed for usahili ty analysis.

e be aleto succeal at al of the above within afew hours of reasonably motivated eff ort.

Thisisaminimal list of itemsthat are essential to corred use of PGP. It does not include such important
tasks as having other people sign the public key, signing other people’'s public keys, revoking the public
key and publicizing the revocation, or eval uating the authenticity of a public key based on accompanying
signatures and making use of PGP’ s built-in mechanisms for such eval uation.

4. Evaluation methods

We chose to evaluate PGP’ s usabili ty through two methods: a mgnitive walkthrough [14] in which we
reviewed PGP’ s user interfacediredly and noted aspeds of its design that failed to med the usability
standard described in Sedion 3.3; and a user test [12] performed in alaboratory with test participants
seleded to be reasonably representative of the general population of email users. The strengths and
weaknes®s inherent in each of the two methods made them useful in quite diff erent ways, and it was more
redistic for usto view them as complementary evaluation strategies [4] than to attempt to use the
laboratory test to diredly verify the points raised by the agnitive walkthrough.

Cognitive walkthrough is a usabili ty evaluation technique modeled after the software engineaing pradice
of code walkthroughs. To perform a cognitive walkthrough, the evaluators step through the use of the
software & if they were novice users, attempting to mentall y simulate what they think the novices
understanding of the software would be & ead point, and looking for probable erors and areas of
confusion. As an evaluation tool, cognitive walkthrough tends to focus on the learnahili ty of the user
interface(as oppased to, say, the efficiency), and as such it is an appropriate tool for evaluating the

usabili ty of seaurity.

Although our analysis is most accurately described as a mgnitive walkthough, it also incorporated aspeds
of another technique, heuristic evaluation [8]. In thistechnique, the user interfaceis evaluated against a
spedfic list of high-priority usability principles; our list of principlesis comprised by our definition of
usabili ty for seaurity as given in Sedion 2.2 and its restatement spedficdly for PGP in Sedion 3.3.
Heuristic evaluation isidedly performed by people who are “double experts,” highly famili ar with both the
application domain and with usabili ty techniques and requirements (including an urderstanding of the
skills, mindset and badkground of the people who are expeded to use the software). Our evaluation draws
on our experience & ecurity researchers and on additional badkground in training and tutoring novice
computer users, aswell asin theaer, anthropdogy and psychology.

Some of the same properties that make the design of usable security a difficult and spedalized problem also
make testing the usabili ty of seaurity a challengingtask. To conduct a user test, we must ask the
participants to use the software to perform some task that will i nclude the use of the seaurity. If, however,
we prompt them to perform a security task diredly, when in red life they might have had no awareness of
that task, then we have fail ed to test whether the software is designed well enough to give them that
awarenesswhen they need it. (The weakest link, unmotivated user, and lack of feedback properties apply
here.) Furthermore, to test whether they are ale to figure out how to use the seaurity when they want it,
we must make sure that the test scenario gives them some seaet that they consider worth proteding,
comparable to the value we exped them to placeon their own seaetsin thered world. Designing tests
that take these requirements adequately into acaunt is mething that must be done caefully, and with the
exception of some work on testing the eff ediveness of warning labels[15], we have found little existing
material on user testing that addresses smilar concerns.

5. Cognitivewalkthrough

5.1. Visual metaphors

The metaphor of keysis built into cryptologic terminology, and PGP’ s user interfacerelies heavily on
graphicd depictions of keys and locks. The PGPTools display, shown in Figure 2, offers four buttonsto
the user, representing four operations: Encrypt, Sign, Encrypt & Sign, and Deaypt/Verify, plus afifth
button for invoking the PGPK eys applicaion. The graphicd labels on these buttons indicae the encryption
operation with an icon of a seded envelope that has a metal loop a1 topto make it ook like a ¢osed
padlock, and, for the deayption operation, anicon of an open envelope with akey inserted at the bottom.
Even for anovice user, these ae straightforward visual metaphors that help make the use of keys to encrypt
and deaypt into an intuitive concept.

HEuil————— B

B &S] & || &

PGPkeys Encrypt Sign Encrypt & Sign Decrypt/Yerify

Figure 2

Still more helpful, however, would be an extension of the metaphor to distinguish between public keys for
encryption and private keys for deayption; normal locks use the same key to lock and unlock, and the key
metaphor will | ead people to exped the same for encryption and deayption if it is not visually clarified in
some way. Faulty intuition in this case may lead them to assume that they can always deaypt anything
they have encrypted, an assumption which may have upsetting consequences. Different iconsfor public
and private keys, perhaps drawn to indicate that they fit together like puzze pieces, might be an
improvement.

Sgnaures are another metaphor built into cryptologic terminology, but the icon of the blue quill pen that is
used to indicae signingis problematic. People who are not famili ar with cryptography probably know that
quill s are used for signing, and will recognizethat the picture indicaes the signature operation, but what
they also need to understand isthat they are using their private keys to generate signatures. The quill pen
icon, which has nothing key-like aout it, will not help them understand this and may even lead them to
think that, along with the key objeds that they use to encrypt, they also have quill pen objedsthat they use
to sign. Quill penicons encountered elsewhere in the program may be taken to be those objeds, rather than
the signatures that they are adually intended to represent. A better icon design might ke the quill pen to
represent signing, but modify it to show a private key asthe nib of the pen, and use some entirely different
icon for signatures, perhaps mething that looks more like abit of inked handwriting and incorporates a
keyhole shape.

Signature verification is not represented visually, which is a shame sinceit would be eay for peopleto
overlook it altogether. The single button for Deaypt/Verify, labeled with an icon that only evokes
deayption, could easily lead people to think that “verify” just means “verify that the deayption occurred
corredly.” Perhaps anicon that showed a private key unlocking the envelope and a public key unlocking
the signature inside could suggest a much more acarate model to the user, whil e still remaining simple
enoughto serve & abutton label.

5.2. Different key types

Originally, PGP used the popular RSA agorithm for encryption and signing. PGP 5.0 uses the Diffie-
Hellman/DSSalgorithms. The RSA and Diffie-Hellman/DSSalgorithms use crrespondingly different
types of keys. The makers of PGP would prefer to see dl the users of their software switch to use of
Diffie-Hellman/DSS, but have designed PGP 5.0 to be badkward compatible ad handle existing RSA keys
when recessary. Thelad of forward compatibility, however, can be aproblem: if afileisencrypted for
several redpients, some of whom have RSA keys and some of whom have Diffie-Hellman/DSS keys, the
redpients who have RSA keys will not be @leto deaypt it unlessthey have upgraded to PGP 5.0;
similarly, those redpients will not be ale to verify signatures creaed with Diffie-Hellman/DSS without a
software upgrade.

PGP 5.0 adertsits users to this compatibili ty issue in two ways. First, it uses different iconsto depict the
different key types. ablue key with an old fashioned shape for RSA keys, and a brasskey with a more
modern shape for Diffie-Hellman/DSS keys, as siown in Figure 3. Second, when users attempt to encrypt
documents using mixed key types, a warning message is displayed to tell them that redpients who have
ealier versions of PGP may not be aleto deaypt it.

PoPkeys”="——————— 0| H
PGPkeys
Name Yalidity Trust Creation Size
+ 8 Alma whitten <almMZos cmu.edus BN RS] o/z4/08 1024 /2045 | =]
= El' Alrma wWhitten <alma@cs crou.edus | =
=, 4ima Whitten <alma@es cru.edus a/24/92
P b= Eil1 Blanke <wib@pap.coms 1 T si4097 1024 /4096
[@== Brett A Thornas <bat@pgp.com: 1 T s#9sm7 1024 /2045
P k= azon Eobier <jason@pgp.com: C O gade7 1024 /2059
[B== Joff Harrell <jeff@pgp.coms 1 T sézoser 102472048
[0= Jeffrey I Schiller <jis@mit.edus [O gézrioe 1024
[P @== jude shabry <jude@pgp com? C O siadsr 1024 /2045
[@== Ljoyd L. Chambers <oy d@pgp com? 1 T sézoser 1024 /4096
[P B== park B. Elrod <elrod@pgp.coms C O gade7 1024/20428 []
[B== park H. Weaver <mhwi@pgp.coms 1 3 efode7 1024 /2045 |_7/
7

Figure 3

Unfortunately, information about the meaning of the blue and brasskey iconsis difficult to find, requiring
users either to go looking through the 132 page manual, or to figure it out based on the presence of other
key type data. Furthermore, other than the warning message encountered during encryption, explanation of
why the different key types are significant (in particular, the risk of forward compatibili ty problems) is
given only in the manual. Double-clicking on akey pops up a Key Properties window, which would be a
good paceto provide ashort message aout the meaning of the blue or brasskey icon and the significance
of the arresponding key type.

It is most important for the user to pay attention to the key types when choasing a key for message
encryption, sincethat is when mixed key types can cause compatibili ty problems. However, PGP s dialog
box (seeFigure 4) presents the user with the metaphor of choosing people (redpients) to recave the
message, rather than keysto encrypt the message with. Thisisnot agood design choice not only becaise
the human head icons obscure the key type information, but also becaise people may have multiple keys,

10

and it is counterintuitive for the dialog to display multi ple versions of a person rather than the multiple keys
that person owns.

Drag users from this list to the Recipients Tist: Yalidity Trust Size -_?.J
[3 Michael lannamice <mjid@pgp.com > C 1 T toz4/4021 |~
[Mozh Dibrer Salzrian <noah@eytochrome corm > [1 C——1 1oz4/2042
[Mozh Dibrer Salzrian <noah@pgp.comm > [1 C——1 1oz4/2042
[3 PGP Support Key DSS <popsupport@pgp.com? 1 C——1 1oz4/1024
[Philip Mathan <philipni@pgp.com:] O 102442042
[3 Philip R. Zimmermann <prz@pgp.com: [1 C——1 1oz4/2042
[3 Pretty Good Privacy, Ine. Corporate Key [1 C——1 1oz4/2042
[3 will Price swprice@pgp.com? 1 C—1 102444000
3 will Price <wprice@primenet.com: 1 1 10244000 (S

-

Recipients: Yalidity Trust Size
[Jason Bobier <jbobier@prismatix.comn: 1 1 1oz4rsz099
E]' Fhilip E. Eimmermmann <prz@acr.org C—— 1 1 1024

k

Options

[[] Text Dutput [] Force MacBinary Cancel I oK I

Figure 4

5.3. Key server

Key servers are publicly accesible (viathe Internet) databases in which anyone can publish a public key
joined to aname. PGP is st to accessakey server at MIT by default, but there ae others avail able, most
of which are kept up to date & mirrors of ead other. PGP offersthreekey server operations to the user
under the Keys pull-down menu in PGPKeys. Get Seleded Key, Send Seleded Key, and Find New Keys.
Thefirst two of those simply conned to the key server and perform the operation. The third asks the user
to type in aname or email addressto seach for, conneds to the key server and performs the search, and
then tell sthe user how many keys were returned as a result, asking whether or not to add them to the user’s

key ring.

Thefirst problem we find with this presentation of the key server isthat users may not redizeit exists,
sincethereis no representation of it in the top level of the PGPKeys display. Putting the key server
operations under a Key Server pull-down menu would be abetter design choice, espedally sinceit is
worthwhile to encourage the user to make amental distinction between operations that access remote
machines and those that are purely locd. We dso think that it should be made deaer that aremote
machineis being accessed, and that the identity of the remote machine should be displayed. Often the
“conneding...recaving data...closing connedion” series of status messages that PGP displayed flashed by
almost too quickly to beread.

11

@ File Edit L0 Help

Sign S
Add Name...
————— SsetDefault %D [E=—PGPkeys —
Mew Key... 3EMN
Info...

Keyserver Get Selected Key #06
= B ama Revoke R Send Selected Key #K
- 3 4 Find New Keys 3F

4 Import Keys... 3¥M
Export Keys... 3#E

dux

———1 [—1

Figure5

At present, PGPK eys keeps no records of key server accesses. There is nothing to show whether akey has
been sent to akey server, or when akey was fetched or last updated, and from which key server the key
was fetched or updated. Thisisinformation that might be useful for user key management, and also to
verify to the user that key server operations did complete successfully. Adding thisrecord keepingto the
information displayed in the Key Properties window would improve PGP.

Key revocation, in which a cetificae is published to announcethat a previously published public key
should no longer be cmnsidered valid, generally implies the use of the key server to publicizethe
revocation. PGP’ skey revocation operation does not send the resulting revocéation certificae to the key
server, which is probably asit should be, but thereis arisk that some users will assume that it does do so,
and fail to take that adion themselves. A warning that the aeaed revocaion certificae has not yet been
publicized would be gopropriate.

5.4. Key management policy

PGP maintains two ratings for ead public key in a PGP key ring. These ratings may be assgned by the
user or derived automaticdly. Thefirst of these ratings is validity which is meant to indicate how sure the
user isthat the key is safe to encrypt with (i.e., that it does belong to the person whaose nameit is labeled
with). A key may be labeled as completely valid, marginally valid, or invalid. Keysthat the user
generates are dways completely valid. The second of these ratingsis trust which indicaes how much faith
the user hasin the key (and implicitly, the owner of the key) as a cetifier of other keys. Similarly, akey
may be labeled as completely trusted, marginally trusted, or untrusted, and the user's own keys are dways
completely trusted.

What the user may not redize, unlessthey real the manual very carefully, isthat there is apalicy built into
PGP that automaticdly setsthe validity rating of a key based on whether it has been signed by a cetain
number of sufficiently trusted keys. Thisisdangerous. Thereisnothing to prevent users from innocently
asdgning their own interpretations to those ratings and setting them acardingly (espedally since “validity”
and “trust” have different colloquial meanings), and it is certainly passble that some people might make
mental use of the validity rating whil e disregarding and perhaps incautiously modifying the trust ratings.
PGP's ahili ty to automaticaly derive validity ratings can be useful, but the fad that PGP is doing so needs
to be made obvious to the user.

12

5.5. Irreversible actions

Some user errors are reversible, even if they require some time and effort to reconstruct the desired state.
The ones we list below, however, are not, and paentially have unpleasant consequences for the user, who
might lose valuable data.

Accddentally deleting the private key

A public key, if deleted, can usually be gotten again from a key server or fromits owner. A
private key, if deleted and not badked up somewhere, is gone for good, and anything encrypted
with its corresponding public key will never be deayptable, nor will the user ever be &le to make
arevocaion certificae for that public key. PGP responds to any attempt to delete akey with the
guestion “Do you redly want to delete theseitems?’ Thisisfine for a public key, but attempts to
delete aprivate key should be met with awarning about the possble mnsequences.

Acddentally publicizing akey

Information can only be added to a key server, not removed. A user who is experimenting with
PGP may end up generating a number of key pairs that are permanently added to the key server,
without redizing that these ae permanent entries. It istrue that the €fead of this can be partially
addressed by revoking the keys later (or waiting for them to expire), but thisis not a satisfacory
solution. First, even if akey isrevoked or expired, it remains on the key server. Seaond, the
notions of revocaion and expiration are relatively sophisticated concepts; concepts that are likely
to be unfamiliar to anoviceuser. For example, as discussed in the aove bull et, the user may
acddentally lose the abili ty to generate arevocdion certificate for akey. Thisis particularly
likely for a user who was experimenting with PGP and generating a variety of test keys that they
intend to delete. One way to addressthis problem would be to warn the user when he sends a key
to a server that the information being sent will be apermanent additi on.

Accddentally revoking akey

Oncethe user revokes a public key, the only way to undo the revocaion isto restore the key ring
from abadkup copy. PGP’swarning message for the revocation operation asks “Are you sure you
want to revoke this key? Oncedistributed, others will be unable to encrypt datato thiskey.” This
message doesn't warn the user that, even if no distribution has taken place a previous backup of
the key ring will be needed if the user wants to undo the revocation. Also, it may contribute to
the misconception that revoking the key automaticdly distributes the revocation.

For getting the passphrase

PGP suggests that the user make abadkup revocaion certificae, so that if the pass phrase islost,
at least the user can still use that certificate to revoke the public key. We agreethat thisis a useful
thingto do but we dso believe that only expert users of PGP will understand what this means and
how to go about doing so (under PGP's current design, this requires the user to creae abadkup of
the key ring, revoke the public key, creae another badkup of the key ring that has the revoked key,
and then restore the key ring from the original badup).

Failing to back up the key rings

We seetwo problems with the way the mechanism for bacing up the key ringsis presented.

First, the user is not reminded to badk up the key rings until he or she exits PGPKeys; it would be
better to remind as on as keys are generated, so as not to risk losing them to a system crash.
Seoond, athough the reminder message tells the user that it isimportant to badk up the keysto
some medium other than the main hard drive, the dialog box for bading up presentsthe main

13

PGP folder as adefault badkup location. Sincemost users will just click the “Okay” button and
accet the default, thisis not agood design.

5.6. Consistency

When PGP isin the processof encrypting or signing afile, it presents the user with a status message that
saysit iscurrently “encoding.” It would be better to say “encrypting’ or “signing”, since seeng terms that
explicitly match the operations being performed helpsto crede a ¢ea mental model for the user, and
introducing athird term may confuse the user into thinking there is athird operation taking place We
recmgnizethat the use of the term “encoding” here may simply be aprogramming error and not a design
choice per se, but we think thisis something that should be caight by usabili ty-oriented product testing.

5.7. Toomuch information

In previous implementations of PGP, the supparting functions for key management (creaing key rings,
colleding other people’s keys, constructing a“web of trust”) tended to overshadow PGP’'s smpler primary
functions, signing and encryption. PGP 5.0 separates these functions into two applications: PGPKeys for
key management, and PGPTodls for signing and encryption. This cleans up what was previously arather
jumbled colledion of primary and supparting functions, and gives the user a nice simple interfaceto the
primary functions. We believe, however, that the PGPK eys application still presents the user with far too
much information to make sense of, and that it needsto doabetter job d distinguishing between basic,
intermediate, and advanced levels of key management adivity so as not to overwhelm its users.

Currently, the PGPKeys display (seeFigure 3) always ows the following information for eat key on the
user'skey ring. owner’s name, validity, trust level, credion date, and size The key typeisalso indicated
by the choiceof icon, and the user can toggle the display of the signatures on eat key. Thisisalot of
information, and there is nothing to help the user figure out which parts of the display are the most
important to pay attention to. We think that this will cause usersto fail to recognizedatathat is
immediately relevant, such asthe key type; that it will increase the chances that they will assign wrong
interpretations to some of the data, such astrust and validity; and that it will add to making users fed
overwhelmed and uncertain that they are managing their seaurity successully.

We believe that, redisticdly, the vast majority of PGP’ s users will be moving from sending all of their
email in plain text to using simple encryption when they email something sensitive, and that they will be
inclined to trust all the keys they aaquire, because they are looking for protedion against eavesdroppers and
not against the sort of attack that would try to trick them into using false keys. A better design of PGPKeys
would have aninitial display configuration that concentrated on gving the user the corred model of the
relationship between public and private keys, the significance of key types, and a dea understanding of the
functions for acquiring and distributing keys. Removing the validity, trust level, credion date and size
from the display would freeup screen areafor this, and would help the user focus on understanding the
basic model well. Many seaurity experts may fed that the trust and validity information for keysis of
importance but as our experimental results establi sh, the PGP model is $mply too large to be swall owed
by usersin one bite. We must simplify, and we canot cut the are functions of the system.

A smaller set of more experienced users will probably care more aout the trustworthinessof their keys;
perhaps these users do have reason to beli eve that the contents of their email i s valuable enough to be the
target of a more sophisticated, planned attadk, or perhapsthey redly do need to authenticate adigital
signature a coming from a known red world entity. These users will need the information gven by the
signatures on each key. They may find the validity and trust labels useful for recording their assessments
of those signatures, or they may prefer to glance d the adual signatures ead time. 1t would be worthwhile
to allow usersto add the validity and trust labelsto the display if they want to, and to provide eaily
accessble help for users who are transiti oning to this more sophisticated level of use. But thiswould only

14

make sense if the automatic derivation of validity by PGP’ s built-in policy were turned off for these users,
as discus=d in Sedion 5.4.

Key sizeisredly only relevant to those who acdually fea a ayptographic atadk, and could certainly be left
asinformation for the Key Properties dialog, as could the aedion date. Users who are sophisticated
enoughto make intelligent use of that information are cetainly sophisticated enoughto go looking for it.

5.8. Documentation

After ingtall ation, the PGP 5.0 folder contains five items that appea to be documentation: threeof these
items, labeled “Phil's Letter,” “PGPFreeware 5 README,” and “QuickStart” are displayed asidenticd
newspaper page icons, another, labeled “PGP Guide,” has the Madntosh Help (question mark in light
bulb) icon; and the fifth isan Adobe PDF document icon labeled “PGP 5.0 Manual.”

We believe that PGP s documentation should be optimized for two purpases. It should provide an easily
locaable short initial guide to help the user get a basic famili arity with the program, and it should provide a
larger, comprehensive referencethat al ows the user to quickly and diredly accessinformation relevant to
spedfic questions. The better the design of the program interface the lessneed there should be for that
short initial guide. ldedly it should serve & abadup for when the acessbility and clarity of the interface
itself is not enouch.

“PGPFreeware 5 README" and “QuickStart” both look like they might be intended to serve & that short
initial guide, but neither is particularly useful for that purpose. The former isabrief set of comments
related to fixing problems that might arise with the functioning of the program, and the latter isa wlledion
of advice @out various parts of PGP's functionality, too terse to be of much use to non-experts. “Phil's
Letter” isbasically a chatty advertisement for PGP and the phil osophy behind it. Trying to access" PGP
Guide” resultsin the message “Thisis aguide file for use with Apple Guide. It can only be run from
within the gplicaion it isasociated with.” (ThisisaMadOS issue.)

The content from “PGP Guide” is avail able & the PGP Help that can be accesed under the Apple Help
menu when PGPTools or PGPKeysisrunning (but PGP Help is not avail able if the user is working through
PGPMenu). PGP Help isarranged into atop-down coll ediion of informational snippets that in presentation
format look like they should be used for dired accessin answer to spedfic questions, but it redly has the
content of ashort initial guide. Wethink it would be more useful to present this content in alinea format,
so that users can recognizeit as the short initial guide and not as a shall ow, limited form of the more
comprehensive reference

Asaresourcefor finding answers to spedfic questions, PGP Help is quite limited. First, while using the
PGP applicdions, thereis no way to go dredly from an appli catiion context to help related to that context;
if the user is confused whil e performing a particular task they have no better option than to manually search
through PGP Help for topic headings that appea relevant. Seaond, the information accessible through PGP
Help isat avery basic level, and, with afew exceptions, there is no way to ask PGP Help for more detailed
information on a particular point.

The more mmprehensive referenceis certainly the “PGP 5.0 Manual” which isa 132 page Adoke PDF
document that can either be printed out or displayed using the free Adobe Acrobat Reader. Much of the
information in the manual could be very useful as context sensitive on-line help. However, the PDF format
isnot agrea choicefor repeaed on-line acess HTML would be quicker to display and easier to seach.
Printing out the manual is fine for those who work at a desktop computer, but laptop users will not want to
carry alarge printout around.

15

6. User test

6.1. Purpose

Our user test was designed to determine how close PGP 5.0 comes to the usability standard we proposed
for it in sedion 3.3. Furthermore, we wished to test thisin as general a manner as possbhle. We gave our
participants atest scenario that was both plausible and appropriately motivating, and then avoided
interfering with their attemptsto carry out the seaurity tasks that we gave them. We felt that the
information we would gain from such a general test was of greaer value than what we would get from a
test designed to spedfically and carefully verify the points we raised in the dired analysis. (The latter sort
of test would also be valuable, but time and resourcelimitations forced usto prioritize).

6.2. Description

6.2.1. Test design

Our test scenario was that the participant had volunteered to help with a padliticd campaign and had been
given the job d campaign coordinator (the party affili ation and campaign isaues were left to the
participant’ simagination, so as not to offend anyone). The participant’ s task was to send out campaign
plan updates to the other members of the ampaign team by email, using PGP for privacy and
authentication. Since presumably volunteering for a palitica campaign implies a personal investment in
the ampaign’s success, we hoped that the participants would be gpropriately motivated to proted the
seaecy of their messages. Appendix E contains the document used to brief the participants on the test
scenario.

Since PGP does not handle email it self, it was necessary to provide the participants with an email handling
program to use. We dhose to give them Eudora, sincethat would all ow usto also evaluate the successof
the Eudora plug-in that isincluded with PGP. Sincewe were not interested in testing the usability of
Eudora (aside from the PGP plug-in), we gave the participants a brief Eudoratutorial before starting the
test, and intervened with asdstance during the test if a participant got stuck on something that had nothing
to dowith PGP.

After briefing the participants on the test scenario and tutoring them on the use of Eudora, they were given
aninitial task description (attached as Appendix F) which provided them with a seaet message (a proposed
itinerary for the candidate), the names and email addresses of the campaign manager and four other
campaign team members, and arequest to please send the seaet message to the five team membersin a
signed and encrypted email. In order to complete thistask, a participant had to generate akey pair, get the
team members’ public keys, make their own public key avail able to the team members, type the (short)
seaet message into an email, sign the email using their private key, encrypt the email using the five team
members’ public keys, and send the result. In addition, we designed the test so that one of the team
members had an RSA key whil e the others all had Diffie-Hellman/DSSkeys, so that if a participant
encrypted one copy of the message for all five team members (which was the expeded interpretation of the
task), they would encounter the mixed key types warning message. Participants were told that after
acomplishing that initial task, they should wait to receve email from the ampaign team members and
follow any instructions they gave.

Eadh of the five ampaign tean members was represented by a dummy email acount and akey pair which
were accesible to the test monitor through a networked laptop. The ampaign manager’s private key was
used to sign each of the team members' public keys, including her own, and all five of the signed public
keys were placed on the default key server at MIT, so that they could be retrieved by participant requests.
Under certain circumstances, the test monitor posed as a member of the ampaign team and sent email to
the participant from the gppropriate dummy acount. These drcumstances were:

16

1. The participant sent email to that team member asking a question about how to dosomething.
In that case, the test monitor sent the minimally informative reply consistent with the test
scenario, i.e. the minimal answer that wouldn't make that team member seem hostil e or
ignorant beyond the bounds of plausibility®.

2. The participant sent the seaet in aplaintext email. The test monitor then sent email posing as
the campaign manager, telli ng the participant what happened, stressing the importance of
using encryption to proted the seaets, and asking the participant to try sending an encrypted
test email before going any further. If the participant succeeled in doing so, the test monitor
(posing as the campaign manager) then sent an updated seaet to the participant in encrypted
email and the test proceeaded as from the beginning.

3. The participant sent email encrypted with the wrong key. The test monitor then sent email
paosing as one of the team members who had recaved the email, telling the participant that the
team member was unable to encrypt the email and asking whether the participant had used
that team member’ s key to encrypt.

4. The participant sent email to ateam member asking for that team member’skey. The test
monitor then posed as that tean member and sent the requested key in email .

5. The participant succealed in carrying out the initial task. They were then sent a signed,
encrypted email from the test monitor, posing as the ampaign manager, with a change for the
seaet message, in order to test whether they could deaypt and read it successfully. If at that
point they had not done so on their own, they recaved email prompting to remember to badk
up their key rings and to make abadkup revocation certificate, to seeif they were aleto
perform those tasks. If they had not sent a separately encrypted version of the message to the
team member with the RSA key, they also receved email from the test monitor posing as that
team member and complaining that he couldn’t deaypt the email message.

6. The participant sent email telli ng the team member with the RSA key that he should generate
anew key or should upgrade his copy of PGP. In that case the test monitor continued sending
email asthat team member, saying that he couldn’t or didn’t want to dothose things and
asking the participant to please try to find away to encrypt a @wpy that he muld deaypt.

Eadh test sesson lasted for 90 minutes, from the point at which the participant was given theinitial task
description to the point when the test monitor stopped the sesdon. Manuals for both PGP and Eudora were
provided, along with aformatted floppy disk, and participants were told to use them as much as they liked.
A more detail ed description of the testing processis given in Appendix B.

6.2.2. Participants
The user test was run with twelve diff erent participants, all of whom were experienced users of email, and

none of whom could describe the difference between public and private key cryptography prior to the test
sesgons. The participants all had attended at least some llege, and some had graduate degrees. They

* This asped of the test is troublesome in that different test participants were éle to extract different
amounts of information by asking questions in email, thus leading to test results that are not as standardized
aswe might like. However, thisisin some senseredistic; PGP isbeing tested here & a utili ty for seaure
communicaion, and people who wse it for that purpose will be likely to ask ead other for help with the
software & part of that communication. We point out also that the purpose of our test isto locae extreme
usabili ty problems, not to compare the performance of one set of participants against another, and that
whileinacarrately improved performance by afew participants might cause usto fail to identify some
usabili ty problems, it certainly would not lead us to identify a problem where none exists. Appendix C
givesafull report of the email communication for ead participant.

17

represented a mix of ages, genders, education levels and areas of professonal expertise. For a detailed
description of the participant seledion processand resulting demographics, please seeAppendix A.

6.3. Results

Thisis adescription of the most significant results we observed from the test sessons, again focusing on
the usabili ty standard for PGP that we proposed in sedion 3.3. Appendix C givesindividual transcript
summaries for eadt of the test sessons, and should be referred to for additional results and more detailed
information.

e Avoiding dangerouserrors

Threeof the twelve test participants (P4, P9, and P11) acddentally email ed the seaet to the team
members without encryption. Two of the three(P9 and P11) redized immediately that they had
done so, but P4 appeaed to believe that the security was supposed to be transparent to him and
that the encryption had taken place Inall three caesthe aror occurred whil e the participants
were trying to figure out the system by exploring.

One participant (P12) forgot her passphrase during the murse of the test session and had to
generate anew key pair. Participants tended to choose passphrases that could have been standard
passwords, eight to ten charaderslong and without spaces.

e Figuring out how to encrypt with any key

One of the twelve participants (P4) was unable to figure out how to encrypt at al. He kept
attempting to find away to “turn on” encryption, and at one point believed that he had dane so by
modifying the settingsin the Preferences dialog in PGPKeys. Another of the twelve (P2) took
more than 30 minutes® to figure out how to encrypt, and the method he finally found required a
reconfiguration of PGP (to make it display the PGPMenuinside Eudora). Another (P3) spent 25
minutes ending repeaed test messages to the team members to seeif she had succeealed in
encrypting them (without success), and finally succeeled only after being prompted to use the
PGP Hug-In buttons.

e Figuring out the crrect key to encrypt with

Among the deven participants who figured out how to encrypt, failure to understand the public
key model was widespread. Seven participants (P1, P2, P7, P8, P9, P10 and P11) used only their
own public keysto encrypt email to the team members. Of thase seven, only P8, P9 and P10
eventually succeeled in sending corredly encrypted email to the team members before the end of
the 90 minute test sesson, and they did so only after they had receved fairly explicit email
prompting from the test monitor posing as the team members. P1, P7 and P11 appeaed to
develop an urderstanding that they needed the team members’ public keys (for P1 and P11, this
was also after they had receved prompting email), but still did not succeel at corredly encrypting
email. P2 never appeaed to understand what was wrong, even after twicereceving feedbad that
the team members could not deaypt his email .

Another of the deven (P5) so completely misunderstoodthe model that he generated key pairs for
ead team member rather than for himself, and then attempted to send the seaet in an email
encrypted with the five public keys he had generated. Even after receving feedbad that the team
members were unable to deaypt his email, he did not manage to recover from this error.

® Thisis measured as time the participant spent working on the spedific task of encrypting a message, and
does not include time spent working on getting keys, generating keys, or otherwise exploring PGP and
Eudora.

18

Decrypting an email message

Five participants (P6, P8, P9, P10 and P12) recaved encrypted email from ateam member (after
successfully sending encrypted email and publicizing their public keys). P10 tried for 25 minutes
but was unable to figure out how to deaypt the email. P9 mistook the encrypted message block
for akey, and email ed the team member who sent it to ask if that wasthe case; after the test
monitor sent areply from the team member saying that no key had been sent and that the block
was just the message, she was then able to deaypt it successfully. P6 had some initial difficulty
viewing the results after deayption, but recovered successfully within 10 minutes. P8 and P12
were &leto deaypt without any problems.

Publishing the public key

Ten of the twelve participants were ale to successully make their public keys avail able to the
team members; the other two (P4 and P5) had so much difficulty with ealier tasks that they never
addres=d key distribution. Of those ten, five (P1, P2, P3, P6 and P7) sent their keys to the key
server, three(P8, P9 and P10) emailed their keys to the team members, and P11 and P12 dd both.
P3, P9 and P10 publicized their keys only after being prompted to doso by email from the test
monitor posing as the ampaign manager.

The primary difficulty that participants appeaed to experience when attempting to publish their
keysinvolved the iconic representation of their key pairsin PGPKeys. P1, P11 and P12 all
expressed confusion about which icons represented their public keys and which their private keys,
and were disturbed by the fact that they could only seled the key pair icon as an indivisible unit;
they feaed that if they then sent their seledion to the key server, they would be acédentally
publishing their private keys. Also, P7 tried and failed to email her public key to the team
members; she was confused by the diredive to “paste her key into the desired area” of the
message, thinking that it referred to some aeaspedficdly demarcaed for that purpose that she
was unable to find.

Getting ather people’ s public keys

Eight of the twelve participants (P1, P3, P6, P8, P9, P10, P11 and P12) successfully got the team
members’ public keys, all of the @ght used the key server to doso. Five of the aght (P3, P8, P9,
P10 and P11) receved some degreeof email prompting before they did so. Of the other four, P2
and P4 never seemed aware that they needed to get the team members' keys, P5 was $ confused
about the model that he generated keys for the team membersinstead, and P7 spent 15 minutes
trying to figure out how to get the keys but did not succee.

P7 gave up on using the key server after one fail ed attempt in which she tried to retrieve the
campaign manager’ s public key but got nothing badk (perhaps due to mis-typing the name). P1
spent 25 minutes trying and failing to import a key from an email message; he mpied the key to
the dipbeeard but then kept tryingto deaypt it rather than import it. P12 also had dfficulty trying
to import akey from an email message: the key was one she dready had in her key ring, and
when her copy and paste of the key fail ed to have any effed on the PGPK eys display, she assumed
that her attempt had failed and kept trying. Eventually she became so confused that she began
trying to deaypt the key instead.

Handling the mixed key types problem
Four participants (P6, P8, P10 and P12) eventually managed to send corredly encrypted email to
the team members (P3 sent a corredly encrypted email to the campaign manager, but not to the

whole team). P6 sent an individually encrypted message to eat team member to begin with, so
the mixed key types problem did not arise for him. The other threereceved an reply email from

18

the test monitor posing as the team member with an RSA key (“Ben”), complaining that he was
unableto deaypt their email .

P8 successfully employed the solution of sending that team member an email encrypted only with
hisown key. P10 explained the caise of the problem corredly in an email to that team member,
but didn’t manage to offer asolution. P12 half understood, initially believing that the problem
was due to the fad that her own key pair was Diffie-Hellman/DSS, and attempting to generate
herself an RSA key pair asa solution. When she found herself unable to dothat, she then dedded
that maybe the problem was just that she had a corrupt copy of that team member’s public key,
and began trying in various ways to get a good copy of it. She was gill trying to doso at the end
of the test session.

Signing an email message

All the participants who were e to send an encrypted email message were dso able to sign the
message (althoudh in the cae of P5, he signed using key pairsthat he had generated for other
people). It was unclea whether they assgned much significanceto ddng so, beyond the fad that
it had been requested as part of the task description.

Verifying asignature on an email message

Again, all the participants who were aleto deaypt an email message were by default also
verifying the signature on the message, sincethe only deayption operation available to them
includes verification. Whether they were aware that they were doing so, or paid any attention to
the verification result message, is not something we were ale to determine from this test.

Creating abackup revocation certificate

We would have liked to know whether the participants were aware of the goodreasons to make a
badup revocation certificate and were ale to figure out how to doso successfully. Regrettably,
thiswas very difficult to test for. We settled for dired prompting to make abadup revocation
certificae, for participants who managed to successfully send encrypted email and deaypt areply
(P6, P8 and P12).

In response to this prompting, P6 generated atest key pair and then revoked it, without sending
either the key pair or its revocation to the key server. He gpeaed to think he had successfully
completed the task. P8 badked up her key rings, revoked her key, then sent email to the canpaign
manager saying she didn't know what to donext. P12 ignored the prompt, focusing on another
task.

Dedding whether to trust keysfrom the key server

Of the aght participants who got the team members' public keys, only three(P1, P6, and P11)
expressed some concern over whether they should trust the keys. P1'sworry was expressed in the
last five minutes of histest session, so he never got beyond that point. P6 noted aloud that the
team members’ keys were dl signed by the eampaign manager’s key, and took that as evidence
that they could be trusted. P11 expressed grea distressover not knowing whether or not she
should trust the keys, and got no further in the remaining ten minutes of her test sesson. None of
the threemade use of the validity and trust labeling provided by PGPKeys.

20

7. Conclusons

7.1. Case study conclusions

Our first conclusion, based largely on the user test results, isthat PGP 5.0 is not sufficiently usable to
provide dfedive security for most email users. Our twelve test participants were generally educated and
experienced at using email, yet only one third of them were ale to use PGP to corredly signand encrypt
an email message when given 90 minutesin which to doso. Furthermore, one quarter of them accidentally
exposed the seaet they were meant to proted in the process by sendingit in email they thought they had
encrypted but had not.

Our second conclusion, based on both the test results and our dired analysis, isthat PGP 5.0's failure to be
effectively usable is largely due to a mismatch between the design phil osophy behind its user interface and
the usabili ty needs of aseaurity utility. PGP’ s user interfacedesign seems to have prioriti zed making the
basic encryption and signature operations easy to access and making it convenient to perform the frequent
operation of picking keys from the user’ s key ring for encryption. Making a priority of convenienceand
obvious access for the most basic and frequently performed operationsis a good strategy for atypica
application, but PGP would have benefited more from putting the priority on conveying the public key
model simply and clealy to the user, making it as obvious as posshle when something has been encrypted
and when it has not, and making sure that crucial tasks like making a badkup revocétion certificate were
reasonably easy to perform. After al, people who acquire PGP in order to have private and authenticated
email can be expeded to put some dfort into finding the encrypt button if neaessry, but they are unlikely
to put work into tasks for which they don't understand the need.

7.2. General Conclusions

Seaurity isclealy akey concern of networked computing, and atopic grealy inthe vogue. Thereis
tremendous amount of credive, important work in the seaurity techniquesin developing rew, powerful
mechanisms for seaurity. Unfortunately, the same amount of attention has not been lavished on the
guestion of making sure that users actually can and douse the security techniques avail able to them. To
work towards a future where security techniques are dfedively and comprehensively used, it is neaessary
to build systems that are usable by people with a broad variety of badgrounds, training and talents.

We have agued in this paper that security presents a spedal set of requirements for usability; that it is
unforgiving and offers littl e feadbadk; and that it is unlikely to be akey motivator for atypicad user. Thus,
our expedations for usable security software ae similarly high, and our analysisis meant to ad asa
starting point for suggesting further analyses of seaurity software. Thisisimportant, not only because of
the need to improve the usabili ty of security software, but also because we need to know the usabili ty limits
of seaurity software in order to set proper expedations on how it will be used.

More than this, our analysis method suggests a set of open questionsin how we design software for usable
seaurity applications. We ague that such software must have multi ple goals — it should be eay to use and
hard to misuse, it should teach users about security, and the interfaceshould grow in sophistication asthe
user can demonstrate his increased sophisticaion in applying security. In ongoing work, we ae
investigating ways to construct security software that satisfies these goals. We hope that our work will | ead
to seaurity-spedfic techniques for designing user interfaces that will convey clea and acarrate modelsto
users whil e proteding them from dangerous errors.

21

8. Related work

We have found very little published research to date on the problem of usability for security. Of what does
exist, the most prominent example is the Adage projead [9, 16], which is described as a system designed to
handl e authorization palicies for distributed applications and groups. Usability was a major design god in
Adage, but it isintended for use by professional system administrators who already possess a high level of
expertise, and as such it does not addressthe problems pased in making security effedively usable by a
more general population. Work has also been done on the related issue of usabili ty for safety criticd
systems [7], like those which control aircraft or manufaduring plants, but we may hope that unlike the
users of personal computer seaurity, users of those systems will be caefully seleded and trained.

Aside from Adage, we know only of one paper on usabili ty testing of a database authentication routine [5],
and some brief discussion of the seaurity and privacy issues inherent in computer supparted coll aborative
work [13]. John Howard’ s thesis [3] providesinteresting analyses of the security incidents reported to
CERT® between 1989and 1995 but focuses more on the types of attadks than on the causes of the
vulnerabiliti es that those dtadks exploited, and represents only incidents experienced by entities
sophisticated enough to report them to CERT.

References

1. Matt Bishop. UNIX Seaurity: Threats and Solutions. Presentation gven at SHARE 86.0, Anaheim,
CA. March 1996 Available & http://sedab.cs.ucdavis.edu/~bishop/scriv/1996 share86.pdf.

2. Simson Garfinkel. PGP: Pretty GoodPrivacy. O'Reilly and Assciates, 1995

3. JohnD. Howard. An Analysis of Seaurity Incidents on the Internet 1989-1995. Carnegie Mellon
University Ph.D. thesis, 1997

4. John, B. E., & Mashyna, M. M. (1997) Evaluating a Multimedia Authoring Toadl with Cognitive
Walkthrough and Think-Aloud User Studies. In Journal of the American Saiety of Information
Science, 48 (9).

5. Clare-Marie Karat. lterative Usability Testing of a Seaurity Applicaion. In Proceedings of the
Human Factors Saciety 33 Annua Meeting, 1989.

6. Stephen Kent. Security. In More Than Sreen Deep: Toward Every-Citi zen Interfaces to the Nation's
Information Infrastructure. National Academy Press Washington, D.C., 1997

7. Nancy G. Leveson. Sdeware: System Sdfety and Computers. Addison-Wesley Publishing Company,
1995

8. JakobNielsen. Heuristic Evaluation. In Usabhility Inspedion Methods, John Wiley & Sons, Inc., 1994

9. The Open Group Reseach Ingtitute. Adage System Overview. Published on the web at
http://www.osf.org/www/adage/relatedwork.htm, July 1998

10. Pretty GoodPrivacy, Inc. PGP 5.0 Features and Benefits. Published at
http://pgp.com/productsPGP50-fab.cgi, 1997.

11 Pretty GoodPrivacy, Inc. User’'s Guide for PGP for Persona Privacy, Version 50 for the Mac OS
Packaged with software, 1997

® CERT isthe Computer Emergency Resporse Team formed by the Defense Advanced Research Projeds
Agency, and locaed at Carnegie Mellon University.

22

12.

13.

14,

15.

16.

Jeffrey Rubin. Handbodk of usahility testing: how to plan, design, and conduct effedivetests. Wiley,
1994

HongHai Shen and Prasun Dewan. AccessControl for Coll aborative Environments. In Proceadings of
CSCw'92.

Cathleen Wharton, John Rieman, Clayton Lewis and Peter Polson. The Cognitive Walkthrough
Method: A Pradioner’s Guide. In Usability Inspedion Methods, John Wiley & Sons, Inc., 1994

Wogalter, M. S., & Young, S. L. (1994. Enhancingwarning compliancethrough alternative product
label designs. Applied Ergonanmics, 25, 53-57.

Mary Ellen Zurko and Richard T. Simon. User-Centered Seaurity. New Security Paradigms
Workshop, 199%.

23

A. Description of test participants

A.l. Recruitment

The test participants were reauited through advertising posters on the CMU campus and pcsts on several
locd newsgroups (cmu.misc.market, pgh.general, and pgh.jobs.off ered) with the exception of P11 and
P12, who were reauited through personal contads. Thetext of the poster and newsgroup pcsts read:

Earn $20and help make mmputer seaurity better!

| need peopleto help me test a mmputer seaurity program to seehow
easy it istouse. Thetest takes about 2 hours, and should be fun to da

If you areinterested and you know how to use email (no knowledge of
computer security required), then cadl AlmaWhitten at 268-3060 @
email ama@cs.cmu.edu.

More than 75 people responded to the advertisements, and 38 people completed the badground interview.
From those 38, we disqualified 8 who already had some knowledge of public key cryptography. We then

chose 12 perticipants based on age, gender, education level and areaof education/work experience, trying
for the widest and most evenly distributed range avail able.

A.2. Participant demographics

This table describes the demographic distribution of the twelve test participants:

Gender 6 female
6 male
Age 3 age 25 a yourger
3age26to 35
3age 36to 45
3age 45 a older
Highest education level’ 2 had some wllege
4 had undergraduate degrees
4 had some graduate school
2 had graduate degrees
Education or caree ares’ 2 dd computer programming
4 dd biologicd science (pharmacy, biology, medicine)
4 dd humanities or social science (education, business,
sociology, English)
2 dd fine ats (graphic design)

" The original test plan caled for some participants with only a high school education, but none responded
to the advertisements.

8 This categorization was biased toward famili arity with computer programming and then toward training
in hard science, so that the psychology grad student who works as a research programmer is classfied asa
computer programmer, and the business/biology major is clasdfied as having a biologicd science
badground.

24

B. Description of testing process

B.1. Test environment

The testing was done in asmall |ab set up as depicted below.

Madntosh
with PGP —» E\\ Manua(ljs, pad,
and Eudora penan
floppy disk
File cainets O [|
Test
participant Door to

Test monitor Q corridor

Camcorder

PGP and Eudora were bath installed on the Madntosh, and Eudora was configured to properly accessan
email acount set up for test participants, and to use the PGP Rug-In. PGP was put into the state it would
beinright after installation, with one exception: we deleted all the keys that ordinarily come with PGP and
let the participants begin with an empty key ring. We put complete printouts of the PGP and Eudora
manuals into labeled 3-ring binders and pdnted them out to the participants at the beginning of the test
sessons.

Our test set-up had one alditional peauliarity worth mentioning, which isthat in our efforts to remove
extraneous programs that might distrad the participants during the test, we inadvertently removed
SimpleText, which meant that test participants were unable to real the “Phil's Letter,” “PGPFreeware 5
README,” and “QuickStart” documents. Aswe described in our analysis, we strongly doubted that those
threedocuments had the potential to be of much help to novice users, so we chose to maintain consistency
over the test sessions and did not restore SimpleText for |ater participants.

B.2. Greeting and orientation
Eadh participant was met in the buil ding lobby, and escorted from there to the |ab for the test session.

The orientation for the test had four components:
1. The participant was given two copies of the mnsent form®, and asked to read it and sign one @py.
2. Thewritten briefing was read aloud to the participant*®, and then the written document was given to
the participant for his or her own reference during the test. This briefing explained the foll owing:
a. that they were helping test Eudora and PGP, not being tested themselves;
b. that it would be extremely helpful if they could “think aloud” as much as passible during the
test;
c. that the premise of the test was that they were volunteaing for a padlitica campaign, and that
their task would be to send email updates to the members of the ampaign team, using
encryption and dgital signaturesto ensure that the email was kept seaet and wasn't forged;

® SeeAppendix D.
10 see Appendix E.

25

d. what their email addressand password would be for the purposes of the test;
e. that Eudora and PGP were drealy installed, and that the manuals, pad, pen and floppy disk
were there for them to use as much as they liked;
f. that they’d be given a5 minute tutorial on basic use of Eudora before we began the atual
testing.
3. They were given the 5 minute Eudoratutorial, and it was verified that they understood how to use it for
sending and receving email .
4. Theinitial task description was read aloud to the participant'’, and then they were given the written
document for their own use. This document gave them the foll owing information:
a. Namesand email addresses for the ampaign manager and four members of the ampaign
team;
b. Thetext of amessage giving a series of speaking dates and locaions for the candidate;
c. A request that they please use PGP and Eudora to send the message in a seaure, signed email
to the ampaign manager and all the other campaign team members,
d. A further request to then wait for any email responses from the team members and to follow
any instructions they might give.

B.3. Testing

The participant’s adions during the adual testing were recorded bah by the amcorder, which was focused
on the monitor screen, and by the test monitor. During the test the test monitor was saed as shown in the
test environment diagram, about six fee away from the participant, behind them and to the side. The test
monitor used a laptop computer equipped with aWaveL AN network connedion both to take monitoring
notes and to remotely play the roles of the various campaign team members (by reading and replying to the
participant’s email) as necessary.

The original test design cdled for the testing to be done in two parts: a 45 minute session with the task and
test scenario described above, to be foll owed by a debriefing and then another 45 minute session in which
the test monitor would diredly ask the participant to try to perform spedfic tasks, such as revoking their
public key or signing someone dse’s public key. In pradice we quickly found that most of the participants
could not succea at the initial task of sending signed and encrypted email within 45 minutes, and that it
made more sense to let them continue with that task for up to the full 90 minutes. When a participant did
succeel at the initial task, we found it seemed more natural to have the fictional campaign manager prompt
them by email to attempt additi onal tasks, rather than to stop the test and start a second sesson in which the
test monitor prompted them diredly. In only one cae did we foll ow the original test design, with a
participant (P6) who did succee at theinitial task within 45 minutes.

In order to succee at theinitial task of sending signed and encrypted email to all the members of the
campaign team, the participant needed to acamplish the foll owing:

1. Generate akey pair of their own.

2. Maketheir public key avail able to the ampaignteam members, either by sending it to the key
server, or by emailing it to them diredly.

3. Get the ampaign team members' public keys, either by fetching them from the key server or by
sending email diredly to the team membersto request their public keys.

4. Encrypt the seaet message using the team members’ public keys, sign it using their own private
key, and send it.

Email that was encrypted with the wrong key(s) caused the participant to get repli es from the team
members complaining that they couldn’t deaypt the message; repeaed occurrences caused the team
membersto also ask if the participant was using their keysto encrypt.

1 SeeAppendix C.

26

If the participant succeeled at the initial task, they recaved several email responses:

1. A signed and encrypted email from the campaign manager giving them an update to the searet
message; thistested whether they could deaypt and read the email succes<ully.

2. Anemail from the ampaign manager reminding them to badk up their key rings and make a
badup revocation certificate; this tested whether they could dothose things.

3. Anemail from amember of the ampaign team whose key pair was RSA rather than Diffie-
Hellman/DSS complaining that he was unable to deaypt their email; thistested whether they
could identify the mixed key types problem and use the crred solution of sending that team
member email encrypted only with his own public key.

B.4. Debriefing
After stoppng the test, the test monitor turned off the camcorder and turned on the audio tape recorder, and
then verbally asked the participant the questions in the document titled Questionnare to foll ow part one of

PGP Usability Test'. The test monitor then thanked the participant for their help, paid them the $20in
cash, and ended the test sesson.

C. Summariesof test session transcripts

Times are rounded to nearest 5 minutes. “Maria” is the fictional campaign manager, “Ben” and “Paul” are
fictional campaign team members (and Ben's key is RSA rather than Diffie-Hellman/DSS); email from

them isadually sent by the test monitor using a laptop as a remote link.

P1. male, age 29, grad degreein education, now university administrator

00:00to 0G05

Typed in the seaet email message.

00:05t0 0010

Tried to figure out how to encrypt his message, explored PGP.

00:10to 0015

Generated a key pair for himself.

00:15to0 0020

Read manual, focused on how to get other peopl€’ s publi c keys.

00:20to 0025

Badked up his key rings on the floppy disk.

00:25t0 0035

Sent his public key to the key server.

00:35t0 0040

Sent email to the team members asking for their public keys, but encrypted it with his
own public key.

00:40to 0045

Got email from the test monitor posing as Maria, saying she @an’'t deaypt his email.

00:45to 0050

Sent email to team members, encrypted with his own public key again.

00:50to 0055

Got email from the test monitor posing as Maria, saying she still can’t deaypt his
email, and enclosing her public key.

00:55t0 01:20

Tried to import Maria s public key from her email message.

01:20to 01:25

Fetched team members’ publi c keys from the key server.

01:25to 0130

Tried to figure out whether to trust the public keys from the key server.

Comments:

e Hewasableto successfully generate his own key pair, send his public key to the key server, and
get the team members’ public keys from the key server.

e Hetried (for 25 minutes) and fail ed to import a key from an email message.

e Hedid not successfully send signed and encrypted email to the team members before the end of
the 90 minute test sesgon.

e Hedid also successfully badk up his key rings onto a floppy disk.

12 see Appendix D.

27

e When preparingto send his key to the key server, he expressed worry that he culdn’t tell whether
the key in the PGPK eys display was his public key or his private key.

e When trying to request the team members’' public keys by email, he didn’t understand that
encrypting with his own key (only) would prevent them from being able to read his message.

e Whentrying to get Maria's public key out of her email message and into his key ring, he mpied
the key onto the dipboard and then repeaedly tried to deaypt it, rather than using the Import Key
command or simply pasting it into PGPK eys.

P2: male, age 38,1S major with some grad schod, now database programmer

00:00to 0G05

Set up Eudoramail aliases for the campaign team members.

00:05to 0020

Looked at manuals and explored PGP.

00:20to 0025

Generated a key pair for himself.

00:25t0 0055

Tried to figure out how to encrypt an email message. Renfigured PGP to display the
PGPMenu on the Eudora menu bar.

00:55t0 0100

Sent his public key to the key server.

01:00to 0105

Sent email to team members, but encrypted it with just his own public key.

01:05t0 0110

Got email from the test monitor posing as Maria, saying that she can’'t deaypt his
email .

01:10to 0120

Again sent email to team members encrypted with just his own public key, but this
time dso signed the message after encrypting it.

01:20to 0130

Got another email from the test monitor posing as Maria, saying that she till can’t
deaypt hisemail; didn't make any further progress

Comments:

e Hewasableto successfully generate his own key pair and send his public key to the key server.

e Hewasunableto discover any of the dired routesto encrypting his email (using the PGP Eudora
plug-in buttons or pull-down menu, or using the dipbcerd with PGPTools) and instead used the
Preferences dialog in PGP to add the generalized PGPMenu to the Eudora menu bar.

e Hedid not successfully get any of the team members’' public keys; in fad, he never appeaed to
redizethat he neaded to doso.

e Hedid not successfully send signed and encrypted email to the team members before the end of
the 90 minute test sesson.

e Henever appeaed to understand the nead to exchange public keys, or to have a ¢ea sense of how
the keys were to be used.

P3: female, age 49, gad degree businesgbiology major, now computer operator

00:00to 0G05

Generated a key pair for herself.

00:05to 0015

Sent a plain text email to the team members asking for their public keys.

00:15to 0620

Got email from the test monitor posing as Maria, with Maria s public key and the
suggestion to get the other team members' publi ¢ keys from the key server.

00:20to 0055

Tried to get the other team members publi ¢ keys from the key server and eventually
succeeled.

00:55t0 01:05

Sent atest email message to the team membersto seeif she'd successully encrypted
and signed it (no).

01:05t0 01:10

Got email from the test monitor posing as Maria, telling her the test email wasn't
signed or encrypted.

01:10to 0115

Sent another test message, but still wasn't successful at signing or encrypting it.

28

01:15to 0120 Got email from the test monitor posing as Maria, telling her that the test message still

wasn't signed or encrypted, and asking if she’s pushing the encrypt and sign buttons on
the message before sending it.

01:20to 0125 Sent signed and encrypted email to Maria successfully.

01:25t0 0130 Sent her public key to the key server (after a prompt from the test monitor posing as

Maria).

Comments:

She was able to successfully generate her own key pair and send her public key to the key server.
With some prompting from the test monitor posing as Maria, she was able to get the team
members' public keys from the key server, and finally send corredly signed and encrypted email
to the team members.

Although she asked for the team members' public keys via amail, she did not, or was not able to,
import Maria's key from the email message; instead she spent 35 minutes figuring out how to
fetch the public keys from the key server.

She didn’'t manage to find the Sign and Encrypt plug-in buttons on her own, nor did she figure out
(in 25 minutes of working on it) any of the dternative ways to get her message signed and
encrypted.

P4: male, age 39, undergrad degreein English, now writer

00:00to 0005 Sent the seaet message to the team membersin aplain text email.

00:05to 0010 Got email from the test monitor posing as Maria, pointing out the eror, reiterating the

importance of signing and encrypting, and asking Hm to try to send a signed and
encrypted test message before going any further.

00:10to 0020 Tried to figure out how to encrypt; looked at manual and opened PGP.

00:20to 0025 Generated a key pair for himself.

00:25to0 0030 Quit PGPKeys and saved badup of hiskey rings (in the PGP folder).

00:30to 0040 Continued trying to figure out how to encrypt, sent atest email message.

00:40to 0045 Got email from the test monitor posing as Maria, telling him the test message wasn't

signed or encrypted either.

00:45to 0105 Continued trying to figure out how to encrypt, sent another test message but seemed to

already know he hadn’t succeeled in signing or encrypting it.

01:05to0 0120 Continued trying to figure out how to encrypt. Sent another test message dter

modifying the settingsin the PGPK eys Preferences dial og.

01:20to 0125 Got email from the test monitor posing as Maria, telling him his test message still isn't

signed or encrypted, and asking him to please keep trying even thoughit must be
frustrating.

01:25t0 01:30 Continued trying to figure out how to encrypt, without success.

Comments:

He was able to successfully generate his own key pair.

He acdédentally sent the seaet message in aplain text email .

He was not able to figure out how to encrypt and sign his email message within the 90 minute test
sesgon (the test monitor pasing as Maria didn’t prompt him beyond offering encouragement).

He never appeaed aware of the need to get the team members' public keys or the need to make
his own public key avail able.

He did badk up hiskey rings, but did so within the same folder asthe originals.

He seemed to exped to be éle to “turn on” encryption and then have it happen invisibly; at one
point toward the end he thought he had dane so by modifying the settings in the PGPKeys
Preferences dialog. Furthermore, it appeared that his expedation that it would be invisible caised
him to have no sense of whether or not he had managed to sign or encrypt his messages.

29

He seemed to know he needed keys for the team members (after encountering the “please drag
redpients from this list” dialog) but appeaed to think that the keys he needed must be aound

somewhere in PGP and that he was just having trouble finding them.

P5: male, age 47, sociology major with some grad schod, now clerical worker

00:00to 0G05

Typed the seaet message into Eudora and saved it in afile.

00:05to 0015

Tried to signand encrypt his saved file using PGPTods, cancdled when he got to the
dialog that asks for the public keys to encrypt with.

00:15t0 0020

Repeded the &ove.

00:20to 0025

Real the manual, redi zed he nealed to generate keys.

00:25t0 0035

Generated a key pair for ead of the campaign team members, not for himself.

00:35t0 0045

Signed and encrypted his saved file using PGPToadls, seemed to think that completing
this processcaused his email message to be sent.

00:45to 0050

Exported hisfive key pairsto afile.

00:50to 0055

Checked for new mail, wondered aloud if hisemail was $nt. | intervened to show him
how to tell if a Eudora message was $nt or not.

00:55t0 0105

Used the Eudora plug-in menu to accessthe PGP plug-in and signed and encrypted his
email message using the five key pairs, then sent it to the team members.

01:05to0 0110

Got email from the test monitor posing as Maria, saying she an’'t deaypt his message
and asking if he used her public key to encrypt it. Figured out that something’s wrong.

01:10to 0130

Experimented with trying to send himself encrypted email, but couldn’t figure out

what the problem was. Eventually seemed to conclude that the PGP plug-in must not
be install ed.

Comments:

He was unable even to generate akey pair for himself, since he mistakenly thought he needed to
generate key pairs for eat of the ampaign team membersinstead.

He never figured out that he neealed to get pre-existing public keys for the campaign team
members.

He never figured out that he needed a key pair of his own, much less that he would need to make
his public key avail able to the campaign team members.

He verbally expressed alot of worry about the security of the keys gored on the hard drive.

He did not succeeal at sending the signed and encrypted message to the members of the campaign
team within the 90 minute test session, nor did he succeel at any of the prerequisite tasks.

He dealy did not understand the basic model of public key cryptography and key distribution,
and his understanding did not seem to increase over the @urse of the test sesson. He understood
that he needed keys for the people he wanted to send encrypted email to, but apparently nothing
beyond that.

He had some trouble figuring out how to get his message signed and encrypted, which appeaed to
eventually be mompounded by his attributing Maria' s inability to deaypt his email to a problemin
the signing and encryption processrather than a problem with the keys used.

30

P6. male, age 31, psychology g ad student, aso research programmer

00:00to 0G05

Typed message into Eudora, tried to sign and encrypt it using the PGP plug-in butons,
cancdled when he got to the dialog that asks for public keys to encrypt with.

00:05to 0015

Figured out that he needed to generate akey pair for himself and did so.

00:15to 0620

Badked up his key rings on the floppy disk.

00:20to 0025

Tried again to signand encrypt his message, dragged his own public key to the
redpients’ list, then redized he needed the team members’ public keys and cancdled.

00:25to 0230

Sent his public key to the key server.

00:30to 0035

Fetched the team members' public keys from the key server.

00:35to 0040

Noted all the team members’ public keys are signed with Maria's private key, dedded
it was okay to trust them.

00:40to 0045

Sent the searet message to ead team member in an individually encrypted and signed
email .

At this point the test monitor stopped the test and debriefed, then proceeded to ask him to perform spedfic
tasks diredly, following the original test design.

00:45t0 0050

The test monitor asked him to send a signed and encrypted email to Paul and Ben, to
seewhat he'd doabout the mixed key types warning. He sent the message despite the
warning, commenting that they could always snd him email if there was a problem.

00:50to0 0100

The test monitor, posing as Maria, sent him a signed and encrypted message to seeif
he could deaypt and verify it; he had someinitial trouble getting the results after
deayption, but succealed.

01:00to 0115

The test monitor asked him to creae abad<up revocation certificate; he made atest
key pair and then revoked it. He thought that fulfill ed the task, so the test monitor
went on.

01:15t0 01:20

The test monitor asked him to label Maria's public key as completely trusted. PGP
wouldn't let him do that, since her public key had not been signed by some completely
trusted public key.

01:20to 01:25

The test monitor asked him to sign Maria's public key. PGP wouldn't let him signiit
becaise he had no default key pair set (asaresult of having generated and revoked that
test key pair), but didn’t tell him that was the problem, so he gave up.

01:25to 0130

The test monitor asked him to revoke his public key. He did so, but didn’t send the
revocation to the key server.

Comments:

o He successfully generated a key pair for himself, sent his public key to the key server, got the
campaign team members' public keys from the key server, and corredly signed, encrypted and
sent the seaet message, al in the first 45 minutes of the test sesson.

e Hesent anindividual signed and encrypted message to ead member of the ampaign team, so he
didn’'t encounter the mixed key types warning urtil the test monitor made him do so in the second
half of the test.

e Hebadked up his key rings onto the floppy disk.

e He understood that the public keys he retrieved were signed with Maria's key and stated that as
evidencethey could be trusted.

e Hesuccessfully deaypted and verified a message from the test monitor posing as Maria, although
it was unclea how aware of the signature verification he was.

e Evauating his understanding of revocation is problematic, sincewe weren't redly ableto fit it
believably into the test scenario; he might not have publicized the revocaion at the end simply
becaise he didn't think that’s what the the test monitor was asking for.

o |t looked like he would have been able to sign Maria's key easily except for the unexpeded
default key problem (seebelow).

31

e Creding and revoking atest key pair caused him to have no default key pair set; PGP then
refused to let him sign a key, and offered no explanation for the refusal nor any information to
alert him that he needed to set anew default key pair.

P7: female, age 40,undergrad degreein biology, now clerical worker

00:00to 0620

Explored, tried to figure out how to sign and encrypt.

00:20to 00625

Generated a key pair for herself.

00:25to 0630

Tried to figure out how to distribute her public key.

00:30to 0G40

Tried to figure out how to paste her public key into an email message.

00:40to 0G50

Sent email to team members encrypted just with her own public key.

00:50to 0055

Sent her public key to the key server.

00:55to0 01:00

Continued trying to figure out how to email her public key to the team members.

01:00to 0105

Sent her public key to the team membersin a plain text email .

01:05t0 01:20

Tried to figure out how to get the team members’ public keys.

01:20to 0125

Tried to figure out how to badk up her key rings.

01:25t0 0130

Tried to figure out how to sign and encrypt.

Comments:

o Shesuccesqully generated akey pair for herself, sent her public key to the key server, and
email ed her public key to the members of the ampaign team.

e Shewas not ableto find a way to get the team members’ public keys, and this prevented her from
being able to send encrypted email .

e Sheseemed to understand the basic public key model, but was unsure of the validity of her
understanding, and was easily put off and confused by small errors.

e She gpeaed to confuse the “please drag redpients’ encryption dialog box with an addressbodk,
not redizing that it was prompting her for keys for the redpients.

e She was confused by the manual diredive to paste her key into the “desired area” of the email
message, thinking that it spedfied some exad location that she was unable to find.

e When herinitial attempt to fetch Maria’'s key from the key server failed (due to mis-typing?) she
took that as evidencethat she was on the wrong tradk and never tried again.

P8: female, age 20, undergrad student, businessmaj or

00:00to 0G05

Explored, generated a key pair for herself.

00:05t0 0010

Looked at PGPKeys display, read manual.

00:10to 0015

Sent email message to team members encrypted just with her own public key.

00:15t0 0020

Got email from the test monitor posing as Maria, saying she an't deaypt that email .

00:20to 0025

Tried sending the email again, still encrypted just with her own public key.

00:25t0 0030

Got email from the test monitor posing as Maria, saying she still can’t deaypt it, and
asking if she's using Maria' s public key.

00:30to 0035

Sent her public key in an email, still encrypted just with her own public key.

00:35t0 0040

Got email from the test monitor posing as Maria, saying she still can’t deaypt it, and
asking if she nealsto get Maria' s public key.

00:40to 0045

Fetched team members’ public keys from the key server after referring to manual.

00:45to 0G50

Sent seaet to team membersin signed and encrypted email .

00:50to 0055

Got email from the test monitor posing as Maria, requesting an update to the seaet.

00:55t0 0100

Got email from the test monitor posing as Ben, saying he car’'t deaypt her email, sent
him a message saying “Your key isblue! Let me seewhat | should da”

32

01:00to 01:05

Deaypted Maria s message and sent the updated searet to the team membersin signed
and encrypted email. Didn't appea to read to the mixed key types warning.

01:05t0 01:10

Got email from the test monitor posing as Ben, saying he can't deaypt that one éther.

01:10to 0115

Sent email to Ben telling him the problem is that his key is RSA, and that he should
update his copy of PGP.

01:15t0 0120

Got email from the test monitor posing as Ben, saying that he can't update right now

and asking her to find away to send him email that he can deaypt. Sent him an email
encrypted just with his public key.

01:20to 0130

Got email from the test monitor posing as Maria, reminding her to bad up her key
rings and make abadup revocdion certificae. Badked up her key rings and then
revoked her key; sent email saying that she made abad<up but couldn’t figure out how
to dothe badkup revocation certificate.

Comments:

She was able to generate akey pair for herself and to send her public key to the team members via
email .

She figured out that she neaded to get keys for the team members only after three successively
stronger hints from the test monitor posing as Maria, but then was able to figure out how to get the
keys quickly and easily.

She was able to send signed and encrypted email to the team members once she understood that
she nealed their public keys.

She was able to figure out why Ben couldn't deaypt her message and find the solution to the
problem.

e Shewasableto deaypt and reed Maria' s messge eaily.

o Shewasableto bad up her key rings when prompted to doso.

e Shedidn't understand that she nealed to use the team members’ public keys to encrypt until she'd
receved multiple explicit prompts from the test monitor posing as Maria.

e She didn't understand the diredive to make abadup revocaion certificae, and it might have
taken her awhile to recover from the results of her attempt to doso.

P9: female, age 24, medical student

00:00to 0G05

Email ed the seaet to the campaign team membersin plain text.

00:05to 0010

Got email from the test monitor posing as Maria, pointing out the eror, reiterating the
importance of signingand encryption, and asking her to send a signed and encrypted
test message before going any further.

00:10to 0G30

Tried to signand encrypt atest message, got stuck at the dialog that asks for the public
keys to encrypt with.

00:30to 0035

Generated a key pair for herself. Sent atest message encrypted with just her own
public key.

00:35t0 0040

Got email from the test monitor posing as Maria, saying she an’'t deaypt that and
asking if she's using Maria s key to encrypt.

00:40to 0045

Sent two more messages encrypted just with her own public key. Got another email
from the test monitor posing as Maria, saying she an’t deaypt those and asking if
she’susing Maria's key to encrypt.

00:45to 0G50

Tried to figure out how to get Maria's public key.

00:50to 0055

Fetched Maria s public key from the key server. Sent a signed and encrypted test
message.

00:55t0 01:00

Got email from the test monitor posing as Maria, saying that was goodwork and
reminding her to give Maria her public key. Email ed her public key to Maria

01:00to 01:05

Got signed and encrypted email from the test monitor posing as Maria, with an updated
seqet.

33

01:05t0 01:10

Sent email to Maria asking if the block of text in the last messageis a key.

01:10to 0115

Got email from the test monitor posing as Maria, saying she didn't send akey and that
the block isjust the message.

01:15t0 01:20

Deaypted Maria s message, sent email saying the updated seaet is on the way.

01:20to 01:25

Sent updated searet to all team members encrypted just with Maria s public key. Got
email from the test monitor pasing as Paul, saying he car't deaypt that message.

01:25t0 0130

Sent updated searet to all team members encrypted just with Maria's public key and
her own public key, then began fetching the other team members' public keys from the
key server.

Comments:

She sent the seaet in plain text initially, but redized her error before being told.
She was able to generate akey pair for herself successfully.

e Shewasableto get Maria's key and send signed and encrypted email successfully after two fairly
explicit prompts from the test monitor pasing as Maria.

e Shewasableto send her key to Mariain email after being prompted by the test monitor, pasing as
Maria, to give Maria her key.

e She acdidentally sent the seaet in a plain text email.

e Shedidn't understand the public key model well: shetried sending email to Maria encrypted only
with her own key until the test monitor, posing as Maria, repeaedly prompted her to get Maria's
key, and then after succesSully sending signed and encrypted email to Maria, she tried to send
signed and encrypted email to the whole team using only her key and Maria's.

e Shemistook the encrypted block she receved in email for akey.

P10: male, age 45, some undergrad work in pharmacy, now does human resources

00:00to 0015

Generated a key pair for himself, looked at it in PGPKeys, experimented with
generating another key pair but then cancel ed.

00:15t0 0025

Email ed the seaet to Paul, encrypted just with his own public key.

00:25t0 0030

Got email from the test monitor posing as Paul, saying he can’t deaypt that, and
asking if he used Paul’ s key to encrypt.

00:30to 0035

Fetched team members’ public keys from the key server. Badked up his key rings.

00:35t0 0040

Sent the seaet to the team membersin a signed and encrypted email .

00:40to 0045

Got email from the test monitor posing as Maria, thanking im and reminding him that
now they need his public key.

00:45to0 0050

Got email from the test monitor posing as Ben, saying he can't deaypt that message.

00:50to 0055

Sent email to Ben corredly explaining the key type problem.

00:55t0 01:00

Email ed his public key to the team members. Got email from the test monitor posing
as Ben, saying his copy of PGP won't do DSSkeys, and asking him to send a copy that
Ben can deaypt with his RSA key.

01:00to 0105

Got signed and encrypted email from the test monitor posing as Maria, thanking im
for sending Hskey and giving him an updated seaet to send aut.

01:05t0 01:30

Tried to figure out how to deaypt Maria's email .

Comments:

He was able to generate akey pair for himself successfully.

Heinitialy sent the seaet encrypted only with his own key.

After prompting, he was able to get the team members' keys from the key server.

He was able to send his public key to the team members viaemail .

He didn’t figure out how to send email that Ben could deaypt.

He was unable to figure out how to deaypt Maria's email within the 25 minutes before the test
ended.

34

e |nitial trouble with sending email encrypted only with his own key.

e Bothered when PGP didn’'t match some of the team members keys with their grayed out
representations in the “ please drag redpients’ dialog.

e Didn't figure out that he should send Ben email encrypted only with Ben'skey.

o Didn't figure out how to deaypt an encrypted message in 25 minutes of trying.

P11 female, age 33,undergrad degreein finearts, now graphic designer

00:00to 0G05

Sent the seaet out in a plain text email, but redized the eror on her own.

00:05t0 0010

Got email from the test monitor posing as Maria, reiterating the importance of signing
and encryption and asking her to send a signed and encrypted test message.

00:10to 0020

Generated a key pair for herself.

00:20to 0025

Tried to figure out how to distribute her public key and get the team members' public
keys.

00:25to0 0030

Tried to figure out how to badk up her key rings. Sent her public key to the key server.

00:30to 0040

Email ed her public key to Maria.

00:40to 0100

Tried to figure out how to encrypt. Sent email to team members encrypted just with
her own public key.

01:00to 0105

Got email from the test monitor posing as Maria, saying she an’'t deaypt that and
asking if she used Maria s key to encrypt.

01:05to 01:10

Sent email to Maria asking for Maria s public key.

01:10to 0120

Fetched the team members' public keys from the key server. Real about trusting keys
and chedking fingerprints.

01:20to 01:25

Got email from the test monitor posing as Maria, with Maria' s public key.

01:25to 0130

Worried about how to check the validity of the team members’ public keys.

Comments:

e Shesent the seaet in plain text initially, but redized her error without being told.

e Shewas ableto generate akey pair for herself, send her public key to the key server, send her
public key in an email message, and fetch the team members' public keys from the key server.

o Sheinitialy encrypted her email to the team members with just her own key.

o Shefigured out that Ben's key was blue because it was an RSA key.

e Shedidn't successfully send signed and encrypted email becaise she was afraid to trust the keys
she got from the key server.

e Bothered by not being able to figure out which of the iconsin the PGPK eys display was her public
key and which was her private key; afraid of acddentally sending her private key.

e [|nitial trouble with sending email encrypted only with her own key.

o Afraid that sending her key to the key server had failed becaise dl she got was the “receaving
data...” message.

e Confused the Eudora signature button with the PGP plug-in signature button.

e Worried that the PGP plug-in buttons weren't conneded to anything because nothing seemed to
happen when she dicked them.

e Nervousabout publicizing her public key, it seemed to be & odds with her expedation that keys
neal to be kept seaet, was afraid that she was misunderstanding and making a mistake.

e Too afraid of making a mistake to trust the keys that she got from the key server, alarmed by the
default “untrusted” key properties, didn’t appea to noticethat the keys were dl signed by Maria.

35

P12 female, age 22,undergrad degreein finearts, now graphic designer

00:00to 0010

Generated a key pair for herself.

00:10to 0015

Sent her public key to the key server.

00:15t0 0020

Creaed an email message and pasted her public key into it. Fetched team members
public keys from the key server.

00:20to 0025

Creaed another email message and typed the seaet into it.

00:25to 0045

Sent the searet to the team membersin asigned and encrypted email.

00:45to 0050

Got signed and encrypted email from the test monitor posing as Maria, reminding her
to badk up her key rings and make abadup revocation certificae. Deaypted it.

00:50to 0055

Got email from the test monitor posing as Ben, saying he can't deaypt her email .
Dedded it’s becaise his public key is a different type from hers.

00:55t0 01:00

Sent email to Ben askingif he can crede anew key pair for himself.

01:00to 0105

Tried to generate aRSA key pair for herself so that her key would be the same type &
Ben's (PGP wouldn't let her). Tried changing the validity and trust settings on Ben's
public key.

01:05to 01:10

Got email from the test monitor posing as Ben, saying there’s nothing wrong with his
key pair and he doesn’t want to generate anew one right now. Sent Ben email asking
if he has her public key and if they can set up afile somewhere so that she can import
his public key.

01:10to 0120

Got email from the test monitor posing as Ben, giving her his public key and saying
that he has hers. Repeaedly copied Ben's public key from the email and pastesit into
her key ring (PGPKeys) but assumed it wasn't working becaise the display didn't
change.

01:20to 0125

Sent email to Ben saying she's duck.

01:25t0 0130

Tried to decrypt Ben's public key block.

Comments:

e Shesuccessully generated a key pair for herself, sent her public key to the key server, pasted her
public key into an email message, fetched the team members’ public keys from the key server,
sent the seaet to the team membersin a signed and encrypted email, and deaypted and read
Maria sreply.

e Shefigured out that Ben couldn’'t deaypt becaise his key was RSA, but wasn't able to figure out
the solution to the problem.

o Shewas bothered by not being able to tell which icon in PGPK eys represented her public key and
which her private key, and afraid to send her key to the key server for fea of acddentally sending
her private key.

o Shededded after experimentation that the key pair icon was her public key, and the icons below it
(the signature info) were her private key.

e Concluded erroneoudy that the PGP plug-in wasn't installed, and used PGPToadls and the
clipboard instead.

e Forgot her initial passphrase and had to generate and publicize asecond key pair.

e [|nitially understood why Ben couldn't deaypt her message, but went on to a series of erroneous
explanations whil e trying to figure out a solution.

36

D. Consent form

CARNEGIE MELLON UNIVERSITY
CONSENT FORM

Projed Title: PGP 5.0 Usability Test
Conducted By: Alma Whitten, Computer Science Department

| agreeto participate in the observational reseach conducted by students under the supervision of Dr. Doug Tygar. |
understand that the proposed reseacch has been reviewed by the University’s Institutional Review Board, and that to the best
of their ability they have determined that the observations involve no invasions of my rights or privacgy, nor do they
incorporate any procedure or requirements which may be foundmorally or ethicdly objedionable. | understand that my
participation is voluntary, and that if at any time | wish to terminate my participationin this gudy, | have the right to do so
withou penalty. | understandthat | will be paid $20 for my participation when | have cmmpleted the experiment.

If you have any questions about this gudy, you should fed free to ask them now or at any time during the experiment, or
later by contading:

Professor Doug Tygar

CMU School of Computer Science
412-268-6340

tygar@cs.cmu.edu

Youmay report any objedionsto this gudy, either orally or in writing, to:

Susan Burkett

Associate Provost

Carnegie Méllon University
412-268-8746

Purpose of the study: | understandthat | will be using the email program Eudara and the seaurity program PGP. |
understand that | will be asked to send and receve seaure dedronic mail, and that | may be asked to use PGP to perform
additional seaurity management tasks. | redizethat the email messages | send and receve during the @urse of thistest will
be saved for analysis, and that | will be aked to reved any passwords or passphrases that | use during the course of the
testing. | am aware that thisis an evaluation of the design of PGP’ s user interface and not an evaluation of my own skill s or
competence

| understand that the foll owing procedure will be used to maintain my anornymity in anaysis, publi cation and/or presentation
of any results. Names will not be recorded; instead, ead participant will be assgned anumber. The reseachers will save
the data, videotapes and audiotapes by participant number, not by name. Only members of the research team will view or
listen to the tapesin detail. No ather reseacherswill have accessto these tapes.

Optional Permisson: | understand that the researchers may want to use ashort portion o videotape for illustrative reasons
in presentations of thiswork. | give my permissonto do so provided that my name and facewill not appea.
YES NO Pleaseinitial here

| understand that in signing this consent form, | give Professor Tygar and his asociates permisson to present thiswork in
written and aal form, without further permisson from me.

Name (please print) Signature

Telephore Date

37

E. Initial briefing document
What you need to know

Thisisatest of the design of PGP and of PGP as an additi on to the email program Eudora. Y ou are not
being tested; you are helping me test PGP. At some points you may fed frustrated and stuck, but please do
keep tryingand dan’t fed bad, because seeéng where people get stuck and what they do to get unstuck is
exadly the kind of data | need from this testing.

If you can manage it, it is extremely useful to meif you “think aloud” duringthetest. The cancorder hasa
microphone that will pick up what you say, and I’'ll be taking notes aswell. The more informative you can
be a&out what you are doing and thinking, the better my data will be.

The scenario for the first part of the test is that you are volunteaing for a palitica campaign, and the role
that you have been gven isthat of Campaign Coordinator.

Your task isto send updates about the ampaign plan out to the members of the ampaign team by email .
It is very important that the plan updates be kept seaet from everyone other than the members of the
campaign team, and also that the team members can be sure that the updates they receve haven’t been
forged. In order to ensure this, you and the other team members will need to use PGP to encrypt and
digitally sign your email messages.

Y our email addressfor the purposes of thistest is ccoord@wanton.trust.cs.cmu.edu, and your passwvord is
volnteer. You should use thetitle “Campaign Coordinator” rather than using your own name.

Eudora and PGP have both been installed, and Eudora has been set up to access your email acount.
Manuals for both Eudora and PGP are in the black binders to your right; use them as much asyou like. The
pad, pens, and floppy disk are dso there for you to use if you want them.

Before we start the test itself, I'll be giving you a very basic demonstration of how to use Eudora. The goal
isto have you start out the test as a person who already knows how to use Eudorato send and receve
email, and who is just now going to start using PGP as well to make sure your email can't be forged or
spied on whileit’s being delivered over the network. The Eudoratutorial will take éout 5 minutes, and
then we'll begin the acdua testing.

38

F. Initial task description
The canpaign manager is Maria Page, mpage@wanton.trust.cs.cmu.edu.
The other members of the ampaign team are;

Paul Butler, butler@wanton.trust.cs.cmu.edu

Ben Donnelly, bend@wanton.trust.cs.cmu.edu

Sarah Carson, carson@wanton.trust.cs.cmu.edu

Dana Mclntyre, dmi @wanton.trust.cs.cmu.edu

Please use PGP and Eudorato send the foll owing message in a secure, signhed email to Maria and all the
other campaign team members:

Spe&king dates for Pennsylvania:
7/10/98 Harrisburg
7/15/98 Hershey
7/18/98 Philadelphia
7/23/98 Pittsburgh

Onceyou have done this, wait for any email resporses from the team members, and foll ow any diredions
they giveyou. I'll stopthe test in about 45 minutes'. Don't forget to “think aloud” as much as you can.

G. Debriefing questionnaire
Questionnaire to foll ow part one of PGP Usability Test

1. Onascdeof 1to 5 how important did you think the seaurity was in this particular test scenario, where
lisleast important and 5ismost important? 1 2 3 4 5

2. If you generated akey pair during this portion of the test, was there any particular reasoning behind
your choice of key type and key size? |If so, what was it?

3. Wasthere anything you thought about doing but then dedded not to baher with?

4. Isthere anything you think you would have done differently if this had been ared scenario rather than
atest?

5. Were there ay aspeds of the software that you found particularly helpful ?
6. Werethere any aspeds of the software that you found particularly confusing?

7. Arethere ay other comments you'd like to make & thistime?

13 Our initial plan was to conduct the test in two 45minute parts, but in pradiceit turned out to work better
not to stopin the middle. After thefirst couple of sessons the test monitor started telling them that
although this document said 45minutes the test monitor would probably have them just continue for the
full 90 minutes.

39

