
.

......

Random Bit Generation
Theory and Practice

Joshua E. Hill

Department of Mathematics, University of California, Irvine

Math 235B
January 11, 2013

http://bit.ly/XWdBtv
v .

1 / 47

http://bit.ly/XWdBtv

Talk Outline

1 Introduction

2 Non-Deterministic Random Bit Generation

3 Deterministic Random Bit Generation

4 Conclusion

2 / 47

Section 1

Introduction

3 / 47

The Story Thus Far

I We have seen many, many uses for random numbers in
cryptography.

I This is for reasons coming from game theory.
By Kerckhoffs’ principle, we assume that adversaries know the
design, thus know how secret values are selected.
Game theory tells us that in these circumstances, the random
selection of parameters yields the least advantage for the attacker.

I Within computers, we represent any number as a sequence of bits,
so I’ll generally use the term random bit generator.

4 / 47

Random is as Random Does

I Random is not a characteristic of a number.
I Processes are random, and we refer to the numbers produced by

such processes as random numbers.
I Such numbers can be modeled as random variables selected from

some probability distribution.

5 / 47

Wheels within Wheels...

The term random bit generator is used in a few distinct ways:
1. Truly random: Derived from some underlying physical phenomena

which is unpredictable absent direct measurement.
2. Cryptographically random: Computationally difficult for an

attacker to guess future outputs given past outputs.
3. Statistically random: Models some particular statistical

distribution well.

6 / 47

When I use a word...

.
Definition..

......

A cryptographic random bit generator, with security bound L bits,
produces sequences of random bits .R1; R2; : : : ; Rn/ such that
1. The generator is unbiased: Pr

�
Rj D 0

�
D

1
2
.

2. The bits are uncorrelated: Pr
�
Rj D 0jR1; R2; : : : ; Rj �1

�
D

1
2
.

3. Negligible advantage: An attacker can’t distinguish between a true
uniform random bit generator and the cryptographic random bit
generator without performing at least 2L operations.

This third goal is equivalent to the goal “Computationally difficult for
an attacker to guess future outputs given past outputs.”.

7 / 47

You Can’t Get There From Here...

There are a few approaches to this:
I Use a non-deterministic random bit generator (NDRBG, a.k.a., a

True Random Number Generator).
Most physical sources aren’t well modeled by uniform distributions.
Most physical sources are fragile and can fail, often subtly.
Most physical sources produce random bits very slowly.
Many physical sources can be affected by a suitably powerful
attacker.

I Use a deterministic random bit generator (DRBG, a.k.a.
pseudo-random number generator, or PRNG). Good designs:

Have excellent statistical properties.
Are easy to test.
Can produce vast amounts of output quickly.
Are difficult for an attacker to influence.
Can accumulate entropy (uncertainty).

Require input that cannot be predicted by an attacker. :-(

8 / 47

You Can’t Get There From Here...

There are a few approaches to this:
I Use a non-deterministic random bit generator (NDRBG, a.k.a., a

True Random Number Generator).
Most physical sources aren’t well modeled by uniform distributions.
Most physical sources are fragile and can fail, often subtly.
Most physical sources produce random bits very slowly.
Many physical sources can be affected by a suitably powerful
attacker.

I Use a deterministic random bit generator (DRBG, a.k.a.
pseudo-random number generator, or PRNG). Good designs:

Have excellent statistical properties.
Are easy to test.
Can produce vast amounts of output quickly.
Are difficult for an attacker to influence.
Can accumulate entropy (uncertainty).
Require input that cannot be predicted by an attacker. :-(

9 / 47

You got your NDRBG in my DRBG!

I Reasonable designs must involve both a DRBG and a NDRBG.
The NDRBG could be integrated into the design.
The NDRBG could be used during manufacturing.

I The NDRBG is the ultimate source of uncertainty (and thus
security).

I The DRBG:
Conditions the output and gives it excellent statistical properties.
Remains secure any time after being seeded by reasonable NDRBG
input, even if the NDRBG fails later.
Can produce a very large amount of input given a very modest
amount of reasonable input from the NDRBG.

10 / 47

Section 2

Non-Deterministic Random Bit Generation

11 / 47

NDRBG Outline

1 Introduction

2 Non-Deterministic Random Bit Generation
Information Theory
Entropy Source
Test, Test, Test
NDRBG Conclusion

3 Deterministic Random Bit Generation

4 Conclusion

12 / 47

Subsection 1

Information Theory

13 / 47

How Many Bits Would a Bit Compressor Compress if...

I The traditional measure of uncertainty from Information Theory is
called entropy.

I Much like randomness, messages do not have entropy. Message
sources have entropy.

I There are several related notions of entropy.
I Shannon entropy is the most widely adopted notion of entropy.
I It tells you the minimal average message length for a source.

.
Definition..

......

Shannon Entropy

H.X/ D �

nX
iD1

pi lg.pi /

14 / 47

No, Mr. Bond, I Expect You to Guess.

I Shannon entropy is not really what we want.
I We want a worst case, not the average case.
I We get it from a generalization of Shannon Entropy called Rényi

entropy.
.
Definition..

......

Rényi Entropy

H˛.X/ D
1

1 � ˛
lg

nX
iD1

p˛
i

!
I Letting ˛ ! 1 gives us Shannon Entropy.

15 / 47

Mirror Mirror on the Wall...

I Take the limit as ˛ ! 1 yields the worst-case: Min-entropy.
I In some sense, min-entropy is a lower bound for any other notion

of entropy.

.
Definition..

......

Min-Entropy
H1.X/ D � lg.max

i
pi /

16 / 47

Subsection 2

Entropy Source

17 / 47

When The Diode Breaks: Sources of Entropy

I Well understood sources
Ring oscillators
Noisy diodes
Radioactive decay
(Other) Quantum effects

I Somewhat understood sources
Fluid turbulence (or other other chaotic systems)
Audio noise
Radio noise
CCD noise

I Poorly understood sources
Process scheduling patterns
Network packet arrival timing
Booting randomness
Keyboard / mouse movement

18 / 47

Beyond Good and Evil

I A Good Source
is very simple and easy to analyze.
has a readily identifiable and quantifiable source for uncertainty.
is difficult for an attacker to monitor.
can be well modeled by some well understood statistical
distribution so that min-entropy can be estimated.
can be easily tested for deviation from this expected distribution.
is stable across the the expected operational range of the system.

I In summary, a good source is both secure and has assurance of
security.

19 / 47

Wait, Am I in the Right Room?

Let’s examine an ring oscillator:

Source: Inductiveload via: Wikipedia

I Each gate has a finite switching time.
I Variation in switching time is called jitter.
I This jitter is induced by thermal noise, which is thought to be a

random process (quantum effects dominate).
I The jitter for one gate is roughly normally distributed.
I Chaining together multiple gates sums the jitter for each gate.
I The sum of independent identically distributed normal

distributions is normal (with the same mean, and larger standard
deviation).

20 / 47

Rings and Things You Sing About, Bring ’em Out

I Initialize the system by opening the loop and allowing to stabilize.
I Induce a pulse whose length is (much) less than the oscillator

period.
I Close the loop.
I Time period between rising edge of the pulses.
I Subtract the average oscillator period: this is the jitter.

21 / 47

Not A Reference to the Book!

I The probability distribution function (PDF) for one
implementation’s jitter looks like this:

-100 -50 50 100

0.002

0.004

0.006

0.008

0.010

I Divide the PDF into roughly eighths.
I pmax D 0:130205 so H1.X/ � 2:94. Great!

22 / 47

Not A Reference to the Book!

I The probability distribution function (PDF) for one
implementation’s jitter looks like this:

-100 -50 50 100

0.002

0.004

0.006

0.008

0.010

I Divide the PDF into roughly eighths.
I pmax D 0:130205 so H1.X/ � 2:94. Great!

23 / 47

Hot Space

I What if the chip gets a bit warm?

-100 -50 50 100

0.002

0.004

0.006

0.008

0.010

! -200 -100 100 200

0.001

0.002

0.003

0.004

0.005

I pmax D 0:283855 is now so H1.X/ � 1:82.
I We now have only 61% of our prior entropy. :-(

24 / 47

Fix Up

I The assumption about the parameters of the distribution is fragile.
I To make our analysis more conservative, analyze the timing

difference between consecutive pulses.
If the first is longer, output a 1. If the second is longer, output a 0. If
equal, no output.
Difference of two i.i.d. normal distributions is a normal distribution.
Mean and standard deviation should be stable, so pmax � :5, so
H1.X/ � 1 bit.

I The local conditions between two consecutive pulses should be
very stable.

I Ideally, provide the full timing values as the seed.
I Account only for one bit of min-entropy per pair.

25 / 47

Subsection 3

Test, Test, Test

26 / 47

Design Testing

I After implementation, test your implementation against your
assumptions.

I Many tool chains silently remove uncertainty.
I We can produce a set of likely upper entropy bounds given a great

deal of seed data.
I Raw timing values allow for extensive design tests.
I If we expect full entropy, testing is “easy”!

Diehard / Dieharder
sts
Statistical tests require some expertise to run and interpret.

I If we expect our data to have less than full entropy, we can only
run a subset of these tests, and interpretation must be done very
carefully.

I We can estimate (Shannon) entropy with compression tests.
I Testing seed data to assess entropy must be conducted prior to

any cryptographic processing.
27 / 47

Unit Testing

I Some statistical testing should continue while in use. Examples:
Continuous output testing for a stuck-value.
Periodic �2 test.

I Tune the probability of false failure to an acceptable level (set ˇ

low enough so that the lifetime probability of false test failure is
low).

I Technically, this reduces entropy, though if ˇ is low enough, this is
negligible.

28 / 47

Subsection 4

NDRBG Conclusion

29 / 47

Lessons

I Only uses sources that you really understand.
What physical process is responsible for entropy?
What probability distribution models this process well?
How does this process change with conditions?

I Try to be very conservative with entropy analysis.
This results in high assurance lower bound estimates.
Never throw away possible entropy, just account and combine
conservatively.

I Test!
Verify that your analysis is supported by reality.
Verify that the running NDRBG hasn’t failed.

30 / 47

Section 3

Deterministic Random Bit Generation

31 / 47

DRBG Outline

1 Introduction

2 Non-Deterministic Random Bit Generation

3 Deterministic Random Bit Generation
DRBG Introduction
OFB Based DRBG
ANSI X9.31-1998 A.2.4 DRBG
CTR-DRBG

4 Conclusion

32 / 47

Subsection 1

DRBG Introduction

33 / 47

A Reminder

.

......

Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number – there
are only methods to produce random numbers, and a strict
arithmetic procedure of course is not such a method.

— John von Neumann

34 / 47

General Idea

I Conceptually, a DRBG involves a few processes
A function that seeds the DRBG.
A function that processes the internal state between outputs.
A function that outputs random bits (”Generate”).

I Seeding requires entropy input. The other functions can optionally
accept entropy input.

I Internal state collision leads to cycles (there may be a birthday
paradox problem, depending on the design).

I We make use of some cryptographic primitive within each of these
functions.

I Any entropy input must be in large blocks (min-entropy at least as
large as the security bound).

I Seed input may allow the attacker to manipulate the internal state.

35 / 47

Subsection 2

OFB Based DRBG

36 / 47

A Bad Idea

I DES in OFB mode.

Source: NIST SP800-38A

37 / 47

A Bad Idea: Notes

I Seed by selecting the key, K, and the one block IV .
I Keep K secret, use the output of the DES function as the DRBG

output.
I This (mostly) has excellent statistical properties.
I Problem: We expose our internal state (as the DRBG output).
I Problem: only V is updated. K is fixed.
I Once we randomly return to a previously used internal state, we

enter a cycle.
I This happens quite quickly! For a block size of 64 bits:

Only 232 blocks until we expect it to occur.
221 blocks until the probability is more than 2�20 that this has
occurred.

38 / 47

Subsection 3

ANSI X9.31-1998 A.2.4 DRBG

39 / 47

A Somewhat Better Idea

ANSI X9.31-1998 A.2.4

40 / 47

A Somewhat Better Idea: Notes

I Seed by selecting a key, �K, and a one block V .
I The updating DT field helps prevent cycles.
I We don’t directly expose the internal state.
I We never update �K (until we rekey).
I We can’t gracefully provide additional entropy.
I The internal state size is still quite small, and can’t be expanded.
I Seeds can only be as large as the internal state, so must be full

entropy to obtain a reasonable security level.

41 / 47

Subsection 4

CTR-DRBG

42 / 47

A Very Good Design: Generate

Stages 2 and 3 of NIST’s CTR-DRBG Generate:
(Stage 1 is not directly relevant to this discussion.)

Stage 2: Stage 3:

Source: NIST SP800-90A

43 / 47

A Very Good Design: Update

Source: NIST SP800-90A

44 / 47

A Very Good Design: Notes

I This design allows for effectively arbitrary length seed input.
I Seeding input produces V and Key.
I V is one cipher block long
I Key and V are updated during the Instantiate, Reseed, Generate

operations.
I Key and V are segregated for the generation loop (reducing the

likelihood of a cycle).
I Update mixes Key and V (updating all the state between

Generates).
I Uses block cipher in a Counter-like mode to produce output bits

and mix Key and V .
I Very unlikely to enter a cycle (with probability less than 2�40 when

used as directed).

45 / 47

Section 4

Conclusion

46 / 47

Conclusion

I For reasonable security, it is necessary to use both a DBRG and a
NDRBG.

I For the NDRBG
Only use sources that you really understand.
Try to be very conservative with entropy analysis.
Test!

I For the DRBG, use a well understood and evaluated design. The
design should:

be based on a well understood cryptographic primitive.
allow for large seed input.
allow for periodic reseeding.
not keep any state data fixed.
never discard data that might contain entropy.
not be susceptible to cycles.

47 / 47

	Introduction
	Non-Deterministic Random Bit Generation
	Information Theory
	Entropy Source
	Test, Test, Test
	NDRBG Conclusion

	Deterministic Random Bit Generation
	DRBG Introduction
	OFB Based DRBG
	ANSI X9.31-1998 A.2.4 DRBG
	CTR-DRBG

	Conclusion

